Chapter 3: Vectors

- To describe motions in 2- or 3-dimensions, we need vectors
- A vector quantity has both a magnitude and a direction. e.g., acceleration, velocity, displacement, force, torque, and momentum.
- A scalar quantity does not involve a (spatial) direction. e. g. charge, mass, time, temperature, energy, etc.

Vector addition

- Graphical method
 e. g. two vectors \mathbf{a}, \mathbf{b}

$\mathbf{a}+\mathbf{b}=$

(a)

$$
\mathbf{a}-\mathbf{b}=\mathbf{a}+(-\mathbf{b})=
$$

(b)

- Check point 3.1: The magnitude of displacements \mathbf{a} and \mathbf{b} are 3 m and 4 m , respectively, and $\mathbf{c}=\mathbf{a}+\mathbf{b}$. Considering various orientations of a and b, what is
(a) the maximum possible magnitude for \mathbf{c}
(b) the minimum possible magnitude for \mathbf{c}

Vector Addition Property

$\mathbf{a}+\mathbf{b}=\mathbf{b}+\mathbf{a}$
\quad (commutative)

$(\mathbf{a}+\mathbf{b})+\mathbf{c}=\mathbf{a}+(\mathbf{b}+\mathbf{c})$
(associative)

Vector in a coordinate system
Magnitude-angle notation: y
$a_{x}=a \cos \theta$
$a_{y}=a \sin \theta$
a: magnitude
θ : relative to +x direction, counter-clockwise is positive: "clock is negative"

Components of Vectors

$$
\begin{aligned}
& a_{x}=a \cos \theta \\
& a_{y}=a \sin \theta
\end{aligned}
$$

- Component notation vs magnitude-angle notation

(a)

(b)

$$
a=\sqrt{a_{x}^{2}+a_{y}^{2}}
$$

$$
\tan \theta=\frac{a_{y}}{a}
$$

(c)

$$
a_{x}
$$

Unit Vectors

- Has a magnitude of 1 and points in a particular direction

- $\mathrm{i}, \mathrm{j}, \mathrm{k}$, unit vectors in the positive $\mathrm{x}, \mathrm{y}, \mathrm{z}$ direction, follow righthanded coordinate system
$\vec{a}=a_{x} \hat{i}+a_{y} \hat{j}$

(a)

Add vectors by components

$$
\begin{aligned}
& \vec{a}=a_{x} \hat{i}+a_{y} \hat{j}+a_{z} \hat{k} \\
& \vec{b}=b_{x} \hat{i}+b_{y} \hat{j}+b_{z} \hat{k} \\
& \vec{r}=\vec{a}+\vec{b}=\left(a_{x}+b_{x}\right) \hat{i}+\left(a_{y}+b_{y}\right) \hat{j}+\left(a_{z}+b_{z}\right) \hat{k}
\end{aligned}
$$

Example: In the figure below,
a) What are the signs of the x components of d_{1} and d_{2} ?
b) What are signs of the y components of d_{1} and d_{2} ?
c) What are the signs of the x and y components of $d_{1}+d_{2}$.
d) What is the final vector $d_{1}+d_{2}$?

A Quiz

A Quiz

$$
\begin{aligned}
\overrightarrow{\mathrm{a}} & =3.0 \hat{\mathrm{i}}-4.0 \hat{\mathrm{j}}+0.0 \hat{\mathrm{k}} \\
\overrightarrow{\mathrm{~b}} & =-2.0 \hat{\mathrm{i}}+2.0 \hat{\mathrm{j}}+0.0 \hat{\mathrm{k}} \\
\overrightarrow{\mathrm{r}}=\overrightarrow{\mathrm{a}}+\overrightarrow{\mathrm{b}} & =\overrightarrow{(3.0-2.0) \hat{\mathrm{i}}+(-4.0+2.0) \hat{\mathrm{j}}+(0.0+0.0) \hat{\mathrm{k}}} \\
\overrightarrow{\mathrm{r}}=(1.0) \hat{\mathrm{i}} & +(-2.0) \hat{\mathrm{j}}+(0.0) \hat{\mathrm{k}}
\end{aligned}
$$

In which quadrant would $\mathbf{a}+\mathbf{b}$ be located if
$\mathbf{a}=3.0 \mathrm{i}-4.0 \mathrm{j}$ and
$\mathbf{b}=-2.0 \mathrm{i}+2.0 \mathrm{j}$?

Multiplication of Vectors

- Multiply a vector by a scalar: $\mathbf{b}=\mathrm{s}$ a
- Magnitude of \mathbf{b} : s times the magnitude of \mathbf{a}
- Direction of $\mathbf{b}:$ same as a if $s>0$, opposite of a if $\mathrm{s}<0$
- Multiply a vector by a vector
- Scalar product (tells you the projection of a onto \mathbf{b}.)
- results in a scalar
- Vector product (tells you the area subtended by \mathbf{a} and \mathbf{b}.)
- results in another vector perpendicular to both \mathbf{a} and \mathbf{b}.

Scalar product

- Scalar product of two vectors \mathbf{a} and \mathbf{b}
$\mathbf{a} \bullet \mathbf{b}=\mathrm{ab} \cos \phi$

(a)
a, b : magnitude of \mathbf{a}, \mathbf{b} ϕ : angle between the directions of \mathbf{a} and \mathbf{b}

Scalar product

$\mathbf{a} \cdot \mathbf{b}=\mathrm{a} b \cos \phi$

If a and b parallel, $\phi=0^{\circ}$
$=>\mathbf{a} \cdot \mathbf{b}=\mathrm{ab} \cos 0^{\circ}=\mathrm{ab}$
if \mathbf{a} and \mathbf{b} perpendicular, $\phi=90^{\circ}$

$$
=>\mathbf{a} \cdot \mathbf{b}=\mathrm{a} b \cos 90^{\circ}=0
$$

$$
\mathbf{i} \cdot \mathbf{i}=\mathbf{j} \cdot \mathbf{j}=\mathbf{k} \cdot \mathbf{k}=1 \quad \mathbf{i} \cdot \mathbf{j}=\mathbf{i} \cdot \mathbf{k}=\mathbf{j} \cdot \mathbf{k}=0
$$

Scalar Product

$$
\begin{aligned}
& \overrightarrow{\mathrm{a}}=\mathrm{a}_{\mathrm{x}} \hat{\mathrm{i}}+\mathrm{a}_{\mathrm{y}} \hat{\mathrm{j}}+\mathrm{a}_{\mathrm{z}} \hat{\mathrm{k}} \\
& \overrightarrow{\mathrm{~b}}=\mathrm{b}_{\mathrm{x}} \hat{\mathrm{i}}+\mathrm{b}_{\mathrm{y}} \hat{\mathrm{j}}+\mathrm{b}_{\mathrm{z}} \hat{\mathrm{k}} \\
& \overrightarrow{\mathrm{a} \bullet} \cdot \overrightarrow{\mathrm{~b}}=\left(\mathrm{a}_{\mathrm{x}} \mathrm{~b}_{\mathrm{x}}\right)+\left(\mathrm{a}_{\mathrm{y}} \mathrm{~b}_{\mathrm{y}}\right)+\left(\mathrm{a}_{\mathrm{z}} \mathrm{~b}_{\mathrm{z}}\right)
\end{aligned}
$$

Check point 3-4: Vectors \mathbf{C} and \mathbf{D} have magnitudes of 3 units and 4 units, respectively. What is the angle between the directions of \mathbf{C} and \mathbf{D} if $\mathbf{C} \cdot \mathbf{D}$ is
(a) zero
(b) 12 units
(c) -12 units

Scalar Product between a and b

What is the scalar product between

$\mathbf{a}=3.0 \mathrm{i}-4.0 \mathrm{j}$ and
$\mathbf{b}=-2.0 \mathrm{i}+2.0 \mathrm{j}$?

$$
\begin{gathered}
\overrightarrow{\mathrm{a}}=3.0 \hat{\mathrm{i}}-4.0 \hat{\mathrm{j}} \\
\overrightarrow{\mathrm{~b}}=-2.0 \hat{\mathrm{i}}+2.0 \hat{\mathrm{j}} \\
\overrightarrow{\mathrm{a}} \bullet \overrightarrow{\mathrm{~b}}=(3.0)(-2.0)+(-4.0)(2.0)=-14.0
\end{gathered}
$$

Angle between a and b

$\mathbf{a} \cdot \mathbf{b}=\mathrm{a} b \cos \phi$

$$
\begin{aligned}
& \mathrm{a}=5 \\
& \mathrm{~b}=2.828
\end{aligned}
$$

$$
\mathbf{a} \cdot \mathbf{b}=(3.0)(-2.0)+(-4.0)(2.0)+(0.0)(0.0)=-6.0-8.0=-14.0
$$

Vector Product

- Vector product of two vectors a and b produce a third vector c whose magnitude is

$$
c=a b \sin \phi
$$

whose direction follow the right hand rule

Note: $\mathbf{a} \times \mathbf{b}=-(\mathbf{b} \times \mathbf{a})$

Vector product

- $\mathbf{c}=\mathbf{a} \times \mathbf{b} \quad \Rightarrow \quad c=a b \sin \phi$
- if \mathbf{a} and \mathbf{b} parallel, $\phi=0^{\circ}$

$$
=>\mathbf{a} \times \mathbf{b}=0
$$

if a and b perpendicular, $\phi=90^{\circ}$
$=>c=a b$
$\mathbf{i} \times \mathbf{i}=\mathbf{j} \times \mathbf{j}=\mathbf{k} \times \mathbf{k}=0$
$\mathbf{i} \times \mathbf{j}=\mathbf{j} \times \mathbf{k}=\mathbf{k} \times \mathbf{i}=1$
$\mathbf{j} \times \mathbf{i}=\mathbf{k} \times \mathbf{j}=\mathbf{i} \times \mathbf{k}=-1$

Check point 3-5: Vectors \mathbf{C} and \mathbf{D} have magnitudes of 3 units and 4 units, respectively. What is the angle between the directions of \mathbf{C} and \mathbf{D} if the magnitude of the vector products $\mathbf{C x D}$ is
(a) Zero
(b) 12 units

