Chapter 3: Vectors

- To describe motions in 2- or 3-dimensions, we need vectors

- A vector quantity has both a magnitude and a direction. e.g., acceleration, velocity, displacement, force, torque, and momentum.

- A scalar quantity does not involve a (spatial) direction. e.g., charge, mass, time, temperature, energy, etc.
Vector addition

• Graphical method
e. g. two vectors \(\mathbf{a}, \mathbf{b} \)

\[
\mathbf{a} + \mathbf{b} =
\]

\[
\mathbf{a} - \mathbf{b} = \mathbf{a} + (-\mathbf{b}) =
\]
Check point 3.1: The magnitude of displacements \(\mathbf{a} \) and \(\mathbf{b} \) are 3 m and 4 m, respectively, and \(\mathbf{c} = \mathbf{a} + \mathbf{b} \). Considering various orientations of \(\mathbf{a} \) and \(\mathbf{b} \), what is (a) the maximum possible magnitude for \(\mathbf{c} \) (b) the minimum possible magnitude for \(\mathbf{c} \)
Vector Addition Property

\[\mathbf{a} + \mathbf{b} = \mathbf{b} + \mathbf{a} \]
(commutative)

\[(\mathbf{a} + \mathbf{b}) + \mathbf{c} = \mathbf{a} + (\mathbf{b} + \mathbf{c})\]
(associative)
Vector in a coordinate system

Magnitude-angle notation:

\[a_x = a \cos \theta \]
\[a_y = a \sin \theta \]

a: magnitude

\(\theta \): relative to +x direction, counter-clockwise is positive: “clock is negative”
Components of Vectors

\[a_x = a \cos \theta \]
\[a_y = a \sin \theta \]

- Component notation vs magnitude-angle notation

\[a = \sqrt{a_x^2 + a_y^2} \]
\[\tan \theta = \frac{a_y}{a_x} \]
Unit Vectors

- Has a magnitude of 1 and points in a particular direction

- i, j, k, unit vectors in the positive x, y, z direction, follow right-handed coordinate system

\[\vec{a} = a_x \hat{i} + a_y \hat{j} \]
Add vectors by components

\[\vec{a} = a_x \hat{i} + a_y \hat{j} + a_z \hat{k} \]
\[\vec{b} = b_x \hat{i} + b_y \hat{j} + b_z \hat{k} \]
\[\vec{r} = \vec{a} + \vec{b} = (a_x + b_x) \hat{i} + (a_y + b_y) \hat{j} + (a_z + b_z) \hat{k} \]
Example: In the figure below,
a) What are the signs of the x components of d_1 and d_2?
b) What are signs of the y components of d_1 and d_2?
c) What are the signs of the x and y components of $d_1 + d_2$?
d) What is the final vector $d_1 + d_2$?
In which quadrant would $\mathbf{a} + \mathbf{b}$ be located if

$\mathbf{a} = 3.0 \mathbf{i} - 4.0 \mathbf{j}$ and

$\mathbf{b} = -2.0 \mathbf{i} + 2.0 \mathbf{j}$?

1) 2) 3) 4) 0) none of the above
A Quiz

\[
\vec{a} = 3.0\hat{i} - 4.0\hat{j} + 0.0\hat{k}
\]
\[
\vec{b} = -2.0\hat{i} + 2.0\hat{j} + 0.0\hat{k}
\]
\[
\vec{r} = \vec{a} + \vec{b} = (3.0 - 2.0)\hat{i} + (-4.0 + 2.0)\hat{j} + (0.0 + 0.0)\hat{k}
\]
\[
\vec{r} = (1.0)\hat{i} + (-2.0)\hat{j} + (0.0)\hat{k}
\]

In which quadrant would \(\vec{a} + \vec{b} \) be located if \(\vec{a} = 3.0 \, \hat{i} - 4.0 \, \hat{j} \) and \(\vec{b} = -2.0 \, \hat{i} + 2.0 \, \hat{j} \)?
Multiplication of Vectors

• **Multiply a vector by a scalar:** \(\mathbf{b} = s \mathbf{a} \)
 – Magnitude of \(\mathbf{b} \): \(s \) times the magnitude of \(\mathbf{a} \)
 – Direction of \(\mathbf{b} \): same as \(\mathbf{a} \) if \(s > 0 \),
 opposite of \(\mathbf{a} \) if \(s < 0 \)

• **Multiply a vector by a vector**
 – **Scalar product** (tells you the projection of \(\mathbf{a} \) onto \(\mathbf{b} \).)
 • results in a scalar
 – **Vector product** (tells you the area subtended by \(\mathbf{a} \) and \(\mathbf{b} \).)
 • results in another vector perpendicular to both \(\mathbf{a} \) and \(\mathbf{b} \).
Scalar product

• Scalar product of two vectors \(\mathbf{a} \) and \(\mathbf{b} \)

\[
\mathbf{a} \cdot \mathbf{b} = |a| |b| \cos \phi
\]

\(a, b \): magnitude of \(\mathbf{a}, \mathbf{b} \)

\(\phi \): angle between the directions of \(\mathbf{a} \) and \(\mathbf{b} \)
Scalar product

\[\mathbf{a} \cdot \mathbf{b} = a \, b \cos \phi \]

If \(a \) and \(b \) parallel, \(\phi = 0^\circ \)

\[\Rightarrow \mathbf{a} \cdot \mathbf{b} = a \, b \cos 0^\circ = a \, b \]

If \(a \) and \(b \) perpendicular, \(\phi = 90^\circ \)

\[\Rightarrow \mathbf{a} \cdot \mathbf{b} = a \, b \cos 90^\circ = 0 \]

\[\mathbf{i} \cdot \mathbf{i} = \mathbf{j} \cdot \mathbf{j} = \mathbf{k} \cdot \mathbf{k} = 1 \quad \mathbf{i} \cdot \mathbf{j} = \mathbf{i} \cdot \mathbf{k} = \mathbf{j} \cdot \mathbf{k} = 0 \]
Scalar Product

\[\vec{a} = a_x \hat{i} + a_y \hat{j} + a_z \hat{k} \]

\[\vec{b} = b_x \hat{i} + b_y \hat{j} + b_z \hat{k} \]

\[\vec{a} \cdot \vec{b} = (a_x b_x) + (a_y b_y) + (a_z b_z) \]
Check point 3-4: Vectors \(\mathbf{C} \) and \(\mathbf{D} \) have magnitudes of 3 units and 4 units, respectively. What is the angle between the directions of \(\mathbf{C} \) and \(\mathbf{D} \) if \(\mathbf{C} \cdot \mathbf{D} \) is

(a) zero

(b) 12 units

(c) –12 units
What is the scalar product between
\(\mathbf{a} = 3.0 \, \mathbf{i} - 4.0 \, \mathbf{j} \) and
\(\mathbf{b} = -2.0 \, \mathbf{i} + 2.0 \, \mathbf{j} \)?

\[
\begin{align*}
\mathbf{\hat{a}} &= 3.0 \hat{\mathbf{i}} - 4.0 \hat{\mathbf{j}} \\
\mathbf{\hat{b}} &= -2.0 \hat{\mathbf{i}} + 2.0 \hat{\mathbf{j}} \\
\mathbf{\hat{a}} \cdot \mathbf{\hat{b}} &= (3.0)(-2.0) + (-4.0)(2.0) = -14.0
\end{align*}
\]
What is the angle between \(\mathbf{a} = 3.0 \mathbf{i} - 4.0 \mathbf{j} \) and \(\mathbf{b} = -2.0 \mathbf{i} + 2.0 \mathbf{j} \)?

\[
\mathbf{a} \cdot \mathbf{b} = a \cdot b \cos \phi
\]

\[
a = 5 \\
b = 2.828
\]

\[
\mathbf{a} \cdot \mathbf{b} = (3.0)(-2.0) + (-4.0)(2.0) + (0.0)(0.0) = -6.0 - 8.0 = -14.0
\]

\[
\cos \phi = \frac{\mathbf{a} \cdot \mathbf{b}}{(a \cdot b)} = \frac{-14.0}{14.142} = -0.990
\]

\[
\phi = 171.9^\circ
\]

What is the angle between \(\mathbf{a} = 3.0 \mathbf{i} - 4.0 \mathbf{j} \) and \(\mathbf{b} = -2.0 \mathbf{i} + 2.0 \mathbf{j} \)?
Vector Product

- Vector product of two vectors a and b produce a third vector c whose magnitude is

 $$c = a \cdot b \sin \phi$$

 whose direction follow the right hand rule

Note: $a \times b = - (b \times a)$
Vector product

• \(\mathbf{c} = \mathbf{a} \times \mathbf{b} \implies \mathbf{c} = \mathbf{a} \mathbf{b} \sin \phi \)

• if \(\mathbf{a} \) and \(\mathbf{b} \) parallel, \(\phi = 0^\circ \)
 \(\implies \mathbf{a} \times \mathbf{b} = 0 \)
 if \(\mathbf{a} \) and \(\mathbf{b} \) perpendicular, \(\phi = 90^\circ \)
 \(\implies \mathbf{c} = \mathbf{a} \mathbf{b} \)

\[
\begin{align*}
\mathbf{i} \times \mathbf{i} &= \mathbf{j} \times \mathbf{j} = \mathbf{k} \times \mathbf{k} = 0 \\
\mathbf{i} \times \mathbf{j} &= \mathbf{j} \times \mathbf{k} = \mathbf{k} \times \mathbf{i} = 1 \\
\mathbf{j} \times \mathbf{i} &= \mathbf{k} \times \mathbf{j} = \mathbf{i} \times \mathbf{k} = -1
\end{align*}
\]
Check point 3-5: Vectors \(\mathbf{C} \) and \(\mathbf{D} \) have magnitudes of 3 units and 4 units, respectively. What is the angle between the directions of \(\mathbf{C} \) and \(\mathbf{D} \) if the magnitude of the vector products \(\mathbf{C} \times \mathbf{D} \) is

(a) Zero

(b) 12 units