Chapter 2: Motion along a straight line

This chapter uses the definitions of length and time to study the motions of particles in space. This task is at the core of physics and applies to all objects irregardless of size (quarks to galaxies).

Just remember our definitions of length and time will have to be modified next semester to deal with very small lengths and/or high velocities!

Question?

An object travels a distance 3 m along a line. Where is it located?

Answer:
Not enough information!!!

Displacement

- Displacement is the change in position (or location)

$$
\Delta x=x_{2}-x_{1}
$$

- Displacement is a vector
with both magnitude and direction

Ch. 2 Motion along a straight line

- Position:
- We locate an object by finding its position with respect to the origin

Directions are Important in Space!

Vector (direction important) Quantities:

- displacement
- velocity
- acceleration

Scalar (direction not important) Quantities:

- distance
- speed
- magnitude of acceleration (sometime loosely called acceleration in common language)

Displacement

- Displacement is the change in position

$$
\Delta x=x_{2}-x_{1}
$$

- With both a magnitude and a direction

$\mathrm{x}(\mathrm{t})$ curve

- Plotting of position x vs. time t :
$-x(t)$
- A good way to describe the motion along a straight line

Average velocity

- Average velocity

$$
v_{\text {avg }}=\frac{\Delta x}{\Delta t}=\frac{x_{2}-x_{1}}{t_{2}-t_{1}}
$$

- $v_{\text {avg }}$ is also a vector
- same sign as displacement

Average Speed

- $\mathrm{S}_{\text {avg }}=$ total distance $/ \Delta \mathrm{t}$

Instantaneous velocity

- Velocity at a given instant $\mathrm{V}=\lim _{\Delta \mathrm{t}>0}(\Delta \mathrm{x} / \Delta \mathrm{t})=\mathrm{dx} / \mathrm{dt}$
- the slope of $x(t)$ curve at time t
- the derivative of $\mathrm{x}(\mathrm{t})$ with respect to t
- (Instantaneous) speed is the magnitude of the (instantaneous) velocity

Acceleration

- Acceleration is the change in velocity
- The average acceleration

$$
a_{a v g}=\frac{v_{2}-v_{1}}{t_{2}-t_{1}}=\frac{\Delta v}{\Delta t}
$$

- (Instantaneous) acceleration

$$
a=\frac{d v}{d t} \quad a=\frac{d v}{d t}=\frac{d}{d t}\left(\frac{d x}{d t}\right)=\frac{d^{2} x}{d t^{2}}
$$

- Unit: m/s ${ }^{2}$
- It is a vector

Question: A marathon runner runs at a steady speed $15 \mathrm{~km} / \mathrm{hr}$. When the runner is 7.5 km from the finish, a bird begins flying from the runner to the finish at $30 \mathrm{~km} / \mathrm{hr}$. When the bird reached the finish line, it turns around and flies back to the runner, and then turns around again, repeating the back-andforth trips until the runner reaches the finish line. How many kilometers does the bird travel?
A) 10 km
B) 15 km
C) 20 km
D) 30 km

- Sample problem 2-2. Fig. 1 is an $x(t)$ plot for an elevator which is initially stationary, then moves upward, then stops. Plot $v(t)$ and $a(t)$

Constant acceleration

- Special (but humanly-important) case because we are on the surface of a large object called the "Earth" and gravity (an acceleration) is nearly constant and uniform in everyday life for us.
- But remember that this is a SPECIAL case!

Constant acceleration

- Let's look at a straight line, constant "a" motion between $\mathrm{t}_{1}=0$ (position $=\mathrm{x}_{0}$, velocity $=\mathrm{v}_{0}$) to $\mathrm{t}_{2}=\mathrm{t}($ position $=\mathrm{x}$, velocity $=\mathrm{v})$

Since $\mathrm{a}=$ constant, $==>$
$\mathrm{a}=\mathrm{a}_{\text {avg }}=\left(\mathrm{v}-\mathrm{v}_{0}\right) /(\mathrm{t}-0)$
$=\Rightarrow \mathbf{v}=\mathbf{v}_{\mathbf{0}}+\mathbf{a t}$
For linear velocity function:
$v_{\text {avg }}=\left(v_{0}+v\right) / 2=\left(v_{0}+v_{0}+a t\right) / 2=v_{0}+1 / 2 a t$
We knew $\quad v_{\text {avg }}=\left(x-x_{0}\right) / t$
$\Rightarrow \mathbf{x}-\mathbf{x}_{0}=\mathbf{v}_{\mathbf{0}} \mathbf{t}+1 / 2 \mathbf{a} \mathbf{t}^{\mathbf{2}}$

Equations
$v=v_{0}+a t$
$\mathrm{x}-\mathrm{x}_{0}=\mathrm{v}_{0} \mathrm{t}+1 / 2 a \mathrm{t}^{2} \quad\left(\mathrm{x}-\mathrm{x}_{0}\right), \mathrm{v}_{0}, \mathrm{a}, \mathrm{t}$

Involves
$\mathrm{v}, \mathrm{v}_{0}, \mathrm{a}, \mathrm{t}$
missing
($\mathrm{x}-\mathrm{x}_{0}$)

Constant Acceleration

$$
\begin{aligned}
& v=v_{0}+a t \\
& x-x_{0}=v_{0} t+1 / 2 a t^{2}
\end{aligned}
$$

For constant acceleration

- Five quantities involved: $\left(\mathrm{x}-\mathrm{x}_{0}\right), \mathrm{v}_{0}, \mathrm{v}, \mathrm{t}, \mathrm{a}$

$$
\begin{aligned}
& \text { Equations } \\
& v=v_{0}+a t \\
& x-x_{0}=v_{0} t+1 / 2 a t^{2} \\
& v^{2}-v_{0}^{2}=2 a\left(x-x_{0}\right) \\
& x-x_{0}=1 / 2\left(v_{0}+v\right) t \\
& x-x_{0}=v t-1 / 2 a t^{2}
\end{aligned}
$$

Involves
$\mathrm{v}, \mathrm{v}_{0}, \mathrm{a}, \mathrm{t}$
$\left(\mathrm{x}-\mathrm{x}_{0}\right), \mathrm{v}_{0}, \mathrm{a}, \mathrm{t}$
$\left(\mathrm{x}-\mathrm{x}_{0}\right), \mathrm{v}_{0}, \mathrm{a}, \mathrm{v}$
$\left(\mathrm{x}-\mathrm{x}_{0}\right), \mathrm{v}_{0}, \mathrm{v}, \mathrm{t}$
$\left(\mathrm{x}-\mathrm{x}_{0}\right), \mathrm{v}, \mathrm{a}, \mathrm{t}$
missing
$\left(\mathrm{X}-\mathrm{X}_{0}\right)$
V
t
a
V_{0}

- Above equations only apply for $\mathrm{a}=$ constant

Free-fall Acceleration

- Free fall object experiences an acceleration of $g=9.8 \mathrm{~m} / \mathrm{s}^{2}$ in the downward direction (toward the center of the earth)
Define upward direction to be positive
Then $\mathrm{a}=-\mathrm{g}=-9.8 \mathrm{~m} / \mathrm{s}^{2}$
"free-falling object": the object could travel up or down depending on the initial velocity

Free-fall acceleration

For the constant a equations, replace a with $(-\mathbf{g})$, and \mathbf{x} with \mathbf{y} :

$$
\begin{aligned}
& v=v_{0}-g t \\
& y-y_{0}=v_{0} t-1 / 2 g t^{2} \\
& v^{2}-v_{0}^{2}=-2 g\left(y-y_{0}\right) \\
& y-y_{0}=1 / 2\left(v_{0}+v\right) t \\
& y-y_{0}=v t+1 / 2 g t^{2}
\end{aligned}
$$

Question?

If you drop an object in the absence of air resistance, it accelerates downward at $9.8 \mathrm{~m} / \mathrm{s}^{2}$. If instead you throw it downward, its downward acceleration after release is:
A) Less than $9.8 \mathrm{~m} / \mathrm{s}^{2}$
B) $9.8 \mathrm{~m} / \mathrm{s}^{2}$
C) more than $9.8 \mathrm{~m} / \mathrm{s}^{2}$

Answer: B) it still accelerates at $9.8 \mathrm{~m} / \mathrm{s}^{2}$ downward. The only thing you've changed is the initial velocity!

You are throwing a ball straight up in the air. At the highest point, the ball's
A) Velocity and acceleration are zero.
B) Velocity is nonzero but its acceleration is zero
C) Acceleration is nonzero, but its velocity is zero
D) Velocity and acceleration are both nonzero.

Sample problem: a car is traveling $30 \mathrm{~m} / \mathrm{s}$ and approaches 10 m from an intersection when the driver sees a pedestrian and slams on his brakes and decelerates at a rate of $50 \mathrm{~m} / \mathrm{s}^{2}$.
(a) How long does it take the car to come to a stop?

$$
\begin{aligned}
& v-v_{o}=a t, \text { where } v_{o}=30 \mathrm{~m} / \mathrm{s}, \mathrm{v}=0 \mathrm{~m} / \mathrm{s}, \text { and } \mathrm{a}=-50 \mathrm{~m} / \mathrm{s}^{2} \\
& \mathrm{t}=(0-30) /(-50) \mathrm{s}=0.6 \mathrm{~s}
\end{aligned}
$$

(b) how far does the car travel before coming to a stop? Does the driver brake in time to avoid the pedestrian?

$$
x-x_{0}=v_{0} t+1 / 2 a t^{2}=(30)(0.6)+1 / 2(-50)(0.6)^{2}=18-9=9 \mathrm{~m}
$$

I throw a ball straight up with a initial speed

$$
\text { of } 9.8 \mathrm{~m} / \mathrm{s}, \quad \mathrm{a}=-\mathrm{g}=-9.8 \mathrm{~m} / \mathrm{s}^{2}
$$

- How long does it take to reach the highest

$$
\begin{aligned}
& \text { point? } \\
& y=y / 0-g t \quad t=1 \mathrm{~s} \\
& 0 \quad 9.8 \mathrm{~m} / \mathrm{s} \quad 9.8 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

- How high does the ball reach before it

$$
\begin{aligned}
& \text { start to drop? } 1 \mathrm{~s} \\
& \mathrm{x}-y_{0}=f_{0} \neq-1 / 2 \mathrm{gt}^{2}(1 \mathrm{~s})^{2} \quad \mathrm{x}=4.9 \mathrm{~m} \\
& 0 \quad 9.8 \mathrm{~m} / \mathrm{s} \quad 9.8 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

- How long does it take to reach half the 2.45 m the maximum height?

$$
\underbrace{\text { the maximum height? }}_{9.8 \mathrm{~m} / \mathrm{s}}=\mathrm{t}_{9.8 \mathrm{~m} / \mathrm{s}^{2}} \quad \mathrm{t}_{\text {half height }}=0.29 \mathrm{~s}
$$

