Chapter 19: The Kinetic Theory of Gases

Avogadro's number

$$
\mathrm{N}_{\mathrm{A}}=6.02 \times 10^{23} / \mathrm{mole}
$$

Number of moles in a sample:

$$
\mathrm{n}=\mathrm{N} / \mathrm{N}_{\mathrm{A}} \quad ; \mathrm{N}=\text { number of atoms or molecules }
$$

Universal Gas Constant

$$
\mathrm{R}=8.31 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{~K}
$$

Boltzmann constant

$$
\mathrm{k}=\mathrm{R} / \mathrm{N}_{\mathrm{A}}=1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}
$$

Ideal Gases

At low gas densities, all gases can be treated as ideal gases. Ideal gases obey the relation:

$$
\mathrm{pV}=\mathrm{nRT} \quad \text { (ideal gas law) }
$$

$$
\text { IF } \mathrm{n} \text { is constant, then } \frac{\mathrm{p}_{\mathrm{i}} \mathrm{~V}_{\mathrm{i}}}{T_{\mathrm{i}}}=\frac{\mathrm{p}_{\mathrm{f}} \mathrm{~V}_{\mathrm{f}}}{\mathrm{~T}_{\mathrm{f}}}=\mathrm{nR}
$$

p: absolute (not gauge) pressure.
\mathbf{V} : volume of the gas
\mathbf{n} : number of moles of gas present.
T: the temperature in Kelvin. It *MUST* be in Kelvin!
R: gas constant (same for all gases) $\mathrm{R}=8.31 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{K}$

Ideal Gases

$$
\mathrm{pV}=\mathrm{nRT}
$$

Three variables in the ideal gas law (4 if you count n -- but let n be constant for now).

Consider special cases

Pressure:

Isobaric -- constant pressure
Volume:
Isochoric (or isovolumic) -- constant volume
Temperature:
Isothermal -- constant temperature

Ideal Gases

$$
\mathrm{pV}=\mathrm{nRT}
$$

Three variables in the ideal gas law (with n being constant).

Consider special cases

Pressure:

$$
W=\int_{V_{i}}^{V_{f}} p d V=p \int_{V_{i}}^{V_{f}} d V=p\left(V_{f}-V_{i}\right)=p \Delta V
$$

Ideal Gases

$$
\mathrm{pV}=\mathrm{nRT}
$$

Three variables in the ideal gas law (with n being constant).

Consider special cases

Volume:

Isochoric -- constant volume

$$
W=\int_{V_{i}}^{V_{f}} p d V=\int_{V_{i}}^{V_{i}} p d V=0 \quad \text { since the integral limts are equal }
$$

Ideal Gases

$$
\mathrm{pV}=\mathrm{nRT}
$$

Three variables in the ideal gas law (with n being constant).

Consider special cases

Temperature:

Gas expands from V_{i} to $\mathrm{V}_{\mathrm{f}}, \quad \mathrm{p}=\mathrm{nRT} / \mathrm{V}$

$$
\begin{aligned}
W & =\int_{V_{i}}^{V_{f}} p d V=\int_{V_{i}}^{V_{i}} \frac{n R T}{V} d V \\
& =n R T \int_{V_{i}}^{V_{f}} \frac{d V}{V}=n R T[\ln V]_{V_{i}}^{V_{f}}=n R T \ln \frac{V_{f}}{V_{i}}
\end{aligned}
$$

Summary of Work $\quad W=\int p d V$

Work done at constant pressure

$$
\mathrm{p} \text { is constant, } \mathrm{W}=\mathrm{p}\left(\mathrm{~V}_{\mathrm{f}}-\mathrm{V}_{\mathrm{i}}\right)=\mathrm{p} \Delta \mathrm{~V}
$$

Work done at constant volume

$$
\mathrm{dV}=0, \quad \text { so } \mathrm{W}=0
$$

Work done by ideal gas at constant temperature
$\mathrm{W}=\int_{\mathrm{V}_{\mathrm{i}}}^{\mathrm{V}_{\mathrm{f}}} \mathrm{pdV}=\int_{\mathrm{V}_{\mathrm{i}}}^{\mathrm{V}_{\mathrm{f}}} \frac{n R T}{\mathrm{~V}} \mathrm{dV}=n R T \int_{\mathrm{V}_{\mathrm{i}}}^{\mathrm{V}_{\mathrm{f}}} \frac{\mathrm{dV}}{\mathrm{V}}=n R T[\ln V]_{V_{i}}^{V_{f}}=n R T \ln \frac{V_{f}}{V_{i}}$

Molar specific heat of an ideal gas

Molar specific heat:

$Q=c n\left(T_{f}-T_{i}\right)$
The specific heat c is a value that depends on the ability of a substance to absorb energy. As such, c depends on both the type of material and whether the process is a constant volume process or a constant pressure process.

1) Constant-volume process
2) Constant-pressure process
3) Arbitrary process

Molar specific heat of an ideal gas

Molar specific heat at constant volume: $\mathbf{C}_{\mathbf{V}}$
$\mathrm{Q}=\mathrm{n} \mathrm{C}_{\mathrm{V}} \Delta \mathrm{T}$ (constant V process)
since $\mathrm{V}=$ constant, $\mathrm{W}=0$,
thus $\Delta \mathrm{E}_{\text {int }}=\mathrm{Q}-\mathrm{W}=\mathrm{nC}_{\mathrm{V}} \Delta \mathrm{T}$ or $\mathrm{E}_{\mathrm{int}}=\mathrm{nC}_{\mathrm{V}} \mathrm{T}$

For ideal gas, the change in internal energy depends only on the change in gas temperature.

Molar specific heat at constant pressure: C_{p}

$$
\begin{aligned}
& \mathrm{Q}=\mathrm{n}_{\mathrm{C}} \Delta \mathrm{~T} \quad \text { (constant Pressure process) } \\
& \Delta \mathrm{E}_{\text {int }}=\mathrm{Q}-\mathrm{W}, \\
& \text { since } \mathrm{p}=\text { constant, } \mathrm{W}=\mathrm{p} \Delta V=\mathrm{nR} \Delta \mathrm{~T}
\end{aligned}
$$

$$
\Delta \mathrm{E}_{\mathrm{int}}=\mathrm{n} \mathrm{C}_{\mathrm{V}} \Delta \mathrm{~T}=\mathrm{nC}_{\mathrm{p}} \Delta \mathrm{~T}-\mathrm{nR} \Delta \mathrm{~T}=\mathrm{n}\left(\mathrm{C}_{\mathrm{p}}-\mathrm{R}\right) \Delta \mathrm{T}
$$

Degrees of Freedom

Particles can absorb energy depending on their structure. A degree of freedom is the way the particle can move.

All particles can move in $\mathrm{x}-$, y -, and z -directions. $\longrightarrow 3$ degrees of freedom
diatomic molecules $\left(\mathrm{N}_{2}, \mathrm{O}_{2}\right.$, etc.) have two rotational axes.

polyatomic molecules $\left(\mathrm{CH}_{4}, \mathrm{H}_{2} \mathrm{O}\right.$, etc) have three rotational axes.

3 more degrees of freedom

Degrees of Freedom

Particles can absorb energy depending on their structure. A degree of freedom is the way the particle can move.

Molecule	Translational	Rotational	Total	C_{V}
monotomic	3	0	3	$3 / 2$
diatomic	3	2	5	$5 / 2$
polyatomic	3	3	6	$6 / 2=3$

Each degree of freedom contributes $1 / 2$ to the C_{V}. monatomic $\Delta \mathrm{E}_{\text {int }}=\frac{3}{2} n R \Delta T$ diatomic $\quad \Delta \mathrm{E}_{\text {int }}=\frac{5}{2} n R \Delta T$ polyatomic $\Delta \mathrm{E}_{\mathrm{int}}=3 \mathrm{nR} \Delta \mathrm{T}$

Degrees of Freedom

Particles can absorb energy depending on their structure. A degree of freedom is the way the particle can move.
monotomic $\Delta \mathrm{E}_{\text {int }}=\frac{3}{2} \mathrm{nR} \Delta \mathrm{T}$
diatomic $\quad \Delta \mathrm{E}_{\text {int }}=\frac{5}{2} n R \Delta T$ polyatomic $\Delta \mathrm{E}_{\mathrm{int}}=3 \mathrm{nR} \Delta \mathrm{T}$

Remember Quantum physics corrects this for low temperatures!

Adiabatic expansion of an ideal gas.

For an adiabatic process, $\mathrm{Q}=0$.
$\mathrm{pV}^{\gamma}=\mathrm{a}$ constant
$\gamma=\mathrm{C}_{\mathrm{p}} / \mathrm{C}_{\mathrm{V}}$ treat γ as a constant that depends on the type of the gas molecules.

Free expansions

$$
\begin{aligned}
& \mathrm{Q}=\mathrm{W}=0, \\
& \text { So } \Delta \mathrm{E}_{\text {int }}=0, \\
& \text { Therefore } \mathrm{T}_{\mathrm{i}}=\mathrm{T}_{\mathrm{f}} \\
& \text { or } \mathrm{P}_{\mathrm{i}} \mathrm{~V}_{\mathrm{i}}=\mathrm{P}_{\mathrm{f}} \mathrm{~V}_{\mathrm{f}}
\end{aligned}
$$

Isobaric --- constant pressure process

$$
\mathrm{Q}=\mathrm{n} \mathrm{C}_{\mathrm{p}} \Delta \mathrm{~T}, \quad \mathrm{~W}=\mathrm{p} \Delta \mathrm{~V}
$$

Isothermal --- constant temperature process

$$
\Delta \mathrm{E}_{\mathrm{int}}=0, \quad \mathrm{Q}=\mathrm{W}=\mathrm{nRT} \ln \left(\mathrm{~V}_{\mathrm{f}} / \mathrm{V}_{\mathrm{i}}\right)
$$

Isochoric process --- constant volume process

$$
\mathrm{Q}=\Delta \mathrm{E}_{\text {int }}=\mathrm{n} \mathrm{C}_{\mathrm{V}} \Delta \mathrm{~T}, \quad \mathrm{~W}=0
$$

Adiabatic expansion of an ideal gas

$$
\mathrm{Q}=0, \quad \mathrm{p} \mathrm{~V}^{\gamma}=\mathrm{a} \text { constant }
$$

Free expansion
$\Delta \mathrm{E}_{\text {int }}=\mathrm{Q}-\mathrm{W}$
for all processes.

$$
\mathrm{Q}=\mathrm{W}=0 \Rightarrow \Delta \mathrm{E}_{\mathrm{int}}=0, \Rightarrow \mathrm{~T}_{\mathrm{i}}=\mathrm{T}_{\mathrm{f}} \Rightarrow \mathrm{p}_{\mathrm{i}} \mathrm{~V}_{\mathrm{i}}=\mathrm{p}_{\mathrm{f}} \mathrm{~V}_{\mathrm{f}}
$$

A Quiz

Can one mole of an ideal gas at a temperature of 300 K occupy a fixed volume of $10^{-2} \mathrm{~m}^{3}$ (ten liters) at one atmosphere $\left(1.01 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}\right)$ of pressure? Remember: $\mathrm{R}=8.31 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{K}$

1) yes.
2) No. The gas needs to be heated up to occupy that volume with that pressure.
3) No. The gas needs to be cooled down to occupy that volume with that pressure.
4) Depends on the type of ideal gas molecules.

A Quiz

$$
\begin{aligned}
& \mathrm{pV}=\mathrm{nRT} \\
& \mathrm{pV}=\left(1.01 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}\right)\left(10^{-2} \mathrm{~m}^{3}\right) \\
&=1010 \mathrm{Nm}=1,010 \mathrm{~J} \\
& \mathrm{nRT}=(1.0 \mathrm{~mol})(8.31 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{~K})(300 \mathrm{~K}) \\
&=2,493 \mathrm{~J}
\end{aligned}
$$

Can one mole of an ideal gas at a temperature of 300 K occupy a fixed volume of $10^{-2} \mathrm{~m}^{3}$ (ten liters) at one atmosphere ($1.01 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}$) of pressure? Remember: $\mathrm{R}=8.31 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{K}$

1) yes.
2) No. The gas needs to be heated up to occupy that volume with that pressure.
3) No. The gas needs to be cooled down to occupy that volume with that pressure.

$$
\mathrm{T}=\mathrm{pV} / \mathrm{nR}
$$

4) Depends on the type of $=1010 \mathrm{~J} /(1.0)(8.31)=122 \mathrm{~K}$

The Microscopic World

What causes pressure?

Chapter 19: the Microscopic World

All macroscopic (i.e., human scale) quantities must ultimately be explained on the microscopic scale.

Pressure

Definition of pressure:

$$
\text { Pressure }=\frac{\text { Force }}{\text { Area }}
$$

But now what is force?

Relate force to impulse and change in momentum.
$\overrightarrow{\mathrm{F}} \equiv \frac{\mathrm{d} \stackrel{\rightharpoonup}{\mathrm{p}}}{\mathrm{dt}} \Rightarrow \mathrm{d} \stackrel{\rightharpoonup}{\mathrm{p}}=\stackrel{\rightharpoonup}{\mathrm{F}} \mathrm{dt}$
$\Delta \mathrm{p}_{\mathrm{x}}=\mathrm{p}_{\mathrm{f}}-\mathrm{p}_{\mathrm{i}}=\left(-\mathrm{mv}_{\mathrm{x}}\right)-\left(\mathrm{mv}_{\mathrm{x}}\right)=-2 \mathrm{mv}_{\mathrm{x}}$

Take $\Delta \mathrm{t}$ to be the time that molecule takes in hitting the wall, bouncing off and then hitting it again. It will have traveled 2 L in that time with speed v_{x}.

$$
\frac{\Delta \mathrm{p}_{\mathrm{x}}}{\Delta \mathrm{t}}=\frac{2 \mathrm{mv}_{\mathrm{x}}}{2 \mathrm{~L} / \mathrm{v}_{\mathrm{x}}}=\frac{\mathrm{mv}_{\mathrm{x}}^{2}}{\mathrm{~L}}
$$

Area of wall: L^{2}
Thus the pressure will be:

$$
\begin{aligned}
p & =\frac{F_{x}}{L^{2}}=\frac{m v_{x 1}^{2} / L+m v_{\mathrm{x} 2}^{2} / L+\ldots+m v_{\mathrm{xN}}^{2} / L}{L^{2}} \\
& =\left(\frac{m}{L^{3}}\right)\left(v_{\mathrm{x} 1}^{2}+v_{\mathrm{x} 2}^{2}+\ldots+v_{\mathrm{xN}}^{2}\right)
\end{aligned}
$$

Since there are N molecules in the box, $\mathrm{N}=\mathrm{nN}_{\mathrm{A}}$ and N is usually a *very* big number, we can use the average speed instead of the actual speeds.

$$
\begin{aligned}
\mathrm{p} & =\frac{\mathrm{F}_{\mathrm{x}}}{\mathrm{~L}^{2}}=\frac{\mathrm{mv}_{\mathrm{x} 1}^{2} / \mathrm{L}+\mathrm{mv}_{\mathrm{x} 2}^{2} / \mathrm{L}+. .}{\mathrm{L}^{2}} \\
& =\left(\frac{\mathrm{m}}{\mathrm{~L}^{3}}\right)\left(\mathrm{v}_{\mathrm{x} 1}^{2}+\mathrm{v}_{\mathrm{x} 2}^{2}+\ldots+\mathrm{v}_{\mathrm{xN}}^{2}\right) \\
& =\left(\frac{\mathrm{m}}{\mathrm{~L}^{3}}\right)\left(\mathrm{v}_{\mathrm{x}}^{2}\right)_{\mathrm{avg}}
\end{aligned}
$$

The volume of the box is L^{3}, so

$$
\mathrm{p}=\frac{\mathrm{mnN}_{\mathrm{A}}}{\mathrm{~V}}\left(\mathrm{v}_{\mathrm{x}}^{2}\right)_{\mathrm{avg}}
$$

$\mathbf{V}_{\mathbf{r m s}}$

Since there are 3 dimensions, $v_{x}^{2}+v_{y}^{2}+v_{z}^{2}=v^{2}$ and each dimension is the same, $\mathrm{v}_{\mathrm{x}}{ }^{2}=\mathrm{v}_{\mathrm{y}}{ }^{2}=\mathrm{v}_{\mathrm{z}}{ }^{2}=>\mathrm{v}^{2}=3 \mathrm{v}_{\mathrm{x}}{ }^{2}$

$$
\mathrm{p}=\frac{\mathrm{mnN}_{\mathrm{A}}}{\mathrm{~V}}\left(\mathrm{v}_{\mathrm{x}}^{2}\right)_{\text {avg }}=\frac{\mathrm{mnN}_{\mathrm{A}}}{\mathrm{~V}}\left(\frac{1}{3} \mathrm{v}^{2}\right)_{\text {avg }}=\frac{\mathrm{mnN}_{\mathrm{A}}}{3 \mathrm{~V}}\left(\mathrm{v}^{2}\right)_{\text {avg }}
$$

$\left(v^{2}\right)_{\text {avg }}$ is the average of the squared speed -- which makes the speed the (square) root of the mean (average) squared speed -- i.e., root-mean-squared speed, $\mathrm{v}_{\text {rms }}$.

$$
\sqrt{\left(\mathrm{v}^{2}\right)_{\mathrm{avg}}}=\mathrm{v}_{\mathrm{rms}}
$$

Rearrange $\mathrm{p}=\frac{\mathrm{mnN}_{\mathrm{A}}}{3 \mathrm{~V}}\left(\mathrm{v}_{\mathrm{rms}}^{2}\right) \Rightarrow \mathrm{v}_{\mathrm{rms}}=\sqrt{\frac{3 \mathrm{pV}}{\mathrm{mmN}_{\mathrm{A}}}}$

gas temperature

mN_{A} is the molar mass M of the gas and using the ideal gas law $\mathrm{pV}=\mathrm{nRT}$:

$$
v_{\mathrm{rms}}=\sqrt{\frac{3 \mathrm{pV}}{\mathrm{nmN}_{\mathrm{A}}}}=\sqrt{\frac{3 \mathrm{nRT}}{\mathrm{nM}}}=\sqrt{\frac{3 \mathrm{RT}}{\mathrm{M}}}
$$

Thus, the characteristic speed of the gas molecules is related to the temperature of the gas!

Gas	$\mathrm{V}_{\mathrm{rms}}(\mathrm{m} / \mathrm{s})$
Hydrogen	1920
Helium	1370
$\mathrm{~N}_{2}$	517
escape speed $_{\text {Earth }}$	1120

Maxwell-Boltzmann Distribution

Define a function $\mathrm{P}(\mathrm{v})$ whose area (integral) equals 1.

(b)
b)
$\mathrm{P}(\mathrm{v})$ is the Maxwell-Boltzmann Probability function

Maxwell-Boltzmann Distribution

(a)
$\mathrm{P}(\mathrm{v})=4 \pi\left(\frac{\mathrm{M}}{2 \pi \mathrm{RT}}\right)^{3 / 2} \mathrm{v}^{2} \mathrm{e}^{-\mathrm{Mv} / 2 \mathrm{RT}}$

(b)

Math: $\quad x_{\text {avg }}=\int_{\text {allspace }} x f(x) d x$

Maxwell-Boltzmann Distribution

(a)
$P(v)=4 \pi\left(\frac{M}{2 \pi R T}\right)^{3 / 2} v^{2} e^{-M v^{2} / 2 R T}$
Thus, $v_{\text {avg }}=\int_{0}^{\infty} v P(v) d v=\sqrt{\frac{8 R T}{\pi M}}$
and $\quad v_{\text {avg }}^{2}\left(\equiv v_{\mathrm{rms}}^{2}\right)=\int_{0}^{\infty} \mathrm{v}^{2} \mathrm{P}(\mathrm{v}) \mathrm{dv}=\frac{3 \mathrm{RT}}{\mathrm{M}}$

Kinetic Energies

Average kinetic energy:

$$
\begin{aligned}
& \mathrm{K}_{\text {avg }}=\frac{1}{2} \mathrm{~m}\left(\mathrm{v}^{2}\right)_{\text {avg }}=\frac{1}{2} \mathrm{mv}_{\text {rms }}^{2} \\
& \quad=\left(\frac{1}{2} \mathrm{~m}\right) \frac{3 \mathrm{RT}}{\mathrm{M}}=\left(\frac{1}{2}\right) \frac{3 \mathrm{RT}}{\mathrm{M} / \mathrm{m}}=\frac{3 \mathrm{RT}}{2 \mathrm{~N}_{\mathrm{A}}}=\left(\frac{3}{2}\right)\left(\frac{\mathrm{R}}{\mathrm{~N}_{\mathrm{A}}}\right) \mathrm{T}=\frac{3}{2} \mathrm{kT}
\end{aligned}
$$

Kinetic energy only depends on the gas's temperature!

$$
\mathrm{K}_{\mathrm{avg}}=\frac{1}{2} \mathrm{mv}_{\mathrm{rms}}^{2}=\frac{3}{2} \mathrm{kT}
$$

The " 3 " comes from the three dimensions: x, y, and z !

Brownian Motion

But.... not all the molecules are going at that speed. Some are going faster and some sloooower than $\mathrm{v}_{\mathrm{rms}}$.

A gas molecule interacting with neighboring molecules is like you trying to get to the concession stand during a rock concert!
p.s.: Einstein, 1905

Mean Free path

Define the mean-free-path λ as the distance between collisions.

$$
\lambda=\frac{1}{\sqrt{2} \pi \mathrm{~d}^{2} \mathrm{~N} / \mathrm{V}}
$$

Molecular sizes

