Chapter 15: Oscillations

- Oscillations are motions that repeat themselves. springs, pendulum, planets, molecular vibrations/rotations
- Frequency f: number of oscillations in 1 sec . unit: 1 hertz (Hz) = 1 oscillation per second $=1 \mathrm{~s}^{-1}$
- Period T : the time for one complete oscillation. It is the inverse of frequency.

$$
\mathrm{T}=1 / \mathrm{f} \quad \text { or } \quad \mathrm{f}=1 / \mathrm{T}
$$

Simple Harmonic Motion

- Simple harmonic motion (SHM) is the oscillation in which the displacement $x(t)$ is in the form of

$$
x(t)=x_{m} \cos (\omega t+\phi)
$$

$\mathrm{x}_{\mathrm{m}}, \omega$ and ϕ are constants
x_{m} : amplitude or maximum displacement, $\mathrm{x}_{\max }=\mathrm{A}$ $\omega t+\phi$: phase; $\phi:$ phase constant

What is ω ? \quad since $\mathrm{x}(\mathrm{t})=\mathrm{x}(\mathrm{t}+\mathrm{T})$
so $\quad x_{\mathrm{m}} \cos (\omega \mathrm{t}+\phi)=\mathrm{x}_{\mathrm{m}} \cos (\omega(\mathrm{t}+\mathrm{T})+\phi)$ thus $\omega(\mathrm{t}+\mathrm{T})+\phi=(\omega \mathrm{t}+\phi)+2 \pi \rightarrow \omega \mathrm{~T}=2 \pi$ therefore: $\omega=2 \pi / T=2 \pi f$
ω is called angular frequency (unit: $\mathrm{rad} / \mathrm{s}$)

- Displacement of SHM:

$$
x(t)=x_{m} \cos (\omega t+\phi)
$$

- Velocity of SHM: $\mathrm{v}(\mathrm{t})=\mathrm{dx}(\mathrm{t}) / \mathrm{dt}=-\omega \mathrm{x}_{\mathrm{m}} \sin (\omega \mathrm{t}+\phi)$ velocity amplitude: $\mathrm{v}_{\text {max }}=\omega \mathrm{x}_{\mathrm{m}}$
- Acceleration of SHM: $\mathrm{a}(\mathrm{t})=\mathrm{dv}(\mathrm{t}) / \mathrm{dt}=-\omega^{2} \mathrm{x}_{\mathrm{m}} \cos (\omega \mathrm{t}+\phi)$ thus: $a(t)=-\omega^{2} x(t)$ maximum value of acceleration: $a_{\max }=\omega^{2} x_{m}$

- The force law for SHM:
since $a(t)=-\omega^{2} x(t), \quad F=m a=-m \omega^{2} x=-\left(m \omega^{2}\right) x$ spring force fits this criteria: $\mathrm{F}=-\mathrm{kx}$
- Therefore, the block-spring system is a linear simple harmonic oscillator

$$
\begin{gathered}
\mathrm{k}=\mathrm{m} \omega^{2} \\
\omega=\sqrt{\frac{k}{m}} \\
T=\frac{2 \pi}{\omega}=2 \pi \sqrt{\frac{m}{k}}
\end{gathered}
$$

A Quiz

Which of the following relationships between the force F on a particle and the particle's position x implies simple harmonic oscillation?

1) $F=-5 x$
2) $F=-400 x^{2}$
3) $F=10 x$
4) $F=3 x^{2}$
5) none of the above

A Quiz

$$
\mathrm{F}=\mathrm{ma}(\mathrm{t})=\mathrm{mdv}(\mathrm{t}) / \mathrm{dt}=-\mathrm{m} \omega^{2} \mathrm{x}_{\mathrm{m}} \cos (\omega \mathrm{t}+\phi)=-\left(\mathrm{m} \omega^{2}\right) \mathrm{x}(\mathrm{t})
$$

$$
\mathrm{m} \omega^{2}=5.0
$$

Which of the following relationships between the force F on a particle and the particle's position x implies simple harmonic oscillation?

1) $F=-5 x$
2) $F=-400 x^{2}$
3) $F=10 x$
4) none of the above

- Energy in SHM

Potential energy:
$\mathrm{U}(\mathrm{t})=1 / 2 \mathrm{kx}^{2}=1 / 2 \mathrm{kx}_{\mathrm{m}}{ }^{2} \cos ^{2}(\omega \mathrm{t}+\phi)$
Kinetic energy:

$K(t)=1 / 2 \mathrm{mv}^{2}=1 / 2 m \omega^{2} \mathrm{x}_{\mathrm{m}}^{2} \sin ^{2}(\omega \mathrm{t}+\phi)$ since $\mathrm{k} / \mathrm{m}=\omega^{2}$
$K(t)=1 / 2 \mathrm{kx}_{\mathrm{m}}{ }^{2} \sin ^{2}(\omega \mathrm{t}+\phi)$

Mechanical energy:
$\mathrm{E}=\mathrm{U}+\mathrm{K}=1 / 2 \mathrm{kx}_{\mathrm{m}}{ }^{2}\left[\cos ^{2}(\omega \mathrm{t}+\phi)+\sin ^{2}\right.$ $(\omega \mathrm{t}+\phi)]=1 / 2 \mathrm{kx}_{\mathrm{m}}{ }^{2}$
Mechanical energy is indeed a constant and is independent of time .

The block has a kinetic energy of 3.0J and the spring has an elastic potential energy of 2.0 J when the block is at $\mathrm{x}=+2.0 \mathrm{~m}$.
A) What is the kinetic energy when the block is at $x=0$?

$$
\begin{aligned}
& \mathrm{E}=\underset{2.0}{\mathrm{U}}(\mathrm{x}, \mathrm{t}) \\
& 2.0 \\
& \frac{K}{K}(\mathrm{x}, \mathrm{t})=5.0 \mathrm{~J}=1 / 2 \mathrm{mv}^{2}+\underset{0}{\mathrm{U} /(0, t)}
\end{aligned}
$$

B) What is the potential energy when the block is at $\mathrm{x}=0$?

$$
\mathrm{U}(\mathrm{x}, \mathrm{t})=1 / 2 \mathrm{kx}^{2}=1 / 2 \mathrm{kx}_{\mathrm{m}}^{2} \cos ^{2}(\omega \mathrm{t}+\phi)=0
$$

C) What is the potential energy when the block is at $\mathrm{x}=-2.0 \mathrm{~m}$?

$$
\mathrm{U}(\mathrm{x}, \mathrm{t})=\mathrm{U}\left(-\mathrm{x}, \mathrm{t}^{\prime}\right)=2.0 \mathrm{~J}
$$

D) What is the potential energy when the block is at $x=-x_{\underline{m}}$?
$\mathrm{E}=\mathrm{U}(\mathrm{t})+\underset{0}{\mathrm{~K}}(\mathrm{~h})=1 / 2 \mathrm{kx}_{\mathrm{m}}^{2}\left[\cos ^{2}(\omega \mathrm{t}+\phi)+\sin ^{2}(\omega \mathrm{t}+\phi)\right]=1 / 2 \mathrm{kx}_{\mathrm{m}}^{2}=5.0 \mathrm{~J}$

An angular simple harmonic oscillator

- Torsion(twisting) pendulum restoring torque:

$$
\tau=-\kappa \theta
$$

compare to $\mathrm{F}=-\mathrm{kx}$ and

$$
T=2 \pi \sqrt{\frac{m}{k}}
$$

we have for angular SHM:

$$
T=2 \pi \sqrt{\frac{I}{\kappa}}
$$

Pendulum

- The simple pendulum restoring torque:

$$
\tau=-\mathrm{L}(\mathrm{mg} \sin \theta)
$$

" - " indicates that τ acts to reduce θ.

(a)

(b)

Pendulum

- The simple pendulum restoring force:
$\mathrm{F}=-\mathrm{mg} \sin \theta=-\mathrm{mg} \theta=-\mathrm{mg} \mathrm{x} / \mathrm{L}$ when θ is small: $\sin \theta=\theta$
" - " indicates that F acts to reduce θ. so: $k=m g / L$

$$
T=2 \pi \sqrt{\frac{m}{k}}=2 \pi \sqrt{\frac{m}{m g / L}}=2 \pi \sqrt{\frac{L}{g}}
$$

This can be used to measure g $\mathrm{g}=(2 \pi / \mathrm{T})^{2} \mathrm{~L}$

(a)

(b)

- The physical pendulum (real pendulum with arbitrary shape)
h : distance from pivot point O to the center of mass.
Restoring torque:
$\tau=-\mathrm{h}(\mathrm{mg} \sin \theta) \sim(\mathrm{mgh}) \theta \quad$ (if θ is small $)$
$\kappa=\mathrm{mgh}$
therefore:

$$
\mathrm{T}=2 \pi \sqrt{\frac{\mathrm{I}}{\kappa}}=2 \pi \sqrt{\frac{\mathrm{I}}{\mathrm{mgh}}}
$$

I: rotational inertia with respect to the rotation axis thru the pivot.

Simple harmonic motion and circular motion

- Circular motion of point P': angular velocity: ω
$\theta=\omega t+\phi$
P is the projection of P 'on x -axis:
$\mathrm{x}(\mathrm{t})=\mathrm{x}_{\mathrm{m}} \cos (\omega \mathrm{t}+\phi) \quad$ SHM

- P': uniform circular motion

P: simple harmonic motion

Damped simple harmonic motion

- When the motion of an oscillator is reduced by an external force, the oscillator or its motion is said to be damped.
- The amplitude and the mechanical energy of the damped motion will decrease exponentially with time.

m

Damped simple harmonic motion

Spring Force

$$
\mathrm{F}_{\mathrm{s}}(\mathrm{x}, \mathrm{t})=-\mathrm{kx}
$$

Damping Force $F_{d}(x, t)=-b v(t)=-b\left(\frac{d x}{d t}\right)$
Response (Newton's Second Law)

$$
\sum_{\mathrm{i}} \mathrm{~F}_{\mathrm{i}}(\mathrm{x}, \mathrm{t})=\mathrm{ma}=\mathrm{m}\left(\frac{\mathrm{~d}^{2} \mathrm{x}}{\mathrm{dt}^{2}}\right) \Rightarrow-\mathrm{kx}-\mathrm{b}\left(\frac{\mathrm{dx}}{\mathrm{dt}}\right)=\mathrm{m}\left(\frac{\mathrm{~d}^{2} \mathrm{x}}{\mathrm{dt}^{2}}\right)
$$

Damped simple harmonic motion

Response (Newton's Second Law)
Rearranging: $\quad m\left(\frac{d^{2} x}{d t^{2}}\right)+b\left(\frac{d x}{d t}\right)+k x=0$

$$
\mathrm{x}(\mathrm{t})=\mathrm{x}_{\mathrm{m}} \mathrm{e}^{-\mathrm{bt} / 2 \mathrm{~m}} \cos \left(\omega^{\prime} \mathrm{t}+\phi\right)
$$

where, $\quad \omega^{\prime}=\sqrt{\frac{k}{m}-\frac{b^{2}}{4 m^{2}}}$

Forced Oscillation and Resonance

- Free oscillation and forced oscillation
- For a simple pendulum, the natural frequency $\omega_{0}=\sqrt{\frac{g}{l}}$
- Now, apply an external force: $F=F_{m} \cos \left(\omega_{d} t\right)$ ω_{d}, driving frequency
x_{m} depend on ω_{0} and ω_{d},
when $\omega_{\mathrm{d}}=\omega_{0}, \mathrm{x}_{\mathrm{m}}$ is about the largest this is called resonance. examples : push a child on a swing, air craft design, earthquake

