Chapter 13: Gravitation

The force that makes an apple fall is the same force that holds moon in orbit.

Newton's law of gravitation: Every particle attracts any other particle with a gravitation force given by:

$$
\overrightarrow{\mathrm{F}}=\mathrm{G} \frac{\mathrm{~m}_{1} \mathrm{~m}_{2}}{\mathrm{r}^{2}}(-\hat{\mathrm{r}})
$$

G: gravitation constant, $\mathrm{G}=6.67 \times 10^{-11} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{kg}^{2}$
The minus sign means this force is always attractive.

$$
\stackrel{\rightharpoonup}{\mathrm{F}}=\mathrm{G} \frac{\mathrm{~m}_{1} \mathrm{~m}_{2}}{\mathrm{r}^{2}}(-\hat{\mathrm{r}})
$$

This force depends on the masses *and* the distance squared between them.

Between the earth and a 60 kg person standing on the earth's surface: $\mathrm{F}=588 \mathrm{~N}$ If the person moved to twice the earth's radius, the force will now be divided by 2^{2} (or 4). $\mathrm{F}_{2 \mathrm{R}}=588 \mathrm{~N} / 4=147 \mathrm{~N}$

Gravitational force between two 60 kg persons standing 1 m apart: $F=2.4 \times 10^{-7} \mathrm{~N}$

- The principle of superposition: net effect is the sum of the individual effects

$$
\vec{F}_{1, n e t}=\vec{F}_{12}+\vec{F}_{13}+\vec{F}_{14}+\cdots+\vec{F}_{1 n}=\sum_{i=2}^{n} \vec{F}_{1 i}
$$

Sample 13-1: What is the net gravitational force F_{1} that act on particle 1due to the other two particles?

$$
\vec{F}_{1, \text { net }}=\vec{F}_{12}+\vec{F}_{13}
$$

(a)

(b)

Shell Theorem

Shell theorem: a uniform spherical shell of matter attracts a particle that is outside the shell as if all the shell's mass were concentrated at its center

is the same as

Gravitation near Earth's Surface

- Assume the Earth is a uniform sphere of mass M, the gravitation force on a particle of mass m located outside earth a distance r from Earth's center is

$$
\mathrm{F}_{\mathrm{g}}=\mathrm{G} \frac{\mathrm{Mm}}{\mathrm{r}^{2}} \quad \text { since } \mathrm{F}=\mathrm{ma} \quad \mathrm{a}_{\mathrm{g}}=\mathrm{G} \frac{\mathrm{M}}{\mathrm{r}^{2}}
$$

$-\mathrm{a}_{\mathrm{g}}$ varies with attitude,
Near earth's surface: $\mathrm{a}_{\mathrm{g}}=9.801 \mathrm{~m} / \mathrm{s}^{2}$
at an altitude $=35700 \mathrm{~km}, \mathrm{a}_{\mathrm{g}}=0.225 \mathrm{~m} / \mathrm{s}^{2}$

Gravitation inside earth

Consider a uniform sphere of matter. We want to find the force on m a radial distance a from the center

Opposing forces cancel for masses $r>a$. Net force on m comes from the mass that is inside $\mathrm{r}<\mathrm{a}$.

$$
|\mathrm{F}|=\mathrm{G}\left(\frac{\mathrm{M}_{\mathrm{inside}} \mathrm{~m}}{\mathrm{r}^{2}}\right)
$$

where $\mathrm{M}_{\text {inside }}=\left(\int_{0}^{\mathrm{a}} \rho \mathrm{r}^{2} \mathrm{dr}\right)\left(\int_{d}^{\pi} \sin \theta \mathrm{d} \theta\right)\left(\int_{0}^{2 \pi} \mathrm{~d} \varphi\right)_{2 \pi}$

For a uniform density r, the integral reduces to r times the volume inside a.

$$
\mathrm{M}_{\text {inside }}=\rho \int_{0}^{\mathrm{a}} \mathrm{r}^{2} \operatorname{dr}(2)(2 \pi)=\frac{4}{3} \rho \pi \mathrm{a}^{3}=\mathrm{M}_{\text {total }}\left(\frac{\mathrm{a}^{3}}{\mathrm{R}^{3}}\right)
$$

Gravitational Potential Energy

- Gravitational potential energy of a system of two particles M and m :

$$
\begin{aligned}
& \mathrm{U}(\mathrm{r})=-\mathrm{W}=-\int \overrightarrow{\mathrm{F}}(\mathrm{r}) \cdot \mathrm{d} \overrightarrow{\mathrm{r}}=-\int \mathrm{F}(\mathrm{r}) \mathrm{dr} \cos 180^{\circ} \\
& \quad=\int \mathrm{F}(\mathrm{r}) \mathrm{dr}=\int \frac{\mathrm{GMm}}{\mathrm{r}^{2}} \mathrm{dr}=-\frac{\mathrm{GMm}}{\mathrm{r}}+\mathrm{constant}
\end{aligned}
$$

$\mathrm{U}(\mathrm{r})=-\frac{\mathrm{GMm}}{\mathrm{r}}+\mathrm{constant}$

Let $\mathrm{U}(\mathrm{r})=0$ when $\mathrm{r}=\infty$ then constant $=0$ so we have $U(r)=-G \frac{M m}{r}$
for any finite value of r, U is negative

Escape speed: the minimum initial speed v for a projectile (e.g. rocket) to keep moving upward forever, i.e., $\mathrm{v}_{\mathrm{r} \rightarrow \infty}>0$

From energy conservation:

$\mathrm{K}_{\mathrm{i}}+\mathrm{U}_{\mathrm{i}}=1 / 2 \mathrm{mv}^{2}+(-\mathrm{GMm} / \mathrm{R})=\mathrm{K}_{\mathrm{f}}+\mathrm{U}_{\mathrm{f}}=\mathrm{E}_{\mathrm{tot}}>=0$
This yields: $\mathrm{v}=\sqrt{\frac{2 \mathrm{GM}}{\mathrm{R}}}$
Earth: $\mathrm{M}=5.98 \times 10^{24} \mathrm{~kg}, \mathrm{R}=6.37 \times 10^{6} \mathrm{~m}, \mathrm{v}=11.2 \mathrm{~km} / \mathrm{s}$

Planets and Satellites: Kepler's laws

The law of orbits: All planets move in elliptical orbits, with the Sun at one focus.

The law of areas: A line that connects a planet to the Sun sweeps out equal areas in the plane of the planet's orbit in equal times; that is, the rate dA/dt at which it sweeps out area A is
 constant. $\frac{\mathrm{dA}}{\mathrm{dt}}=\frac{1}{2} \mathrm{r}^{2} \frac{\mathrm{~d} \theta}{\mathrm{dt}}=\frac{1}{2} \mathrm{r}^{2} \omega$
$\overrightarrow{\mathrm{L}}=\overrightarrow{\mathrm{r}} \times \overrightarrow{\mathrm{p}} \Rightarrow$
$\mathrm{L}=\mathrm{rp}_{\perp}=(\mathrm{r})\left(\mathrm{mv}_{\perp}\right)=\mathrm{mr}^{2} \omega$
Angular momentum is conserved

$\frac{d A}{d t}=\frac{L}{2 m}$

Kepler's Laws

The law of periods: the square of the period of any planet is proportional to the cube of the semimajor axis of its orbit.

Circular orbit $\quad e=0$

$$
\mathrm{T}^{2}=\left(\frac{4 \pi^{2}}{\mathrm{GM}}\right) \mathrm{r}^{3}
$$

Kepler's Laws

The law of periods: the square of the period of any planet is proportional to the cube of the semimajor axis of its orbit.

Elliptical orbit $\quad \mathrm{e}>0$

$$
\mathrm{T}^{2}=\left(\frac{4 \pi^{2}}{\mathrm{GM}}\right) \mathrm{a}^{3}
$$

a is the major axis

A Quiz

At which point is m moving the fastest?

1) 1
2) 2
3) 3
4) 4
5) always moves at the same speed 6) some other point on the orbit

Daily Quiz, March 18, 2004

Reason: m sweeps equal areas in equal times.
Another way of looking at it: $\mathrm{U}(\mathrm{r})$ is most negative at 1 , so K must be greatest there to keep E constant.

At which point is m moving the fastest?

1) 1
2) 2
3) 3
4) 4

5)always moves at the same speed
6) some other point on the orbit

Problem 13-20

Two concentric spheres M_{1} and M_{2}. Find F at radii a, b, and c .

$$
\mathrm{F}_{\mathrm{g}}=\mathrm{G} \frac{\mathrm{Mm}}{\mathrm{r}^{2}}
$$

M_{2}
20. (a) What contributes to the $G m M / r^{2}$ force on m is the (spherically distributed) mass M contained within r (where r is measured from the center of M). At point A we see that M_{1} $+M_{2}$ is at a smaller radius than $r=a$ and thus contributes to the force:

$$
\left|F_{\text {on } m}\right|=\frac{G\left(M_{1}+M_{2}\right) m}{a^{2}}
$$

(b) In the case $r=b$, only M_{1} is contained within that radius, so the force on m becomes $G M_{1} \mathrm{~m} / b^{2}$.
(c) If the particle is at C, then no other mass is at smaller radius and the gravitational force on it is zero.

Problem 13-31

Three masses. Move B from near A to near C. Find work done by a) you, b) by gravity.

31. (a) The work done by you in moving the sphere of mass m_{B} equals the change in the potential energy of the three-sphere system. The initial potential energy is

$$
U_{i}=-\frac{G m_{A} m_{B}}{d}-\frac{G m_{A} m_{C}}{L}-\frac{G m_{B} m_{C}}{L-d}
$$

and the final potential energy is

$$
U_{f}=-\frac{G m_{A} m_{B}}{L-d}-\frac{G m A m_{C}}{L}-\frac{G m_{B} m_{C}}{d} .
$$

Problem 13-31

Three masses. Move B from near A to near C. Find work done by a) you, b) by gravity.

The work done is

$$
\begin{aligned}
W= & U_{f}-U_{i}=G m_{B}\left(m_{A}\left(\frac{1}{d}-\frac{1}{L-d}\right)+m_{C}\left(\frac{1}{L-d}-\frac{1}{d}\right)\right) \\
= & \left(6.67 \times 10^{-11} \mathrm{~m}^{3} / \mathrm{s}^{2} \cdot \mathrm{~kg}\right)(0.010 \mathrm{~kg})\left[(0.080 \mathrm{~kg})\left(\frac{1}{0.040 \mathrm{~m}}-\frac{1}{0.080 \mathrm{~m}}\right)\right. \\
& \left.+(0.020 \mathrm{~kg})\left(\frac{1}{0.080 \mathrm{~m}}-\frac{1}{0.040 \mathrm{~m}}\right)\right] \\
= & +5.0 \times 10^{-13} \mathrm{~J} .
\end{aligned}
$$

(b) The work done by the force of gravity is $-\left(U_{f}-U_{i}\right)=-5.0 \times 10^{-13} \mathrm{~J}$.

Problem 13-44

Find distance between the foci of the Earth's orbit.

44. (a) The distance from the center of an ellipse to a focus is $a e$ where a is the semimajor axis and e is the eccentricity. Thus, the separation of the foci (in the case of Earth's orbit) is

$$
2 a e=2\left(1.50 \times 10^{11} \mathrm{~m}\right)(0.0167)=5.01 \times 10^{9} \mathrm{~m} .
$$

(b) To express this in terms of solar radii (see Appendix C), we set up a ratio:

$$
\frac{5.01 \times 10^{9} \mathrm{~m}}{6.96 \times 10^{8} \mathrm{~m}}=7.20
$$

Problem 13-46

Find distance for geosynchronous orbit.

http://science.nasa.gov/Realtime/Jtrack/3d/JTrack3D.html
46. To "hover" above Earth ($M_{E}=5.98 \times 10^{24} \mathrm{~kg}$) means that it has a period of 24 hours (86400 s). By Kepler's law of periods,

$$
(86400)^{2}=\left(\frac{4 \pi^{2}}{G M_{E}}\right) r^{3} \Rightarrow r=4.225 \times 10^{7} \mathrm{~m} .
$$

Its altitude is therefore $r-R_{E}\left(\right.$ where $\left.R_{E}=6.37 \times 10^{6} \mathrm{~m}\right)$ which yields $3.58 \times 10^{7} \mathrm{~m}$.

Satellites and Orbits

Potential energy $U(r)=-G \frac{M m}{r}$
Centripetal force $\quad F_{c}=m \frac{v^{2}}{r}=G \frac{M m}{r^{2}}$

Kinetic energy

$$
\mathrm{K}=\frac{1}{2} \mathrm{mv}^{2}=\mathrm{G} \frac{\mathrm{Mm}}{2 \mathrm{r}}=-\frac{1}{2} \mathrm{U}
$$

Total energy $\mathrm{E}=\mathrm{K}+\mathrm{U}=\left(-\frac{1}{2} \mathrm{U}\right)+\mathrm{U}=-\mathrm{G} \frac{\mathrm{Mm}}{2 \not y^{\prime}}$

Elliptical Orbits

Total energy $\quad E=-G \frac{M m}{2 a}$
2a

A Quiz

All three orbits intersect at P . Which path has the greater total energy?

1) 1 2) 2 3) 3
2) all have the same total energy

A Quiz

Total Energy $\quad \mathrm{E}=-\mathrm{G} \frac{\mathrm{Mm}}{2 \mathrm{a}}$ $a_{1}<a_{3}<a_{2} \Rightarrow E_{2}$ is least negative.

All three orbits intersect at P. Which path has the greater total energy?

1) 1 (2) 2 3) 3
2) all have the same total energy

