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Normalization

* From where we last were, we had the matrix form of the
eigenvalue equation:

— VA=ATA

* We want to normalize the eigenvectors such that:
— KTTK - i (eqn6_23)and

— ET ‘7 K =A (eqn 6.26)

Taking a_matrix V to A in the form of the transformation
A= ATVAis called a congruence transformation so that it
becomes a diagonal matrix with eigenvalues A,



The A matrix

* For the iith element of the A matrix, the equation
IS:

— \; =Zk,l(at) ik Vi Ay

e But we also know that:
— Af;:;: A; ‘5:;«'
— V= Vi =V

* Therefore we can write A; as

— A\ =Zk,z Vi (@ @)= 2k Vike |2
Xk 21k Vi (g ay;)



The A, element

 Consider

* v .
S=Dk=1Q 1 Q kaZk#f (ay"ay + akiay™)

_Zk:tl “(lag; + a;l? = lagl? = a;]?)

* Looking at the second form of the equation of S one
can easily see that the equation will always be positive.
Therefore S > 0 which also causes A, >0



Recap of the problem

* Basically we want to be able to solve the
equation

— Ifweletg = /TQ then the equatlon becomes

— Which then can become:

ATTAQ = —A"VAQ

— And if yo
Q

ou substitute in egns 6.23 and 6.26, you get:
Q

~i|
||
>l



Form of Q,

fCZ)I

e Usually we write I Q = —A
for oscillators

— since we showed that A, > 0, lets write A; = w.*

ii=

* Making our equation look like Q, =



Solutions to the equation

* The generic solution to this equation is the
form of either Q;(t) = A, sinw,;t + B, cos w;t,
or

Q:(t) = Al-e_i“’ft + B, e'®t where A and B are the
constants of integration

* One of the particular solutions is a form of
Q, = C,cos(w;t + ¢,), where both C;and ¢,
are the constants of integration



Solution part 2

« Let Q(t) = E(t), where
E.=C,cos(w;it + ¢;)

* This becomes AQ(t) = AE(t), and earlier
substituted g = AQ, therefore g = AE

* So we now have a solution to the Lagrangian
that we started out with since we now know
ourg’s



Lagrangian

e Our Lagrangian now becomes once again



Assumptions we made to get this

* All A, = A, were different

« We used TA = —VA A 1to get det|V — 7=\’1=’| =0

— The determinant gave us n distinct Ai’s which we used
to determine n-1 of the n and (a,,... a,,) numbers

— We then proved that those Ai’s were real and also
chose to make all of the aij elements real such that

A=A



The Degenerate Case

* If not all of the A/s are not distinct solutions to
the eigenvalue problem then we get the
degenerate case where for example A=A,

* Like in guantum mechanics we still need to
have a complete orthogonal basis set so have
to form an a, , a, out of the same A equation,
beyond that follow the same logic as before



Normal Coordinates

* The Qs are also called the normal coordinates
since each behave like SHOs, and are
decoupled from all the other Q/s.



The Basic Algorithm

e Step 1: Choose an origin and a generalized
coordinate system (follow steps 1-8 on our
guide to solving Lagrangian Problems)

e Step 2: Find out what T and V are in the
problem (step 9 in our guide to solving)



Basic Algorithm Part 2

* Step 3: Write out the Lagrangian, L, in matrix
form: L = %(C?TTLT — gTVg). Make sure not to
forget the 2 in L!

* Step 4: Write and ldentify what T and V are

+ Step 5: Solve det|V — w?T| = 0, for all w?’s



Basic Algorithm Part 3

* Step 6: If the w?‘s are degenerate then use the
orthonormality relations of the a vectors to
from a complete set of vectors.

* Step 7: Write the solution to the problem for a
future time, step 12 in our guide to solving
Lagrangian problems



Basic Algorithm Part 4

* Step 8:Let g = AQ be the general solution and
that Q(t) = E(t), has been solved.

* Step 9: Use initial conditions to solve for
constants in E(t) (step 13 in the problem solving
guide)

* Step 10: Make sure your answer makes
sense.(step 14-18 in the problem solving guide)



Highlights of section 6.3: Fundamental
Harmonics

e |f the system is displaced barely from
equilibrium and then is released to move, this
system does small oscillations around the
equilibrium position with frequencies

Wyeeen, W,

 These frequencies are called the free
vibrations, resonant frequencies, or the
fundamental harmonics of the system



Highlights of sect 6.3 continued

 These frequencies will not appear in the
complete solution of the motion since they are by
definition small oscillations around the
equilibrium

e The solutions to the fundamental harmonics are
usually a summation of simple harmonic
oscillations over all w’s. One can transfer these
coordinates to a new set of generalized
coordinates called the normal coordinates



Highlights of section 6.3:
Normal Coordinates

o Leti= AE(egn 6.41)

+ V =_FVE T =% (eqns 6.42 and 6.44
respectively

1 . e
i w?,E%) eqn 6.45.



Equation of motion with normal
coordinates

* The Lagrange egns of motion become with
this Lagrangian:
& + w? &, eqn 6.46

* Solutions to these equations we know the

solution to, which happen to once again be of
the form:

— &, = Cke 't eqn 6.47



Highlights of section 6.4

e This sections goes over an example of
resonant frequencies and normal modes with
the linear triatomic molecule



w, frequency and equation

* Forw, =0, a;;=a,;=a3,;
—a,=1/N2m+ M

* This is the case for when the equation of
motion is a linear function

—§=0



w, frequency and equation

* For w,=\/k/ma,,=0, a;3=-a,,

—a,,=1/vV2m, a,,=0, a;,= —1/vV2m



w, frequency and equation

2m
. B k(l'l'v) B
For w;= ——, 1173513

— ay;= —2/y/2M(2 + M/m, az;=1/,/2m(1 + 2m/M

* In both cases of w, and w, if w?< 0, then the
solution becomes an exponential equation
with a saddle point for the minimum of V



e Picture on the rightis
fig 6.4 from Goldstein

* This shows the normal
modes of the linear
symmetric triatomic

molecule




e (a) shows the normal
modes for w,, where
the nodes are all
equally spaced between
and all point in same
direction

e These are symmetric
nodes




e (b) shows the normal
modes for w, where
there are only two real
nodes that do anything
and point in opposite
directions

These are
antisymmetric nodes




e (c)shows the normal
modes for w,; where the
modes are not evenly
spaced and do not all
point in the same
direction
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