Chapter 6 Theory, part 3

Michelle Deady
12 November 2010
Physics 6220
Team Hamilton

Normalization

- From where we last were, we had the matrix form of the eigenvalue equation:
$-\overline{\overline{\mathbf{V}}} \overline{\overline{\mathbf{A}}}=\overline{\bar{\lambda}} \overline{\overline{\mathbf{T}}} \overline{\overline{\mathbf{A}}}$
- We want to normalize the eigenvectors such that:
$-\overline{\overline{\mathbf{A}}}^{\mathrm{T}} \overline{\mathbf{T}} \overline{\overline{\mathbf{A}}}=\overline{\overline{\mathbf{I}}}{ }_{\text {(eqn } 6.23)}$ and
$-\overline{\overline{\mathbf{A}}}^{\mathrm{T}} \overline{\overline{\mathbf{V}}} \overline{\overline{\mathbf{A}}}=\overline{\overline{\boldsymbol{\lambda}}}_{(\text {(eqn 6.26) }}$
- Taking a matrix $\overline{\bar{V}}$ to $\overline{\bar{\lambda}}$ in the form of the transformation $\overline{\bar{\lambda}}=\overline{\bar{A}}^{T} \overline{\bar{V}} \overline{\bar{A}}$ is called a congruence transformation so that it becomes a diagonal matrix with eigenvalues λ_{i}

The λ matrix

- For the iith element of the $\boldsymbol{\lambda}$ matrix, the equation is:

$$
-\lambda_{i i}=\sum_{k, l}\left(a^{t}\right)_{i k} V_{k l} a_{l i}
$$

- But we also know that:

$$
\begin{aligned}
& -\lambda_{i j}=\lambda_{i j} \delta_{i j} \\
& -V_{k l}^{*}=V_{k l}=V_{l k}
\end{aligned}
$$

- Therefore we can write $\lambda_{i j}$ as

$$
\begin{aligned}
& -\lambda_{i j}=\sum_{k, l} v_{k l}\left(a^{*} a_{1 l}\right)=\sum_{k} v_{k k}\left|a_{k i}\right|^{2} \\
& \quad+\sum_{k} \sum_{l \neq k} v_{k l}\left(a_{k i} a_{l i}\right)
\end{aligned}
$$

The λ_{ij} element

- Consider

$$
\begin{aligned}
\mathrm{S} & =\sum_{k \neq l} a_{k i}^{*} a_{l i} v_{k l}=\sum_{k \neq l} \frac{v_{k l}}{2}\left(a_{l k}^{*} a_{l i}+a k i a_{l i}^{*}\right) \\
& =\sum_{k \neq l} \frac{v_{k l}}{2}\left(\left|a_{k i}+a_{l i}\right|^{2}-\left|a_{k i}\right|^{2}-\left|a_{l i}\right|^{2}\right)
\end{aligned}
$$

- Looking at the second form of the equation of S one can easily see that the equation will always be positive. Therefore $S \geq 0$ which also causes $\lambda_{\mathrm{ii}} \geq 0$

Recap of the problem

- Basically we want to be able to solve the equation
$-\overline{\bar{T}} \ddot{\bar{q}}=-\overline{\bar{V}} \bar{q}$
- If we let $\bar{q}=\overline{\bar{A}} \bar{Q}$ then the equation becomes

$$
\overline{\bar{T}} \overline{\bar{A}} \ddot{\bar{Q}}=-\overline{\bar{V}} \overline{\bar{A}} \overline{\bar{Q}}
$$

- Which then can become:

$$
\overline{\bar{A}}^{\mathrm{T}} \overline{\bar{T}} \overline{\bar{A}} \ddot{\bar{Q}}=-\overline{\bar{A}}^{\mathrm{T}} \overline{\bar{V}} \overline{\bar{A}} \bar{Q}
$$

- And if you substitute in eqns 6.23 and 6.26 , you get:

$$
\overline{\bar{I}} \ddot{\bar{Q}}=\overline{\bar{\lambda}} \bar{Q}
$$

Form of \ddot{Q}_{i}

- Usually we write $\overline{\bar{I}} \ddot{\bar{Q}}=-\overline{\bar{\lambda}} \bar{Q}$ as $\overline{\bar{I}} \ddot{\bar{Q}}=-\overline{\bar{\omega}}^{2} \bar{Q}$ for oscillators
- since we showed that $\lambda_{i i} \geq 0$, lets write $\lambda_{i i}=\omega_{i}{ }^{2}$
- Making our equation look like $\ddot{Q}_{i}=-\omega_{i}{ }^{2} Q i$

Solutions to the equation

- The generic solution to this equation is the form of either $Q_{i}(t)=A_{i} \sin \omega_{i} t+B_{i} \cos \omega_{i} t$, or $Q_{i}(t)=A_{i} e^{-i \omega_{i} t}+B_{i} e^{i \omega_{i} t}$, where A and B are the constants of integration
- One of the particular solutions is a form of $Q_{i}=C_{i} \cos \left(w_{i} t+\phi_{i}\right)$, where both C_{i} and ϕ_{i} are the constants of integration

Solution part 2

- Let $\bar{Q}(t)=\bar{E}(t)$, where $E_{i} \equiv C_{i} \cos \left(\omega_{i} t+\phi_{i}\right)$
- This becomes $\overline{\bar{A}} \bar{Q}(t)=\overline{\bar{A}} \bar{E}(t)$, and earlier substituted $\bar{q}=\overline{\bar{A}} \bar{Q}$, therefore $\bar{q}=\overline{\bar{A}} \bar{E}$
- So we now have a solution to the Lagrangian that we started out with since we now know our q's

Lagrangian

- Our Lagrangian now becomes once again
- $L=\frac{1}{2}\left(\dot{\bar{q}}^{\top} \overline{\bar{T}} \dot{\bar{q}}-\bar{q}^{T} \overline{\bar{V}} \bar{q}\right)$

Assumptions we made to get this

- All $\lambda_{i} \equiv \lambda_{i i}$ were different
- We used $\overline{\bar{T}} \overline{\bar{A}}=-\overline{\bar{V}} \overline{\bar{A}} \overline{\bar{\lambda}}^{-1}$ to get $\operatorname{det}|\overline{\bar{V}}-\overline{\bar{\lambda}} \overline{\bar{T}}|=0$
- The determinant gave us n distinct λ i's which we used to determine $\mathrm{n}-1$ of the n and ($\mathrm{a}_{\mathrm{i} 1}, \ldots \mathrm{a}_{\mathrm{in}}$) numbers
- We then proved that those λ i's were real and also chose to make all of the aij elements real such that $\overline{\bar{A}}^{*}=\overline{\bar{A}}$

The Degenerate Case

- If not all of the λ_{i} 's are not distinct solutions to the eigenvalue problem then we get the degenerate case where for example $\lambda_{1}=\lambda_{2}$.
- Like in quantum mechanics we still need to have a complete orthogonal basis set so have to form an \bar{a}_{1}, \bar{a}_{2} out of the same λ equation, beyond that follow the same logic as before

Normal Coordinates

- The \bar{Q}_{i} 's are also called the normal coordinates since each behave like SHOs, and are decoupled from all the other \bar{Q}_{i} 's.

The Basic Algorithm

- Step 1: Choose an origin and a generalized coordinate system (follow steps 1-8 on our guide to solving Lagrangian Problems)
- Step 2: Find out what T and V are in the problem (step 9 in our guide to solving)

Basic Algorithm Part 2

- Step 3: Write out the Lagrangian, L, in matrix form: $L=\frac{1}{2}\left(\dot{\bar{q}}^{T} \overline{\bar{T}} \dot{\bar{q}}-\bar{q}^{T} \overline{\bar{V}} \bar{q}\right)$. Make sure not to forget the $1 / 2$ in L !
- Step 4: Write and Identify what $\overline{\bar{T}}$ and $\overline{\bar{V}}$ are
- Step 5: Solve $\operatorname{det}\left|\overline{\bar{V}}-\omega^{2} \overline{\bar{T}}\right|=0$, for all $\omega^{2 \prime}$ s

Basic Algorithm Part 3

- Step 6: If the $\omega^{2 \prime}$ s are degenerate then use the orthonormality relations of the \bar{a} vectors to from a complete set of vectors.
- Step 7: Write the solution to the problem for a future time, step 12 in our guide to solving Lagrangian problems

Basic Algorithm Part 4

- Step 8 : Let $\bar{q}=\overline{\bar{A}} \bar{Q}$ be the general solution and that $\bar{Q}(t)=\bar{E}(t)$, has been solved.
- Step 9: Use initial conditions to solve for constants in $\bar{E}(t)$ (step 13 in the problem solving guide)
- Step 10: Make sure your answer makes sense.(step 14-18 in the problem solving guide)

Highlights of section 6.3: Fundamental

 Harmonics- If the system is displaced barely from equilibrium and then is released to move, this system does small oscillations around the equilibrium position with frequencies
$\omega_{1}, \ldots, \omega_{n}$.
- These frequencies are called the free vibrations, resonant frequencies, or the fundamental harmonics of the system

Highlights of sect 6.3 continued

- These frequencies will not appear in the complete solution of the motion since they are by definition small oscillations around the equilibrium
- The solutions to the fundamental harmonics are usually a summation of simple harmonic oscillations over all ω 's. One can transfer these coordinates to a new set of generalized coordinates called the normal coordinates

Highlights of section 6.3: Normal Coordinates

- Let $\overline{\bar{\eta}}=\overline{\bar{A}} \overline{\bar{\xi}}\left(\right.$ eqn $\left.6.41^{\circ}\right)$
- $V=\frac{1}{2} \bar{\xi} T \overline{\bar{V}} \overline{\bar{\xi}}, T=\frac{1}{2} \bar{\xi} \tau \overline{\bar{\xi}}$ (eqns 6.42 and 6.44 respectively
- $L=\frac{1}{2}\left(\dot{\xi}_{\mathrm{k}} \dot{\xi}_{k}-\omega^{2}{ }_{k} \xi^{2}\right)$ eqn 6.45.

Equation of motion with normal coordinates

- The Lagrange eqns of motion become with this Lagrangian:
$-\ddot{\xi}_{k}+\omega_{k}^{2} \xi_{k}$ eqn 6.46
- Solutions to these equations we know the solution to, which happen to once again be of the form:

$$
-\xi_{k}=C k e^{-i \omega_{k} t} \text { eqn } 6.47
$$

Highlights of section 6.4

- This sections goes over an example of resonant frequencies and normal modes with the linear triatomic molecule

ω_{1} frequency and equation

- For $\omega_{1}=0, a_{11}=a_{21}=a_{31}$
$-\mathrm{a}_{11}=1 / \sqrt{2 m+M}$
- This is the case for when the equation of motion is a linear function
$-\ddot{q}=0$

ω_{2} frequency and equation

- For $\omega_{2}=\sqrt{k / m} \mathrm{a}_{22}=0, \mathrm{a}_{13}=-\mathrm{a}_{32}$

$$
-a_{12}=1 / \sqrt{2 m}, a_{22}=0, a_{32}=-1 / \sqrt{2 m}
$$

ω_{3} frequency and equation

- For $\omega_{3}=\sqrt{\frac{k\left(1+\frac{2 m}{M}\right)}{m}}, \quad \mathrm{a}_{11}=\mathrm{a}_{13}$

$$
-\mathrm{a}_{23}=-2 / \sqrt{2 M(2+M / m}, \mathrm{a}_{33}=1 / \sqrt{2 m(1+2 m / M}
$$

- In both cases of ω_{2} and ω_{3} if $\omega^{2}<0$, then the solution becomes an exponential equation with a saddle point for the minimum of V
- Picture on the right is fig 6.4 from Goldstein
- This shows the normal modes of the linear symmetric triatomic molecule
- (a) shows the normal modes for ω_{1}, where the nodes are all equally spaced between and all point in same direction
- These are symmetric nodes
- (b) shows the normal modes for ω_{2} where there are only two real nodes that do anything and point in opposite directions
These are antisymmetric nodes
- (c) shows the normal modes for ω_{3} where the modes are not evenly spaced and do not all point in the same direction

