Chapter 6: Oscillations

Jigsaw Theory 2
Team Newton
Justin Brown

The Eigenvalue Problem

- Non-degenerate eigenvalues
- Let λ_{k} be the n non-degenerate eigenvalues and 禹居 the eigenvectors of
- \square

$$
\overline{\bar{T}}^{-1} \overline{\bar{V}}
$$

$$
\overline{\bar{T}}^{-1} \overline{\bar{V}} \bar{a}_{k}=\lambda_{k} \bar{a}_{k}
$$

- Where

$$
\bar{a}_{k} \equiv\left[\begin{array}{c}
a_{k 1} \\
a_{k 2} \\
\cdot \\
\cdot \\
a_{k 3}
\end{array}\right]
$$

Define Unit Vectors

- Let \hat{e}_{k} be unit vectors such that $e_{k i}=\delta_{i k}$
- In other words the vectors represented by an $n \times I$ matrix where all of its elements are zero except I at the $\mathrm{k}^{\text {th }}$ row

Define A Matrix

- Define

$$
\overline{\bar{A}}_{n \times n}=\sum_{k} \hat{e}_{k} \cdot \bar{a}_{k}^{T}
$$

$$
\begin{aligned}
& A_{i j}=\left[\sum_{k} \hat{e}_{k} \cdot \bar{a}_{k}^{T}\right]_{i j}=\sum_{k} e_{k i} a_{k j} \\
&=\sum_{k} \delta_{i k} a_{k j}=a_{i j} \\
&=
\end{aligned}
$$

\rightarrow The $\mathrm{k}^{\text {th }}$ column of $\overline{\bar{A}} \mathrm{~s} \quad \bar{a}_{k}$

Use \mathbf{A} in Eigenvalue Problem

- Original Form

$$
\begin{aligned}
& \overline{\bar{T}}^{-1} \overline{\bar{V}} \bar{a}_{k}=\lambda_{k} \bar{d} \\
& \overline{\bar{V}} \bar{a}_{k}=\lambda_{k} \overline{\bar{T}} \bar{a}_{k}
\end{aligned}
$$

- Using $\overline{\bar{A}}$

$$
\overline{\bar{V}} \overline{\bar{A}}=\overline{\bar{\lambda}} \overline{\bar{T}} \overline{\bar{A}}
$$

- Where $\overline{\bar{\lambda}}$ is a $\mathrm{n} \times \mathrm{n}$ matrix which is diagonal $\stackrel{\rightarrow}{\circ}$

$$
\lambda_{i j}=\lambda_{i} \delta_{i j}
$$

Useful Properties

- Define the Hermitian conjugate by a dagger superscript ${ }^{\square}$ such that

$$
\begin{aligned}
& \overline{\bar{B}}^{\dagger} \equiv\left(\overline{\bar{B}}^{T}\right)^{*} \equiv\left(\overline{\bar{B}}^{*}\right)^{T} \\
& \text { where }\left(\overline{\bar{B}}^{*}\right)_{i j} \equiv\left(B_{i j}\right)^{*} \equiv B_{i j}^{*}
\end{aligned}
$$

- Where * denotes complex conjugation $(a+i b)^{*}=a-i b$ or $\left(r e^{i \theta}\right)^{*}=r e^{-i \theta}$ where r is real
- $\overline{\bar{V}}$ and $\overline{\bar{T}}$ are real and $\overline{\bar{V}}^{T}=\overline{\bar{V}} \& \overline{\bar{T}}^{T}=\overline{\bar{T}}$

$$
\rightarrow \overline{\bar{V}}^{\dagger}=\overline{\bar{V}} \& \overline{\bar{T}}^{\dagger}=\overline{\bar{T}}
$$

Applying to Eigen Equation

- Starting with

$$
\overline{\bar{V}} \overline{\bar{A}}=\overline{\bar{\lambda}} \overline{\bar{T}} \overline{\bar{A}}
$$

- Multiply both sides by $\overline{\bar{A}}^{\dagger}$ $\overline{\bar{A}}^{\dagger} \overline{\bar{V}} \overline{\bar{A}}=\overline{\bar{A}}^{\dagger} \overline{\bar{\lambda}} \overline{\bar{T}} \overline{\bar{A}}$
- Hermitian conjugate of both sides $\left(\overline{\bar{A}}^{\dagger} \overline{\bar{V}} \overline{\bar{A}}\right)^{\dagger}=\left(\overline{\bar{A}}^{\dagger} \overline{\bar{\lambda}} \overline{\bar{T}} \overline{\bar{A}}\right)^{\dagger}$
- Since $\overline{\bar{V}}^{\dagger}=\overline{\bar{V}} \& \overline{\bar{T}}^{\dagger}=\overline{\bar{T}} \& \overline{\bar{A}}^{\dagger}=\overline{\bar{A}}$

$$
\overline{\bar{A}}^{\dagger} \overline{\bar{V}} \overline{\bar{A}}=\overline{\bar{A}}^{\dagger} \overline{\bar{T}} \overline{\bar{\lambda}}^{\dagger} \overline{\bar{A}}
$$

Checking Properties of \square

- From

$$
\overline{\bar{A}}^{\dagger} \overline{\bar{V}} \overline{\bar{A}}=\overline{\bar{A}}^{\dagger} \overline{\bar{T}} \overline{\bar{\lambda}}^{\dagger} \overline{\bar{A}}
$$

- Using gives

$$
\overline{\bar{A}}^{\dagger} \overline{\bar{\lambda}} \overline{\bar{T}} \overline{\bar{A}}=\overline{\bar{T}} \overline{\bar{\lambda}} \overline{\bar{x}}^{\dagger}
$$

- And using

$$
\overline{\bar{\lambda}} \overline{\bar{T}}=\overline{\bar{T}}^{\bar{\lambda}} \overline{\bar{\lambda}}^{\dagger}
$$

- Which implies $\overline{\bar{\lambda}}$ is diagonal

$$
\overline{\bar{\lambda}} \overline{\bar{T}}=\overline{\bar{T}} \overline{\bar{\lambda}}^{\dagger} \rightarrow \overline{\bar{\lambda}} \overline{\bar{T}}=\overline{\bar{T}} \overline{\bar{\lambda}} \rightarrow \overline{\bar{\lambda}}=\overline{\bar{\lambda}}^{\dagger}
$$

Giving A

- $\overline{\bar{\lambda}}$ is real

$$
\rightarrow \lambda_{i j} \text { is real for all } \mathrm{i}, \mathrm{j}
$$

- Looking again at

$$
\overline{\bar{V}} \overline{\bar{A}}=\overline{\bar{\lambda}} \overline{\bar{T}} \overline{\bar{A}}
$$

- We can choose that $\overline{\bar{A} s}$ real

