Chapter 6: Oscillations

Jigsaw Theory 2 Team Newton Justin Brown

0

The Eigenvalue Problem

- Non-degenerate eigenvalues
- Let λ_k be the n non-degenerate eigenvalues and ⁶/_ℓ the eigenvectors of [¯]/_T⁻¹[¯]/_V
 [¯]/_T⁻¹[¯]/_V
 [¯]/_T⁻¹[¯]/_V
 [¯]/_T⁻¹[¯]/_V
 [¯]/_R = λ_k ā_k
- Where $\bar{a}_{k} \equiv \begin{bmatrix} a_{k1} \\ a_{k2} \\ \vdots \\ \vdots \\ a_{k3} \end{bmatrix}$

Define Unit Vectors

- Let \hat{e}_k be unit vectors such that
 - $e_{ki} = \delta_{ik}$
- In other words the vectors represented by an n x I matrix where all of its elements are zero except I at the kth row

Use **A** in Eigenvalue Problem

- Original Form $\overline{\overline{T}}^{-1}\overline{\overline{V}}\overline{a}_{k} = \lambda_{k}\overline{a}_{k}$ $\overline{\overline{V}}\overline{a}_{k} = \lambda_{k}\overline{\overline{T}}\overline{a}_{k}$
- Using $\bar{\bar{A}}$
 - $\bar{\bar{V}}\bar{\bar{A}}=\bar{\bar{\lambda}}\bar{\bar{T}}\bar{\bar{A}}$
- Where $\overline{\lambda}$ is a n x n matrix which is diagonal • \rightarrow $\lambda_{ij} = \lambda_i \delta_{ij}$

Useful Properties

- Define the Hermitian conjugate by a dagger superscript \Box such that $\overline{B}^{\dagger} \equiv \left(\overline{B}^{T}\right)^{*} \equiv \left(\overline{B}^{*}\right)^{T}$ where $(\overline{B}^{*})_{ij} \equiv (B_{ij})^{*} \equiv B_{ij}^{*}$
- Where * denotes complex conjugation $(a + ib)^* = a - ib \text{ or } (re^{i\theta})^* = re^{-i\theta}$

where r is real • \overline{V} and $\overline{\overline{T}}$ are real and $\overline{V}^T = \overline{V} \& \overline{\overline{T}}^T = \overline{\overline{T}}$ $\rightarrow \overline{V}^\dagger = \overline{V} \& \overline{\overline{T}}^\dagger = \overline{\overline{T}}$

Applying to Eigen Equation

- Starting with $\overline{V}\overline{A} = \overline{\lambda}\overline{T}\overline{A}$
- Multiply both sides by $\bar{\bar{A}}^{\dagger}$ $\bar{\bar{A}}^{\dagger}\bar{\bar{V}}\bar{\bar{A}} = \bar{\bar{A}}^{\dagger}\bar{\bar{\lambda}}\bar{\bar{T}}\bar{\bar{A}}$
- Hermitian conjugate of both sides $\left(\bar{\bar{A}}^{\dagger}\bar{\bar{V}}\bar{\bar{A}}\right)^{\dagger} = \left(\bar{\bar{A}}^{\dagger}\bar{\bar{\lambda}}\bar{\bar{T}}\bar{\bar{A}}\right)^{\dagger}$
- Since $\overline{V}^{\dagger} = \overline{V} \& \overline{\overline{T}}^{\dagger} = \overline{\overline{T}} \& \overline{\overline{A}}^{\dagger} = \overline{\overline{A}}^{\dagger}$ $\overline{\overline{A}}^{\dagger} \overline{V} \overline{\overline{A}} = \overline{\overline{A}}^{\dagger} \overline{\overline{T}} \overline{\overline{\lambda}}^{\dagger} \overline{\overline{A}}$

Checking Properties of \Box

• From $\bar{\bar{A}}^{\dagger}\bar{\bar{V}}\bar{\bar{A}} = \bar{\bar{A}}^{\dagger}\bar{\bar{T}}\bar{\bar{\lambda}}^{\dagger}\bar{\bar{A}}$

• Using gives $\bar{\bar{A}}^{\dagger}\bar{\bar{\lambda}}\bar{\bar{T}}\bar{\bar{A}} = \bar{\bar{T}}\bar{\bar{\lambda}}^{\dagger}$

- And using $\bar{\bar{\lambda}}\bar{\bar{T}} = \bar{\bar{T}}\bar{\bar{\lambda}}^{\dagger}$
- Which implies $\overline{\lambda}$ is diagonal $\overline{\lambda}\overline{\overline{T}} = \overline{\overline{T}}\overline{\lambda}^{\dagger} \to \overline{\lambda}\overline{\overline{T}} = \overline{\overline{T}}\overline{\overline{\lambda}} \to \overline{\overline{\lambda}} = \overline{\overline{\lambda}}^{\dagger}$

