This is a printout of the wiki article on rotatifiggmes.Read carefully. Notice that the Eu
force is not addressed in our t

All non4inertial reference fram exhibitfictitious forces Rotating reference frames ¢
characterized by three fictitious fort!

- thecentrifugal force
- theCoriolis force

and, for nondniformly rotating reference fram:
- theEuler force

Scientists living in a rotating box can measuregpeed and direction of their rotation
measuring theskctitious forces For exampleLéon Foucaultvas able to show ttCoriolis
forcethat results from the Earth's rotation usingFoucault pendulumf the Earth were t
rotate many times faster, these fictitious foromsla@ be felt by humans, as they are when
spinningcarousel

Relating rotating frames to stationary frame:

The following is a derivation of the formulas farcelerations as well as fictitious forces i
rotating frame. It begins with the ation between a particle's coordinates in a rajdtiame anc
its coordinates in an inertial (stationary) framiben, by taking time derivatives, formulas
derived that relate the velocity of the particlesasn in the two frames, and the accelen
relative to each frame. Using these acceleratihesfictitious forces are identified by compar
Newton's second law as formulated in the two déiféframes

Relation between positions in the two frame

To derive these fictitious forces, it's haul to be able to convert between the coordin

r [ r
(I Y.z }of the rotating reference frame and the coordin(I: Y, z}of aninertial referenct
framewith the same origin. the rotation is about tt zaxis with anangular velocit {2and the
two reference frames coincide at tit = (), the transformation from rotating coordinate:
inertial coordinags can be writte

r = 2’ cos () — o sin (Nt)
y = 2’ sin () + ¢’ cos (Q)

whereas the reverse transformatic

' =z cos(—Qt) — ysin (—Qt)



y' = xsin (=) + y cos (=)
This result can be obtained fronrotation matrix
Introduce the unit vectork: 7. krepresenting standard unit basis vectors in thaingt frame

The timederivatives of these unit vectors are found nexp@dse the frames are aligned = 0
and thez-axis is the axis of rotation. Then for a counterklsise rotation through angQt:

(1) = (cos{, sin ()
where theX, y) components are expressed in the stationary fraikewise
7(t) = (—sin Q, cos () .
Thus the time derivative of these vectors, whidatewithout changing magnitude

d . . .
Ez(t) = Q(—sinQ, cosQt) = Q7 ;
d ~ 1 oy
o (t) = Q—cosQU, —sinQt) = -1 .
This result is the same as found usirvector cross produetith the rotation vectof 2pointed
along the z-axis of rotatioﬁl - (D: 0, Q) namely,

d

Eﬁzﬂxﬁ,

where . is either of .

Time derivatives in the two frame:

Introduce the unit vectors: J» krepresenting standard unit basis vectors in thraingt frame
As they rotate they will remain normalized. If ve¢ them rotate at the speec {labout an axis
(2then each unit vectoizof the rotating coordinate system abide the following equatior

d . .
EH—QXH.

Then if we have a vector functi(f,

() = fo(t)e+ f,(8)3+ f-(t)k



and we want to examine its first ivative we have (using th&oduct ruleof
differentiation )t

d,_db.  di dfyA fw . dk
ad T +dff+ di? f*’ +df
' k+[ﬁ><{fzi+fyj+f k)]

( i )
where dt ris the rate of change Jas observed in the rotating coordinate sy. As a

shorthand the differentiation is expresse!

d d
# = |(@), o<

This result is also known as the Transport Theareanalytical dynamics, and is al
sometimes referred to as the Basic Kinematic Eqni!

Relation between velocities in the two frame
A velocity of an object is the tin-derivative of the object's position, or

def dr
V= —

dit

The time derivative of a positic?’(t)in a rotaing reference frame has two components,
from the explicit time dependence due to motiothefparticle itself, and another from 1

frame's own rotation. Applying the result of theyious subsection to the displacemr(t},
thevelocitiesin the two reference frames are related by thetemn

vldEf[;? (g)r—i—ﬂxr:vr—i—ﬂxr,

where subscriptmeans the inertial frame of reference, r means the rotating frame
reference.

Relation between accelerations in the twframes

Acceleration is the second time derivative of positor the first time derivative of veloc



o (20~ () - [9), [(5) o1

where subscriptmeans the inertial frame of reference. Carryingtbedifferentiation: and re-
arranging some terms yields the acceleration irotating reference frame

df
ar:ai—Qﬁxvr—ﬂx(ﬂxr)—Exr

def d'ﬁ r
= e
where *“/ ris the apparent acceleration in the rotating refegdrame, the ter

—£ X (ﬂ X I')representx;entrifuqal accelerati¢, and the tern—282 X Vijs thecoriolis
effect

Newton's second law in the two frame

When the expression for acceleratic multiplied by the mass of the patrticle, the threga
terms on the righband side result ifictitious forcesin the rotating reference frame, that
apparent forces #t result from being in non-inertial reference frameather than from an
physical interaction between bod

UsingNewton's second law of moti ¥' = ma, we obtairfH2BI51e

- theCoriolis force
FCoriolis = =2mfl x Vi

- thecentrifugal force

Fcentrifuga.l = —mfd x (Q x I‘}

« and theEuler force

d§2
FEuIer = —Mm— XT

dt

whereriis the mass of the object being acted upon by ffictitious forces Notice that al
three forces vanish when the frame is not rotatinag, is, wher§2 = 0 .

For completeness, the inertial accelera@idue to impressed external forcgémpcan be
determined from the total physical force in theriiia (nor-rotating) frame (for example, for:
from physical interactions such electromagnetic forc¢sisingNewton's second le in the
inertial frame:




Newton's law in the rotating frame then beco
F, = 1:‘imp + Fﬁentrifugal + Feoriolis + Frue = ma; .

In other words, to handle the Is of motion in a rotating reference frame:



