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dimensional potential for attractive inverse-square law

FIGURE 3.3 The equivalent one-
of force.

ok e SRR s s having the energy Eq, 88 shownin -
P = T, L
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FIGURE 3.4 Unbounded motion at positive energies for inverse-square law of force.

FIGURE 3.5 The orbit for E1 corresponding to unbounded motion.
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FIGURE 3.6 The equivalent one-dimensional potential for inverse-square law of force,

illustrating bounded motion at negative energies.

If the energy is E4 at the minimum of the fictitious potential as shown n
Fig. 3.8, then the two bounds coincide. In such case, motion is possible at only
one radius; 7 = 0, and the orbitis a circle. Remembering that the effective “force”
is the negative of the slope of the V' curve, the requirement for circular orbits i
simply that f’ be zero, or

l2

1700 e —mrb?.

We have here the familiar elementary condition for a circular orbit, that the ap-
plied force be equal and opposite to the “reversed effective force” of centripetal

FIGURE 3.7 The nature of the orbits for bounded motion. (8 =3 from Section 3.6
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FIGURE 3.8 The equivalent one-dimensional potential of inverse-square law of force,
illustrating the condition for circular orbits.
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FIGURE 3.9 The equivalent one-dimensional potential for an attractive inverse-fou
law of force.

always remain so; the motion is unbounded, and the particle can never get insi
the “potential” hole. The initial condition 71 < rg < ra is again not physica
possible.

Another interesting example of the method occurs for a linear restoring for
(isotropic harmonic oscillator):

FE Lk v =Rkt

For zero angular momentum, corresponding to motion along a straight line, V'
V and the situation is as shown in Fig. 3.10. For any positive energy the motiol
bounded and, as we know, simple harmonic. If [ 7 0, we have the state of aff
shown in Fig. 3.11. The motion then is always bounded for all physically possi

FIGURE 3.10 Effective potential for zero angular momentum.
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FIGURE 3.11 The equivalent one-dimensional potential for a linear restoring force.




