1. The Hamiltonian for a particle in a one dimensional potential $V(x)$ is given by $\hat{H} = \frac{\hat{P}^2}{2m} + V(x)$. Your answers to both parts should only be expressed in terms of the two operators x and \hat{P} or their functions and constants such as m, and \hbar.

(a) Calculate the commutator $[x, \hat{H}]$. (2 points)

(b) Write an expression for the minimum value of the product of uncertainties $\sigma_x \sigma_H$. (2 points)

2. An electron in the hydrogen atom has a wavefunction $\Psi(\mathbf{r}, t) = (\Psi_{1,1,0} + \Psi_{3,0,0})/\sqrt{2}$. Find $\langle \sin(\theta) \rangle$, where θ is the polar angle of the position vector \mathbf{r} of the electron. (4 points)

3. A particle of mass m lies in the state $\Psi_n(x)$, which is the n^{th} energy eigen-state of a one dimensional harmonic oscillator with eigen energy E_n, where n is a non-negative integer. The classical vibrational frequency of the particle is ω. Express all answers in terms of \hbar, ω, m, and n. Operators x and \hat{P} may also be used.

(a) Write an expression for the Hamiltonian operator \hat{H} of the system. (1 point)

(b) Calculate the expectation value of x^3. (1 point)

(c) Calculate the expectation value of the kinetic energy of the particle. (3 points)

(d) Calculate the expectation value of the operator x^2. (2 points)

4. A particle lies in a potential $V(\mathbf{r}) = V(r)$, where \mathbf{r} is the position vector of the particle. In spherical polar coordinates $\mathbf{r} = (r, \theta, \phi)$. One or more of the following options can be used to complete the statement below. For each option state whether the statement formed will be true or false. E stands for the energy of the particle, and L_x, L_y, and L_z for the components of its orbital angular momentum. L^2 is the square of the orbital angular momentum.

Statement: We can simultaneously measure

(a) L_x and L^2 but not E.

(b) L_y and L^2 but not L_x.

1
(c) L_z and L_x but not L^2.
(d) L_y and E.
(e) L_z, L^2, and E.
(f) L_x, L_y, and L_z.

5. An electron in a hydrogen atom was measured to have a total energy $E = E_1/49$ where E_1 is its ground state energy. The z component of its orbital angular momentum was measured to be $-5\hbar$.

(a) Write a general expression for its wavefunction, in terms of the energy eigen-functions $\Psi_{n,l,m}$ of the problem. Ignore the spin part completely. Use as many arbitrary constants as you need but make sure the total wavefunction is normalized. (1 point)
(b) Calculate $\langle \hat{L}^2 \rangle$ in terms of the arbitrary constants. (1 point)

Some relevant and irrelevant formulae are listed below.

$$\int_0^\pi \sin(x) \cos^2(x) dx = \int_{-1}^1 x^2 dx$$