Examination II for PHYS 6220/7220, Fall 2006

1. A one dimensional simple harmonic oscillator has mass m , and generalized canonical coordinates q and p , and angular vibrational frequency ω, and Hamiltonian $\mathrm{H}(\mathrm{q}, \mathrm{p})$.
(a) Evaluate $[\mathrm{u}, \mathrm{H}]$ where $\mathrm{u}=-\mathrm{i} \omega \mathrm{t}+\ln (\mathrm{p}+\mathrm{i} \mathrm{m} \omega \mathrm{q})$ and $\mathrm{i} \equiv \sqrt{-1}$. (2 points)
(b) Use result in part (a) to obtain du/dt. Comment on your result. (2 points)
(c) Express H as $\mathrm{H}=\mathrm{H}(\mathrm{u})$ and other known constants. (1 point)
2. Two successive rotations are performed on a rigid body with a common fixed point on the body for both rotations. Each rotation is through π radians. The two rotation axes are defined by unit vectors in the laboratory Cartesian coordinate system given by $\mathbf{n}_{1}=(1,1,0) / \sqrt{2}$, and $\mathbf{n}_{2}=(0,0,1)$ respectively.
(a) Find all elements of the matrix \mathbf{A} corresponding to the first rotation. (1 point)
(b) Find all elements of the matrix \mathbf{B} corresponding to the second rotation. (1 point)
(c) If the resulting net displacement of the body is represented by a matrix \mathbf{R} then find all its elements. (2 points)
(d) Find the resulting angle of rotation as if only one effective rotation was performed on the body through only one axis. (1 point)
3. A particle of mass m approaches a center of force from a far away distance with initial speed v_{0} and impact parameter b. The center of force exerts a force on the particle corresponding to the potential $\mathrm{V}(\mathrm{r})=-\mathrm{k} / \mathrm{r}^{4}$, where r is the distance of the particle from the center of force. Express all answers in terms of the known constants, m, k, v_{0}, and b.
(a) Find the total energy E of the particle. ($\mathbf{1}$ point)
(b) Find the magnitude of its angular momentum ℓ calculated with respect to the center of force. (1 point)
(c) Find the distance of closest approach c of the particle to the center of force. ($\mathbf{2}$ points)
(d) Find its angular speed at the distance of closest approach. (2 point)
4. Consider the motion of a particle of mass m and magnitude of angular momentum ℓ, moving in a potential $\mathrm{V}(\mathrm{r})=-\left[(\mathrm{k} / \mathrm{r})+\left(\mathrm{k}^{\prime} / \mathrm{r}^{3}\right)\right]$, where r is the distance of the particle from the origin.
(a) Find the radius r_{0} of a circular orbit for the particle in terms of k, k^{\prime}, m, and ℓ. (2 points)
(b) Find the condition for stability of this orbit relating r_{0} with k and k^{\prime}. ($\mathbf{2}$ points)
