Examination I for PHYS 6220/7220, Fall 2006

1. For many physical situations one encounters a general linear differential equation of constraint in the set of coordinates $\left\{\mathrm{x}_{\mathrm{i}}, \mathrm{i}=1,2, \ldots \mathrm{n}\right\}$ of the form $\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{g}_{\mathrm{i}}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots \mathrm{x}_{\mathrm{n}}\right) \mathrm{dx} \mathrm{x}_{\mathrm{i}}=0$. A constraint of this type may be integrated if an integrating function $f=f\left(x_{1}, x_{2}, \ldots x_{n}\right)$ is found such that it obeys $\frac{\partial\left(\mathrm{fg}_{\mathrm{i}}\right)}{\partial \mathrm{x}_{\mathrm{j}}}=\frac{\partial\left(\mathrm{fg}_{\mathrm{j}}\right)}{\partial \mathrm{x}_{\mathrm{i}}}, \quad \forall \mathrm{i}, \mathrm{j}$.
In a particular problem we obtain the following set of coordinates: x, y, θ, and ϕ. These follow a constraint equation: $\mathrm{dx}-\mathrm{a} \sin \theta \mathrm{d} \phi=0$.
For this equation where ' a ' is a constant, find the factor f, if it exists and thus integrate the equation. If it does not exist then prove rigorously that $\mathrm{f}=0$. (4 points)
2. A Hamiltonian is given by $\mathrm{H}(\mathrm{x}, \mathrm{p})=(\mathrm{cp}) /(\mathrm{ax})$, were a and c are constants and $\mathrm{x}>0$.
(a) Solve the Hamilton equations of motion to obtain $x=x(t)$ and $p=p(t)$. (4 points)
(b) Obtain the Lagrangian for the system $\mathrm{L}=\mathrm{L}(\mathrm{x}, \dot{\mathrm{x}}, \mathrm{t})$. (1 point)
3. A block of mass m_{1} has attached to it a string of fixed length ℓ and of negligible mass. At the other end of the string is a freely hanging bob of mass m_{2}. The block is restricted to move only along a horizontal straight line as shown in the figure. Both masses and the string are restricted to move in a single plane at all times.
(a) Define clearly an appropriate set of generalized coordinates. Use these to obtain the Lagrangian of the system. (2 points)
(b) Use a Lagrange multiplier λ associated with the constraint that the string is of fixed length and write the Langrange equations of motion. (2 points)
(c) Solve for λ purely as a function of the generalized coordinates. (2 point)
(d) State in words the constants of motion in this problem. Write expressions for these constants in terms of the generalized coordinates and generalized velocities. ($\mathbf{2}$ points)
(e) For what value of the generalized coordinates will λ be zero? What does it signify? ($\mathbf{1}$ point)

Fig. 1

