Poisson Brackets
Let $F=F\left(\left\{q_{i}\right\},\left\{p_{i}\right\}, t\right)$
Then $\dot{F} \equiv \frac{d F}{d t}=\frac{\partial F}{\partial t}+\sum_{i}\left[\frac{\partial F}{\partial q_{i}} \dot{q}_{i}+\frac{\partial F}{\partial p_{i}} \dot{p}_{i}\right]$

$$
\begin{aligned}
& =\frac{\partial F}{\partial t}+\sum_{i}\left[\frac{\partial F}{\partial q_{i}} \frac{\partial H}{\partial p_{i}}-\frac{\partial F}{\partial p_{i}} \frac{\partial H}{\partial q_{i}}\right] \\
& =\frac{\partial F}{\partial t}+[F, H]_{q_{,},}
\end{aligned}
$$

where we define a Poisson Bracket ($P B$)
as

$$
[A, B]_{q_{i}, p} \equiv \sum_{i}\left(\frac{\partial A}{\partial q_{i}}\right)\left(\frac{\partial B}{\partial p_{i}}\right)-\left(\frac{\partial B}{\partial q_{i}}\right)\left(\frac{\partial A}{\partial p_{i}}\right)
$$

We can show several properties immediately

$$
\begin{aligned}
{\left[q_{i}, q_{j}\right]_{i, p} } & =\sum_{k}\left[\frac{\partial q_{i}}{\partial q_{k}} \frac{\partial q_{j}}{\partial p_{k}}-\frac{\partial q_{j}}{\partial q_{k}} \frac{\partial q_{i}}{\partial p_{k}}\right] \\
& =0
\end{aligned}
$$

Similarly $\quad\left[p_{i}, p_{j}\right]_{v_{1}, p}=0$ and $\left[q_{i}, p_{j}\right]_{q_{i, k}}=\sum_{k}\left[\frac{\partial q_{i}}{\partial q_{k}} \frac{\partial p_{j}}{\partial p_{k}}-\frac{\partial p_{j}}{\partial q_{k}} \frac{\partial v_{i}}{\partial p_{k}}\right]$

$$
=\sum_{k}\left[\delta_{i k} \delta_{j k}-0\right]=\delta_{i j}
$$

Thus $\quad\left[q_{i}, q_{j}\right]_{q, p}=\left[p_{i}, p_{j}\right]_{q, b}=0$
and $\quad\left[q_{i}, p_{j}\right]_{q, p}=\delta_{i j}$
are called the Fundamenta Poisson Brackets (FPB). Unless specified otherwise we will assume $P B_{S}$ to be calculated w.r. to $\left\{q_{i}\right\}$ and $\left\{p_{i}\right\}$

$$
\text { ie. }[A, B] \equiv[A, B]_{q_{j} p}
$$

The following may also be shown easily

$$
[A, B]+[B, A]=0\} \text { antisymmetry }
$$

$$
\left.\left[c_{1} f+c_{2} g, h\right]=c_{1}[f, h]+c_{2}[g, h]\right\} \text { linearity }
$$

where $C_{1} \& C_{2}$ are constants

$$
[f, g h]=[f, g] h+[f, h] g
$$

Tedious algebra also leads to Jacobi's identity

$$
\begin{aligned}
& {[f,[g, h]]+[g,[h, f]]+[h,[f, g]]=0} \\
& \text { or }[[g, h], f]+[[h, f], g]+[[f, g], h]=0
\end{aligned}
$$

We now evaluate

$$
\frac{d}{d t}[f, g]=[[f, g], H]+\frac{\partial}{\partial t}[f, g]
$$

It is easily seen that

$$
\frac{\partial}{\partial t}[f, g]=\left[\frac{\partial f}{\partial t}, g\right]+\left[f, \frac{\partial g}{\partial t}\right]
$$

By Jacobis identity we get

$$
\begin{aligned}
{[[f, g], H]=} & -[[g, H], f]-[[H, f], g] \\
= & {[f,[g, H]]+[[f, H], g] } \\
\Rightarrow \frac{d}{d t}[f, g]= & {[[f, H], g]+\left[\frac{\partial f}{\partial t}, g\right] } \\
& +[f,[g, H]]+\left[f, \frac{\partial g}{\partial t}\right] \\
= & {\left[[f, H]+\frac{\partial f}{\partial t}, g\right]+\left[f,[g, H]+\frac{\partial g}{\partial t}\right] } \\
\cdot \frac{d}{d t}[f, g]= & {\left[\frac{d f}{d t}, g\right]+\left[f, \frac{d g}{d t}\right] }
\end{aligned}
$$

If f and g are constants
$\Rightarrow[f, g]$ is also constant.
\therefore if f and g are constants of motion i.e. $\dot{f}=\dot{g}=0$ then

$$
\frac{d}{d t}[f, g]=0 .
$$

Canonical Transformations: \rightarrow
Consider a transformation

$$
\begin{array}{ll}
Q_{i}=\phi_{i}\left(\left\{q_{i}\right\},\left\{p_{i}\right\}, t\right), & \forall i \\
P_{i}=P_{i}\left(\left\{q_{i}\right\},\left\{p_{i}\right\}, t\right), & \forall i
\end{array}
$$

The intial Haniltomain of the system is

$$
H=H\left(\left\{q_{i}\right\},\left\{p_{i}\right\}, t\right)
$$

The new Haniltoman is

$$
K=K\left(\left\{\phi_{i}\right\},\left\{P_{i}\right\}, t\right)
$$

The initial equations of motion are

$$
\dot{q}_{i}=+\frac{\partial H}{\partial p_{i}}, \quad \dot{p}_{i}=-\frac{\partial H}{\partial q_{i}}
$$

If int the new co-rordinates we get
the same form of the equations

$$
\text { ie, } \quad \dot{\phi}_{i}=\frac{\partial K}{\partial P_{i}}, \quad \dot{P}_{i}=-\frac{\partial K}{\partial \varphi_{i}}
$$

then the transformation is called a canoival transformation (CT).
Note in chapter 8 we defined

$$
\bar{\eta} \Rightarrow \eta_{i}=q_{i}, \eta_{i+n}=p_{i}, \forall i=1, \ldots n .
$$

$\bar{\eta}$ is a $(2 n \times 1)$ column matrix
$\frac{\partial H}{\partial \bar{r}}$ is a $(2 n \times 1)$ column matron

$$
\begin{aligned}
& \ni\left(\frac{\partial H}{\partial \bar{r}}\right)_{i}=\frac{\partial H}{\partial q_{i}},\left(\frac{\partial H}{\partial \bar{\eta}}\right)_{i+n}=\left(\frac{\partial H}{\partial p_{i}}\right) \\
& \forall i=1, \ldots n .
\end{aligned}
$$

$\overline{\bar{J}}$ has been defined by

$$
\begin{aligned}
& \overline{\bar{J}} \equiv\left[\begin{array}{cc}
\overline{\bar{\sigma}} & \overline{\bar{I}} \\
-\overline{\bar{I}} & \overline{\bar{\sigma}}
\end{array}\right] \text { where } \overline{\bar{I}}_{i j}=\delta_{i j} \\
& \bar{O}_{i j}=0, \forall i, j \\
& \therefore \overline{\overline{J_{i j}}} \equiv \delta_{j, i+n}-\delta_{j, i-n}, \forall i=1, \ldots 2 n \\
& \quad j=1, \ldots 2 n .
\end{aligned}
$$

In this form Hainultons Equations are

$$
\dot{\bar{\eta}}=\overline{\bar{J}} \cdot\left(\frac{\partial H}{\partial \bar{\eta}}\right)
$$

A restincted canonical transformation $(R C T)$ is one in which time does not appear explicitly

$$
\begin{aligned}
& i \cdot e, \phi_{i} \\
&=\phi_{i}\left(\left\{q_{i}\right\},\left\{p_{i}\right\}\right) \\
& P_{i}=P_{i}\left(\left\{q_{i}\right\},\left\{p_{i}\right\}\right)
\end{aligned}
$$

Let us define \bar{J} as a $(2 n \times 1)$ column,

$$
\begin{aligned}
& \rightarrow \quad \bar{J}_{i}=\Phi_{i} \text { and } \bar{J}_{i+n}=P_{i}, \forall i=1,2, \ldots n . \\
& \Rightarrow \quad \bar{J}=\bar{J}(\bar{\eta}) \text { for a } R C T . \\
& \quad \bar{J}_{i}=\sum_{j} \frac{\partial \bar{J}_{i}}{\partial \bar{\eta}_{j}} \dot{\bar{\eta}}_{j} \\
& \text { Let } \overline{\bar{M}}_{i j} \equiv \frac{\partial \overline{J_{i}}}{\partial \bar{\eta}_{j}} \Rightarrow \dot{\bar{J}}=\bar{M} \overline{\bar{\eta}} \\
& \therefore \dot{\bar{J}}=\overline{\bar{M}} \cdot \overline{\bar{J}} \cdot\left(\frac{\partial H}{\partial \bar{\eta}}\right)
\end{aligned}
$$

Now $\frac{\partial H}{\partial \bar{x}_{i}}=\sum_{j} \frac{\partial H}{\partial \bar{F}_{j}}\left(\frac{\partial \bar{F}_{j}}{\partial x_{i}}\right)$

$$
\begin{aligned}
& \quad=\sum_{j} \frac{\partial H}{\partial \bar{J}_{j}} \overline{\bar{M}}_{j i}=\sum_{j}\left(\bar{M}^{\top}\right)_{i j}\left(\frac{\partial H}{\partial \bar{J}_{j}}\right) \\
& \therefore \frac{\partial H}{\partial \bar{r}}=\bar{M}\left(\frac{\partial H}{\partial \tilde{m}^{\prime}}\right) \\
& \therefore \dot{\bar{M}}\left(\frac{\partial H}{\partial \bar{J}}\right) \\
& \therefore \dot{\bar{J}}=\overline{\bar{M}} \overline{\bar{J}} \overline{\bar{M}}^{\top}\left(\frac{\partial H}{\partial \bar{J}}\right)
\end{aligned}
$$

We need $\overline{\bar{J}}=\overline{\bar{J}}\left(\frac{\partial H}{\partial \bar{J}}\right)$ for a canonical transformation

$$
\Rightarrow \quad \overline{\bar{M}} \overline{\bar{J}} \overline{\bar{M}}^{\top}=\overline{\bar{J}}
$$

Eq. 9.55 is a necessary and sufficient condition for a transformation to be canonical. Note that there is a timbal scale transformation $\phi_{i}=\lambda q_{i}$ and $p_{i}=\lambda p_{i}$ which is canonical but we ignore in Eq. (9.55), Otherwise (9.55) modifies to $\overline{\bar{M}} \overline{\bar{J}} \overline{\mathrm{M}}^{\top}=\lambda \overline{\bar{T}}$, We will always take $\lambda=1$.

Eq. 9.55 is called the symplectic condition.

This condition, says that for a transformation to be (CT) we need FPB to be invariant

$$
i . e,\left[Q_{i}, \phi_{j}\right]_{q, p}=\left[P_{i}, P_{j}\right]_{q, p}=0
$$

and $\left[\phi_{i}, P_{j}\right]_{q, p}=\delta_{i j}$
This proves that a canoincal
transformation leaves FPB invariant.
Now we can prove that any
arbitrary $P B$ is invariant under a (COT)
We want to prove

$$
\begin{gathered}
{[f, g]_{q_{j}, p}=[f, g]_{\Phi, P}} \\
{[f, g]_{q, p}=} \\
=\sum_{j}\left[\frac{\partial f}{\partial q_{j}} \frac{\partial g}{\partial p_{j}}-\frac{\partial f}{\partial p_{j}} \frac{\partial g}{\partial q_{j}}\right] \\
=\sum_{j} \sum_{k}\left[\frac{\partial f}{\partial q_{j}}\left[\frac{\partial f}{\partial \varphi_{k}} \frac{\partial \varphi_{k}}{\partial p_{j}}+\frac{\partial g}{\partial P_{k}} \frac{\partial P_{k}}{\partial p_{j}}\right]\right. \\
\\
-\frac{\partial f}{\partial p_{j}}\left[\frac{\partial g}{\partial \varphi_{k}} \frac{\partial \varphi_{k}}{\partial q_{j}}+\frac{\partial g}{\partial P_{k}} \frac{\partial p_{k}}{\partial q_{j}}\right] \\
= \\
\sum_{k}\left[\frac{\partial g}{\partial \varphi_{k}}\left[f, \Phi_{k}\right]_{q, p}+\frac{\partial g}{\partial P_{k}}\left[f, P_{k}\right]_{q, p}\right]
\end{gathered}
$$

$$
\therefore[f, g]_{q, p}=\sum_{k}\left[\frac{\partial g}{\partial \varphi_{k}}\left[F, \phi_{k}\right]_{q, p}+\frac{\partial g}{\partial P_{k}}\left[f, P_{k}\right]_{q, p}\right]
$$

If we choose $f=\varphi_{k}$ in the above we get

$$
\left[\phi_{k}, g\right]_{q, p}=\left(\frac{\partial g}{\partial p_{k}}\right)=-\left[g, \phi_{k}\right]
$$

If we choose $f=P_{k}$ we ill get

$$
\left[P_{k}, g\right]=\left(-\frac{\partial g}{\partial \phi_{k}}\right)=-\left[g, P_{k}\right]
$$

If we flip fond g we get with the above results

$$
\begin{aligned}
{[g, f]_{q, p}=} & \sum_{k}\left[\frac{\partial f}{\partial \varphi_{k}}\left[g, \varphi_{k}\right]_{q, p}+\frac{\partial f}{\partial P_{k}}\left[g, P_{k}\right]_{q, p}\right] \\
= & \sum_{k}\left[\left(\frac{-\partial f}{\partial \varphi_{k}} \frac{\partial g}{\partial P_{k}}\right)+\frac{\partial f}{\partial P_{k}} \frac{\partial g}{\partial \varphi_{k}}\right] \\
= & {[g, f]_{\varphi, P} } \\
\Rightarrow & {[g, f]_{q, p}=[g, f]_{\phi, p} \text { or } } \\
& {[f, g]_{r, p}=[f, g]_{Q, p} \text { as required. } }
\end{aligned}
$$

Generating functions: \rightarrow
Consider Hamiltons principle

$$
\delta \int_{t_{1}}^{t_{2}} L d t=0
$$

written either as

$$
\begin{array}{r}
\delta \int_{t_{1}}^{t_{2}}\left[\sum_{i} p_{i} \dot{q}_{i}-H\left(\left\{q_{i}\right\},\left\{p_{1}\right\}, t\right)\right] d t=0 \\
\text { and } \delta \int_{t_{1}}^{t_{2}}\left[\sum_{i} P_{i} \dot{\phi}_{i}-K\left(\left\{\phi_{i}\right\},\left\{p_{i}\right\}, t\right)\right] d t=0
\end{array}
$$

where P_{i} and P_{i} and K are related ky a CT to q_{i}, p_{i} and H.
Subtracting the two we get

$$
\delta \int_{t_{1}}^{t_{2}}\left[\sum_{i} p_{i} \dot{q}_{i}-H-\sum_{i} P_{i} \dot{\phi}_{i}+K\right] d t=0
$$

We can identify a generating function $F \Rightarrow$

$$
\frac{d F}{d t}=\sum_{i}\left(p_{i} \dot{q}_{i}-P_{i} \dot{\phi}_{i}\right)+K-H
$$

so that we get

$$
\delta \int_{t_{1}}^{t_{2}} \frac{d F}{d t} d t=\delta\left[F\left(t_{2}\right)-F\left(t_{1}\right)\right]
$$

But at t_{2} and t_{1} all variations in q_{i}, p_{i}, p_{i} and p_{i} are chosen to be zeros.

Hence $\delta \delta\left[F\left(t_{2}\right)-F\left(t_{1}\right)\right]=0$.
F is in general a function of all $q_{i}, p_{i}, \phi_{i}, p_{i}$, $4 n$ in number only
$2 n$ of which are independent. It is also a function of t in general.
There are ${ }^{\text {ally }} 4$ possibilities for the functional forms of F : $F_{1}\left(\left\{q_{i}\right\},\left\{\phi_{i}\right\}, t\right)$

$$
F_{2}\left(\left\{q_{i}\right\},\left\{P_{i}\right\}, t\right), F_{3}\left(\left\{p_{i}\right\},\left\{\phi_{i}\right\}, t\right) \text { and }
$$

$\left.F_{4}\left\{p_{i}\right\},\left\{P_{i}\right\}, t\right)$ related to each other by Legendre Transformations ar $\left(\angle T_{S}\right)$.
Consider $F=F_{1}\left(\left\{q_{i}\right\},\left\{\phi_{i}\right\}, t\right)$

$$
\begin{aligned}
\therefore \frac{d F}{d t} & =\sum_{i}\left[\frac{\partial F_{1}}{\partial q_{i}} \dot{q}_{i}+\frac{\partial F_{1}}{\partial \phi_{i}}\right]+\frac{\partial F_{1}}{\partial t} \\
& =\sum_{i}\left(p_{i} \dot{q}_{i}+P_{i} \dot{\phi}_{i}\right)+K-H
\end{aligned}
$$

$$
\begin{aligned}
\Rightarrow \quad \frac{\partial F_{1}}{\partial t} & \equiv K-H \\
p_{i} & =\frac{\partial F_{1}}{\partial q_{i}} \text { and } P_{i}=\frac{\partial F_{1}}{\partial \phi_{i}}
\end{aligned}
$$

Doing an $\angle T$ on F_{1} we get

$$
\begin{aligned}
& F_{2}=F_{1}+\sum_{i} P_{i} \phi_{i} \text { so that } \\
& F_{2}=F_{2}\left(\left\{q_{i}\right\},\left\{P_{i}\right\}, t\right)
\end{aligned}
$$

A different $\angle T$ on F_{1} gives

$$
F_{3}=F_{1}-\sum_{j} p_{j} q_{j} \quad \ni F_{3}=F_{3}\left(\left\{p_{i}\right\},\left\{\varphi_{i}\right\}, t\right)
$$

Iwo LIs on F, give

$$
F_{4}=F_{1}+\sum_{i}\left(P_{i} \phi_{i}-q_{i} p_{i}\right) \quad \ni F_{4}=F_{4}\left(\left\{p_{i}\right\},\left\{P_{i}\right\}, t\right)
$$

These (LT)s are not always possible as we will see in an example (iftimepermits!) Also a function could be of type F_{1} for the iII degree of freedom and type F_{2} in the j II degree of freedom. Coming up with appropriate F functions reopires intuition and there is notaset recipe.

