Examination II for PHYS 6620/7220, Fall 2004

1. A one dimensional system has a Hamiltonian

\[H(q,p,t) = \frac{p^2}{2} - \frac{1}{2q^2}. \] \hspace{1cm} (1)

Define \(D_1 \equiv (pq)/2, D_2 \equiv tH, \) and \(D \equiv D_1 - D_2. \)
(a) Calculate the Poisson brackets \([D_1, H]\) and \([D_2, H]\). (3 points)
(c) Using the above results calculate \(\dot{D} \equiv \frac{dD}{dt} \) (2 points)

2. A matrix \(\overline{A} \) is a rotation matrix corresponding to a rotation of 180° about an axis which is along the unit vector \(\hat{n} \). The identity matrix is \(\overline{I} \). Define

\[\overline{P}_\pm \equiv \frac{(\overline{I} \pm \overline{A})}{2}. \] \hspace{1cm} (2)

(a) Give a physical argument using a figure to deduce the effect of operating \((\overline{A})^2 \) on any arbitrary vector. (2 points)
(b) Use the result in (a) to write a simple matrix expression for \((\overline{A})^2 \). (1 point)
(c) Using result from (b) we may express write \((\overline{P}_\pm)^2 = a(\overline{P}_\pm) + b(\overline{I}) \). Find the value of the constants \(a \) and \(b \). (2 points).

3. A particle of mass \(m \), and magnitude of angular momentum \(\ell \), moves in a central potential \(V(r) \). The equation of its orbit is \(r = a \exp(k\theta) \), where \(a \) and \(k \) are constants.
(a) Use the appropriate form of the orbit equation to obtain \(V(r) \). (3 points)
(b) Find the dependence of \(\theta \) on \(t \), assuming \(\theta = 0 \) at \(t = 0 \). (3 points)

4. A particle of mass \(m \), and magnitude of angular momentum \(\ell \), moves in a central potential \(V(r) = (kr^2)/2 \).
(a) What is the effective one dimensional potential \(V_e(r) \) for this problem. (1 point)
(b) What is the radius of a circular orbit in such a potential? (2 points)
(c) What is the total energy of the particle in such an orbit? (1 point)