Oscillations

Consider the minimum of a potential $V(\vec{q}_0)$ around the point of minimum $(q_0_1, q_0_2, \ldots, q_0_n) \equiv \vec{q}_0$

We may expand in a Taylor series as

$$V(\vec{q}; \vec{q}_0) = V(q_0_1, q_0_2 + \ldots, q_0_n) + \sum_i \frac{\partial V}{\partial q_i}(\vec{q} - \vec{q}_0)_i^2 + \ldots$$

Note $\vec{q} = \begin{bmatrix} q_1 \\ q_2 \\ \vdots \\ q_n \end{bmatrix}$

At the minimum $\frac{\partial V}{\partial q_i} = 0$, for all i

Also, if we subtract the constant term $V(q_0_1, q_0_2, \ldots, q_0_n)$ from the definition of V we get

$$V(\vec{q}; \vec{q}_0) = \sum_i \frac{\partial^2 V}{\partial q_i^2} (\vec{q} - \vec{q}_0)_i^2 (q_i - q_{0i})(q_j - q_{0j})$$
neglecting higher order terms for small deviations \(|\vec{q} - \vec{q}_0| \).

The kinetic energy may be written as

\[T = \sum \frac{m_i}{2} \dot{q}_i \dot{q}_i \]

when we have no explicit time dependence in the generalized coordinates as seen from Eq \((6.71) \).

\(m_i \) are in general \(m_i = m_i(\vec{q}_i) \).

But to lowest order in the \(\vec{q}_i \)'s we get

\[m_i(\vec{q}) = m_i(\vec{q}_0) = \text{constant} \]

Let then \(T = T(\vec{q}_0) \)

\[\Rightarrow T = \frac{1}{2} \ddot{\vec{q}}^T \ddot{\vec{q}} = \frac{1}{2} \sum \ddot{q}_i \ddot{q}_i \]

\[L = T - V = \frac{1}{2} \left[\ddot{\vec{q}}^T \ddot{\vec{q}} - \vec{q}^T \nabla \vec{q} \right] \] \(\Rightarrow (6.7) \)

\[\Rightarrow \frac{\partial L}{\partial \dot{\vec{q}}} - \ddot{\vec{q}} = 0 \]

\[\Rightarrow \ddot{\vec{q}} + \nabla \vec{q} = 0 \] \(\Rightarrow (6.8) \)
In writing $\nabla^T \nabla \bar{q} = 2V$ we implicitly assumed $\bar{q}_0 = 0$. This is trivially done by saying $\bar{q}_n = \bar{q} - \bar{q}_0$.

$$\bar{q}_n = \bar{q} \quad \Rightarrow \quad V = \bar{q}_n^T \nabla \bar{q}_n$$

$$T = \bar{q}_n^T \nabla \bar{q}_n$$

Now rename \bar{q}_n back as \bar{q}.

Eq. 6.3 gives

$$\bar{q}_n^T \nabla \bar{q} = -\nabla \bar{q}$$

$$\nabla \bar{q} = -\bar{q}^T \nabla \bar{q}$$

Let $\{\lambda_k\}$ be the non-degenerate eigenvalues and $\{\bar{a}_k\}$ be the eigenvectors of $\bar{q} = \bar{q}^T \nabla \bar{q}$.

Note non-degenerate $\Rightarrow \lambda_k \neq \lambda_j, \forall j$.

$$\therefore \quad \bar{q} = \bar{q}^T \nabla \bar{a}_k = \lambda_k \bar{a}_k$$

$$\bar{a}_k \equiv \begin{bmatrix} a_{k1} \\ a_{k2} \\ \vdots \\ a_{kn} \end{bmatrix}_{n \times 1}$$
Let \(\hat{e}_k \) be unit vectors \(\exists \)

\[
e_{k:k} = \delta_{x:k}
\]

i.e., \(\hat{e}_k = \begin{bmatrix} 0 \\ \vdots \\ 0 \\ 1 \end{bmatrix} \), a column with all zeros but 1 at the \(k \) th row.

Define

\[
\overline{A} = \sum_{k} \hat{e}_k \cdot \overline{a}_k^T
\]

\(\Rightarrow \) \(A_{ij} = \left[\sum_k \hat{e}_k \cdot \overline{a}_k^T \right]_{ij} \)

\[
= \sum_k e_{ki} a_{kj} = \sum_k s_{ik} a_{kj} = a_{ij}
\]

\(\Rightarrow \) The \(k \) th column of \(\overline{A} \) is \(\overline{a}_k \).

\[
\therefore \quad \overline{A}^{-1} \overline{a}_k = \lambda_k \overline{a}_k \]

\(\Rightarrow \) \(\overline{a}_k = \lambda_k \overline{A}^{-1} \overline{a}_k \)

\(\Rightarrow \) \(\overline{\overline{A}} = \overline{\lambda} \overline{A} \)

where \(\overline{A} \) is a \(nxn \) matrix which is diagonal \(\Rightarrow \) \(a_{ij} = \delta_{ij} \delta_{ij} \)

Define the Hermitian conjugate by a dagger superscript \(^\dagger \)
\[B^+ = (B^*)^* = (B^*)^T \]

where \(B^* \) is conjugate transpose of \(B \), i.e., where \((B^*)_{ij} = (B_{ij})^* = B^*_{ij} \)

where * denotes complex conjugation.

\((a + ib)^* = a - ib\) or \((re^{iθ})^* = re^{-iθ}\) where \(r \) is a real number.

\(\overline{\overline{\nu}} \) and \(\overline{T} \) are real and also

\(\overline{\overline{\nu}}^T = \overline{\nu} \) & \(\overline{T}^T = \overline{T} \)

\[\overline{\overline{\nu}^T} = \overline{\nu} \] & \(\overline{T}^T = \overline{T} \)

Eq. (6.155) gives \(\overline{\overline{A}} = A^T\overline{A} \)

\[A^T\overline{A} = A^T\overline{A} \]

\[(A^T\overline{A})^* = (A^T\overline{A})^T \]

\[\overline{A^T\overline{A}} = \overline{A^T\overline{A}} \]

\[A^T = \overline{A}^* \]

\(A \) is diagonal \(\Rightarrow \overline{A^T} = \overline{A}^* \)

\(\overline{A^T} = \overline{A}^T \Rightarrow A = A^+ \)

\(\overline{A} \) is real \(\Rightarrow A_{ij} = \text{real} \times A_{ij} \)
Now (6.155) reads

\[\overline{V} \overline{A} = \overline{A} \overline{V} \]

We can choose \(\overline{A} \) to be real.
However, the normalization of the eigenvectors is still undetermined. We choose it to be

\[\overline{A}^T \overline{A} = \overline{I} \quad \rightarrow \quad (6.23) \]

\[\overline{V} \overline{A} = \overline{A} \overline{V} \quad \rightarrow \quad (6.26) \]

\[\Rightarrow \lambda_{k} = \sum_{k,l} (a^*)_{k} V_{k\ell} a_{\ell} \]

Note \(\delta_{ij} = \delta_{ii} \delta_{jj} \) and \(V_{k\ell}^* = V_{k\ell} = V_{\ell k} > 0 \)

\[\Rightarrow \lambda_{k} = \sum_{k,l} V_{k\ell} (a^*_{k} a_{\ell}) = \sum_{k}\sum_{\ell} V_{k\ell} |a_{k\ell}|^2 \]

\[+ \sum_{k} \sum_{\ell \neq k} V_{k\ell} (a^*_{k\ell} a_{\ell}) \]

Consider \(S = \sum' a^*_{k} a_{\ell} V_{k\ell} \), \(S' \equiv \sum_{k\neq\ell} \)

\[S = \sum' V_{k\ell} \left[\frac{a^*_{k} a_{\ell} + a_{k\ell} a^*_{\ell}}{2} \right] \]

\[+ \sum_{k,l} V_{k\ell} \left[|a_{k\ell} + a_{k\ell}|^2 - |a_{k\ell}|^2 - |a_{k\ell}|^2 \right] \]

\[\Rightarrow S > 0 \]

\[\Rightarrow \lambda_{k} > 0 \]
To summarize: We wanted to solve
\[T \ddot{\phi} = -V \dot{\phi} \]

Now let \(\phi = \overline{A} \phi \)
\[\Rightarrow \overline{T} \overline{A} \phi = -V \overline{A} \phi \]
\[\Rightarrow \overline{A}^T \overline{T} \overline{A} \phi = -\overline{A}^T V \overline{A} \phi \]

Now \((6.23) \) and \((6.26) \) give
\[\overline{T} \overline{A} \phi = -\overline{A} \phi \]
\[\Rightarrow \phi_i = -\sum_j A_{ij} \phi_j = -\sum_j \lambda_{ij} \phi_j \]
\[= -\lambda_{ii} \phi_i \]

We already proved \(\lambda_{ii} > 0 \)
Let \(\lambda_{ii} = c_i \phi_i \)
\[\Rightarrow \phi_i = -c_i \phi_i \]
\[\Rightarrow \phi_i = C_i \cos(c_i t + \phi_i) \]

\(C_i \) and \(\phi_i \) are integration constants.
\[\phi(t) = \mathbb{E}(t) \]
where we define
\[E_i = C_i \cos(c_i t + \phi_i) \]
We have now solved the problem when
\[L = \frac{1}{2} \left[\bar{v}^T \bar{v} - \bar{v}^T \bar{v} \right] \]

Note: → 0 We used or assumed that all \(\lambda_i = \lambda_{ii} \) were different. Hence to solve
\[\bar{T} \bar{A} = -\bar{v} \bar{A} \bar{A}^{-1} \]
we used
\[\text{det.} \left[\bar{V} - \bar{A} \bar{T} \right] = 0 \]
which gave
use \(n \) distinct \(\lambda_i \) which we used to determine \((n-1)\) of the \(n, (\lambda_1, \lambda_2, \ldots, \lambda_n)\) numbers. Then we also proved reality of \(\lambda_i \) and chose the remaining unknown in \(\bar{a}_i \) to make all \(\bar{a}_i \)
real \(\Rightarrow \) \(\bar{A}^* = \bar{A} \).

Cautiön: → If all \(\lambda_i \) are not distinct
\(\Rightarrow \) above derivation gets modified.
Assume \(\lambda_1 = \lambda_2 \) then we need to use one orthogonal set \(\bar{a}_1, \bar{a}_2 \) from infinitely many possibilities. Having done that the rest of the derivation goes through.
This is the degenerate case.
\(\Phi^i, i=1, \ldots, n \) are called the normal co-ordinates since each behaves like a simple harmonic oscillator, decoupled from all the others. Show this by transforming \(L \) to \(L(\Phi^i, \dot{\Phi}^i) \).

Also, a transformation

\[
\mathbf{D} = \mathbf{C}^+ \mathbf{B} \mathbf{C}
\]

taking \(\mathbf{B} \) to \(\mathbf{D} \)

is called a congruence transformation.

Algorithm for solving small oscillations:

1. Find \(T \) & \(\Sigma \)
2. Write \(L = \frac{1}{2} \left[\dot{\mathbf{q}}^T \mathbf{Q}^{-1} \dot{\mathbf{q}} - \mathbf{q}^T \mathbf{Q} \mathbf{q} \right] \)
3. Identify \(\mathbf{\omega} \) & \(\mathbf{\Omega} \)
4. Solve \(\text{det}(\mathbf{\Sigma} - \omega^2 \mathbf{\Omega}) = 0 \) for all \(\omega^2 \) values
5. Use \(\omega^2 \) values to find eigenvectors \(\mathbf{\alpha} \rightarrow [\mathbf{\Omega} - \omega^2 \mathbf{\Omega}] \mathbf{\alpha} = 0 \)
6. If \(\omega^2 \) are degenerate, use orthogonality of \(\mathbf{\alpha} \) vectors to get one complete set of them
7. Write the solutions in \(\mathbf{\alpha} \) time
8. Let \(\mathbf{q} = \mathbf{A} \mathbf{\alpha} \) be the general solution where \(\mathbf{\alpha} = E(t) \) has been solved
9. Use initial conditions to determine constants in \(E(t) \).