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Abstract

We describe an analytical form of the Wulff plot construction procedure and derive a general expression for the

surface energy from the three-dimensional equilibrium crystal shape in generalized orthogonal curvilinear coordinates.

Particular expressions in Cartesian, spherical polar, and circular cylindrical coordinates are also presented. Corre-

sponding results for a two-dimensional (2D) island on a flat terrace provide relative orientation-dependent step energies

within a scale factor k, the equilibrium chemical potential of the island per unit area. In order to determine k and, hence

obtain absolute step energies, we have developed an exact theoretical approach, applicable to both isotropic and an-

isotropic 2D island shapes, relating the temporal change in island free energy to thermal fluctuations about the

equilibrium shape.
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1. Introduction

The surface free energy per unit area c is a

fundamental parameter used to describe crystals.

The variation of c with surface orientation de-

termines the three-dimensional (3D) equilibrium

crystal shape (ECS). The two-dimensional (2D)
analog of c is the step formation energy per unit

length b. Just as cðn̂nÞ, where n̂n is a unit vector

normal representing a surface orientation, deter-

mines the equilibrium shape of 3D crystals, bðuÞ,
where u is the step orientation, determines the

equilibrium shape of 2D islands on a terrace. Given

the fundamental importance of cðn̂nÞ and bðuÞ, it is

surprising how little information is available con-

cerning these parameters even for simple elemental
metal surfaces.

The well-known Wulff construction provides a

method to determine the 3D ECS from the ‘‘Wulff

plot’’, a polar representation of cðn̂nÞ [1]. Geomet-

rically, the procedure involves drawing planes

perpendicular to the normal unit vectors at every

point on the surface free energy cðn̂nÞ. The inner
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envelope of these planes then corresponds to the

ECS. Similarly, the ‘‘inverse’’ Wulff construction

determines cðn̂nÞ from the ECS by drawing normal

vectors to the tangent planes along the crystal

boundary. The envelope of these vectors yields

relative values of cðn̂nÞ. Mathematically, the equi-
librium shape function is the Legendre transform

of cðn̂nÞ and vice versa. Analytical expressions for

the Wulff construction have been derived generally

and in Cartesian coordinates [1–3]. For 2D islands,

Nozi�eeres [3] derived an expression in polar coor-

dinates relating b to the equilibrium shape.

With the advent of surface imaging techniques,

such as low-energy electron microscopy (LEEM)
and scanning tunneling microscopy (STM), 2D

islands on flat terraces and facets on 3D ECSs can

be routinely observed as a function of tempera-

ture, thus providing experimental tools for deter-

mining the relative orientation dependence of b.

However, experimental determinations of absolute

cðn̂nÞ and/or bðuÞ values are difficult.

Bombis et al. [4] used a combination of 3D ECS
and step energy measurements to extract absolute

values of c. Absolute b values for fixed orienta-

tions have been determined from step stiffnesses ~bb
obtained from step fluctuation measurements [5],

from 3D ECSs [6], and from the temperature-

dependence of 2D equilibrium island shapes [7,8].

Orientation-averaged b values have been extracted

from 2D island decay measurements [9–11] and
from near-isotropic island shape fluctuation mea-

surements [12]. Newer methods, based upon 2D

equilibrium shape and either island decay or tem-

poral island shape-fluctuation measurements for

determining absolute orientation-dependent step

energies and step stiffnesses, are implemented in

Refs. [13,14]. A novel asymmetric Wulff plot con-

struction to describe island shapes observed on the
Au(1 1 0) surface has also been reported recently

[15].

In this article, we present a detailed theoretical

formalism for extracting absolute bðuÞ values

from an analysis of temporal fluctuations about

any arbitrary shape of 2D equilibrium islands at

one temperature. The results are organized as

follows. Analytical expressions relating surface
and step energies to 3D ECS and 2D single layer

adatom or vacancy equilibrium shapes, respec-

tively, are derived in a generalized orthogonal

curvilinear coordinate system in Section 2. Rela-

tions for bðuÞ in terms of the 2D equilibrium

island shape are presented in Section 3. These re-

sults provide relative bðuÞ values within an orien-

tation-independent scale factor k, the equilibrium
island chemical potential per unit atomic area.

An exact expression relating the temporal change

in island free energy, a function of k, to thermal

fluctuations about the equilibrium shape is derived

in Section 4. In contrast to earlier analyses [12,16],

our approach requires no assumptions regarding

island isotropy.

2. Wulff construction in generalized coordinates

Here we derive an analytical expression relating

the surface energy to the 3D ECS in generalized

orthogonal coordinates using a Legendre transfor-

mation procedure. We also derive the inverse

transform relations to determine the 3D equilib-
rium shape from the surface energy cðn̂nÞ. The

equations can easily be generalized toN-dimensions

by modifying the constant c in Eqs. (10a) and (10b).

Consider an infinitely large 3D crystal whose

surface is described by the equation

W ðx1; x2; x3Þ ¼ 0 ð1Þ
in generalized orthogonal coordinates x1, x2, and x3

such that the origin O of the coordinate system

coincides with the center of mass of the crystal. We

define W ðx1; x2; x3Þ in terms of the equilibrium

shape function S as

W ðx1; x2; x3Þ � ð~RR � êe3Þ � Sðx1; x2Þ; ð2Þ
where ~RR is the position vector of point ðx1; x2; x3Þ
with respect to O and êe (i ¼ 1, 2, and 3) are unit

vectors along the coordinate axes x1, x2, and x3,

respectively. The equilibrium shape function

Sðx1; x2Þ specifies the precise form of the ECS. Fig.
1 is a geometric representation of the inverse Wulff

construction procedure for an arbitrary equilib-

rium shape W ðx1; x2; x3Þ ¼ 0. The local unit normal

n̂n to the ECS is given by

n̂nðs1; s2Þ ¼
~rrW ðs1; s2Þ

j~rrW ðs1; s2Þj
; ð3Þ
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where the gradient ~rrðs1; s2Þ to the surface can be

expressed as [17]

~rrW ðs1; s2Þ ¼
X3

i¼1

êei

hi

 !
oW
oxi

¼ êe3

h3

� s1êe1

h1

� s2êe2

h2

ð4Þ

with

si �
oSðx1; x2Þ

oxi
ðfor i ¼ 1 and 2Þ: ð5Þ

The new coordinates si (i ¼ 1, 2) are the slopes of

the equilibrium shape function Sðx1; x2Þ along the

coordinate directions. Note that n̂n and ~rrW are
functions of only two variables, though W is a

function of three variables. The scale factors hj
(j ¼ 1, 2, and 3) in Eq. (4) are related to the in-

finitesimal displacement vector d~rr expressed in

generalized coordinates as [17]

d~rr ¼
X3

i¼1

ðhi dxiÞêei: ð6Þ

Thermodynamically, a 3D ECS is defined as the

surface with the minimum free energy for a fixed

volume [1–3]. Thus, we construct a free energy

functional F , accounting for the constant volume

with a Lagrange multiplier K, as

F ¼
Z
W¼0

cðn̂nÞdA� K
Z
V

dV ; ð7Þ

where V is the volume enclosed by the surface,
dV ¼ ð~RR � êe3Þh1h2h3 dx1 dx2 is an infinitesimal strip

of volume enclosed under an infinitesimal area dA

of the surface and the x1 � x2 coordinate sheet. c is

a function of the local surface orientation n̂n only

and K is the equilibrium chemical potential of the

crystal per unit volume. The area element dA can

be expressed using Eqs. (3) and (4), in terms of its

projection onto the x1 � x2 sheet as

dA ¼ h1h2 dx1 dx2

n̂n � êe3

¼ j~rrW jðh1h2h3 dx1 dx2Þ: ð8Þ

Substituting Eq. (8) into Eq. (7) and applying

the minimization condition ðdF =dð~RR � êe3ÞÞ ¼ 0, we

obtain

K ¼ o

oð~RR � êe3Þ

"
� d

dx1

o

os1

� �

� d

dx2

o

os2

� �#
½cðn̂nÞj~rrW j
: ð9Þ

The solution to Eq. (9) is

cðn̂nÞ ¼ ðKdÞ
c

; ð10aÞ

where d is the distance from the origin to the plane
tangential to the surface at ~RR and is given by the

relation

d � ~RR � n̂nðs1; s2Þ

¼ 1

j~rrW j
Sðx1; x2Þ

h3

 
� s1ð~RR � êe1Þ

h1

� s2ð~RR � êe2Þ
h2

!
:

ð10bÞ

For the 3D case considered here, the proportion-

ality constant c in Eqs. (10a) and (10b) is 2. (In
general, c ¼ ðN � 1Þ for a surface in N -dimen-

sional space.) Thus, Eqs. (10a) and (10b), the an-

alytical expression of Wulff�s theorem, can be used

together with Eq. (3) to determine facet energies

for any arbitrary ECS in any coordinate system.

Conversely, if the function cðn̂nÞ is known, then

the ECS can be easily obtained. Partial differenti-

ation of Eqs. (10a) and (10b) with respect to si (for
i ¼ 1, 2) results in the relation

Fig. 1. Geometrical representation of the inverse Wulff plot

construction: at each point ~RR ¼ ðx1; x2; x3Þ on the equilibrium

crystal shape defined by W ðx1; x2; x3Þ ¼ 0, a plane is drawn

tangential to the surface. The distance of the plane from the

origin O is proportional to cðn̂nÞ, where n̂n is the unit normal

vector to the plane.
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~RR � êei ¼ � hic
K

� �
oðcðn̂nÞj~rrW jÞ

osi
: ð11Þ

Upon rearranging terms in Eqs. (10a) and (10b),

we obtain the solution for ~RR � êe3 ¼ Sðx1; x2Þ as

Sðx1; x2Þ ¼ h3

ccðn̂nÞj~rrW j
K

"
þ s1ð~RR � êe1Þ

h1

þ s2ð~RR � êe2Þ
h2

#
:

ð12Þ

Thus, we recover the shape function Sðx1; x2Þ from
cðn̂nÞ. We note that Eq. (12) alone is not sufficient

to describe completely the inverse Wulff con-

struction. Only together with Eq. (11) is it possible

to perform the inverse Legendre transform in Eq.

(12). Thus, Eq. (11) is the inversion analog to Eq.

(3). An example of the inverse transformation of

Eqs. (11) and (12) will be explicitly performed in

the 2D case; see Eqs. (19a) and (19b).
Eqs. (10a), (10b) and (12) represent analytical

expressions of the Wulff theorem in generalized

orthogonal coordinates. Equilibrium shapes for

most crystalline materials can be conveniently de-

scribed in Cartesian, spherical polar, or cylindrical

coordinates. Therefore, we now derive surface

energy relations for these three cases.

In Cartesian coordinates, x1 ¼ x, x2 ¼ y, x3 ¼
zðx; yÞ and êe1 ¼ îi, êe2 ¼ ĵj, êe3 ¼ k̂k; and the scale fac-

tors hj, defined in Eq. (6), are all equal to unity.

Thus, Eqs. (10a), (10b) and (3) become

cðn̂nÞ ¼ K
2

� � ðz� x oz
ox

	 

� yðoz

oyÞÞ
½1 þ ðoz

oxÞ
2 þ ðoz

oyÞ
2
1=2

ð13aÞ

and

n̂n ¼
k̂k� îi oz

ox

	 

� ĵjðoz

oyÞ

½1 þ oz
ox

	 
2 þ ðoz
oyÞ

2
1=2
; ð13bÞ

respectively.

In cylindrical coordinates, we choose x1 ¼ R,

x2 ¼ h, and x3 ¼ zðR; hÞ to represent the radial,

azimuthal, and height coordinates, respectively.
This yields h1 ¼ 1, h2 ¼ R, and h3 ¼ 1.

Substituting into Eqs. (10a) and (10b), we ob-

tain an expression for cðn̂nÞ in terms of the equi-

librium shape zðR; hÞ as

cðn̂nÞ ¼ K
2

� �
z� R oz

oR

	 
	 

1 þ oz

oR

	 
2 þ 1
R2

oz
oh

	 
2
h i1=2

ð14aÞ

with

n̂n ¼
ẑz� R̂R oz

oR

	 

� ĥh

R
oz
oh

	 

1 þ oz

oR

	 
2 þ 1
R2

oz
oh

	 
2
h i1=2

; ð14bÞ

where

R̂R �
cos h
sin h

0

2
4

3
5; ĥh �

� sin h
cos h

0

2
4

3
5; and ẑz �

0

0

1

2
4
3
5

are the unit vectors expressed in Cartesian coor-

dinates.

In spherical coordinates, we choose x1 ¼ h,

x2 ¼ u, and x3 ¼ Rðh;uÞ as the polar, azimuthal,
and radial coordinates, respectively, with h1 ¼ R,

h2 ¼ R sin h, and h3 ¼ 1. After substitution into

Eqs. (10a) and (10b), we obtain

cðn̂nÞ ¼ K
2

� �
R

1 þ 1
R2

oR
oh

	 

þ 1

R2 sin2 h
oR
ou

� �2
� �1=2

2
6664

3
7775
ð15aÞ

with

n̂n ¼
R̂R� ĥh

R
oR
oh

	 

� ûu

R sin h
oR
ou

� �
1 þ 1

R2
oR
oh

	 
2 þ 1

R2 sin2 h
oR
ou

� �2
� �1=2

; ð15bÞ

where

R̂R �
sin h cos u

sin h sin u

cos h

2
64

3
75; ûu �

� sin u

cos u

0

2
64

3
75; and

ĥh �
cos h cos u

cos h sin u

� sin h

2
64

3
75

are the unit vectors.
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3. 2D Wulff construction in polar coordinates

The above results for the 3D ECS can easily be

reduced to describe 2D equilibrium shapes by ig-

noring all terms in the coordinate x2 and replacing
the 3D functions c and K with their 2D analogs

b (the step energy per unit length) and k (the

chemical potential per unit surface area). In the

following discussion, a symbol with a dot over it

signifies its derivative with respect to h. In polar

coordinates, we obtain

bðn̂nÞ ¼ k
RðhÞ

1 þ _RRðhÞ
RðhÞ

� �2
� �1=2

ð16aÞ

and

n̂n ¼
R̂R� ĥh

_RRðhÞ
RðhÞ

� �
1 þ _RRðhÞ

RðhÞ

� �2
� �1=2

ð16bÞ

for which

R̂R ¼ cos h
sin h

� �
and ĥh ¼ � sin h

cos h

� �

are the unit vectors. The step orientation is given

by u, defined as the angle between the local normal

to the equilibrium shape at R and the x-axis. Thus,

substituting for the unit vectors R̂R and ĥh in Eq.

(16b) yields the relation

u � arctan
n̂n � ĵj
n̂n � îi

 !

¼ h � arctan½ _RRðhÞ=RðhÞ
 ð17aÞ

and

bðuÞ ¼ k
R2ðhÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2ðhÞ þ ð _RRðhÞÞ2
q : ð17bÞ

We observe that Eq. (17b), with k set to unity, is

equivalent to the relation bðuÞ ¼ R cosðu � hÞ de-

rived by Nozi�eeres [3].

It is important to note that the equation

b1=b2 ¼ R1=R2, often referred to as the ‘‘Wulff re-

lation’’, is not valid for any arbitrary facet/step

orientations 1 and 2. The relationship is only valid

at the orientations corresponding to maxima or

minima in b, i.e. _RR ¼ 0, as can be seen from Eqs.

(17a) and (17b).

We illustrate the applicability of Eqs. (17a) and

(17b) to 2D island shapes that are commonly ob-

served on solid surfaces. Figs. 2a–d are polar plots

RðhÞ of square, rectangular, hexagonal, and trian-
gular islands obtained using simple functions of the

form RðhÞ � 15 þ sinð4hÞ, RðhÞ � 15 þ 3 cosð2hÞ,
RðhÞ � 30 þ sinð6hÞ, and RðhÞ � 10 þ sinð3hÞ, re-

spectively. From RðhÞ, relative values of bðuÞ can

be derived using Eqs. (17a) and (17b). The grey

curves shown in Fig. 2 are plots of calculated bðuÞ
data obtained with k ¼ 1.

From Eqs. (17a) and (17b), it can be shown that
the step-edge stiffness, ~bbðuÞ � bðuÞ þ b00ðuÞ, where

each prime denotes a derivative with respect to u,

is related to the equilibrium island shape RðhÞ
through the expression

~bbðuÞ ¼ k
jðhÞ ð18aÞ

for which the curvature jðhÞ of the equilibrium

shape is defined as

Fig. 2. Wulff plots, b vs. u, for commonly observed 2D island

shapes RðhÞ on surfaces of cubic materials: (a) fourfold, (b)

twofold, (c) sixfold, and (d) threefold symmetric island shapes.

The black curves represent the equilibrium island shape func-

tions RðhÞ, while the grey curves correspond to bðuÞ obtained

analytically using Eqs. (17a) and (17b) with k set to unity.
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jðhÞ ¼ ðR2 þ 2 _RR2 � R€RRÞ
ðR2 þ _RR2Þ3=2

: ð18bÞ

A microscopic approach such as the Ising model

can be used to calculate bðuÞ directly, from which

one can predict island equilibrium shapes RðhÞ.
This is achieved using Eq. (11) to obtain the rela-

tion b0ðuÞ=bðuÞ ¼ _RRðhÞ=RðhÞ which, together with

Eqs. (17a) and (17b), yields the inverse transforms:

RðhÞ ¼ 1

k

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2ðuÞ þ ðb0ðuÞÞ2

q
ð19aÞ

and

h ¼ u þ arctan
b0ðuÞ
bðuÞ

 !
: ð19bÞ

Thus far, we have shown that relative bðuÞ values

can be derived analytically from RðhÞ, and con-
versely, RðhÞ can be obtained from bðuÞ. Some of

these results have been derived earlier using dif-

ferent approaches [2,3]. The present approach

however presents results in generalized coordinates

that may be adapted to suit the symmetry of the

shapes experimentally encountered, as demon-

strated for the cases with Cartesian, spherical, and

cylindrical symmetry. However, it is still necessary
to determine k in order to obtain absolute step

energies. In the following section, we derive the

theory of anisotropic shape fluctuations in order

to determine absolute bðuÞ values from mea-

surements of temporal fluctuations about 2D equi-

librium shapes of both isotropic and highly

anisotropic islands.

4. Anisotropic 2D island shape fluctuation analysis

Time-dependent thermal fluctuations about the

equilibrium island shape are due to changes in

the total step free energy of the island. Khare

and Einstein [16] derived a formalism relating

shape fluctuations to the step energy for isotropic
(circular) islands. This approach was extended

and used to determine average step energies on

Cu(1 1 1), Ag(1 1 1), and Cu(0 0 1) [12]. The meth-

odology is restricted however, to the case of iso-

tropic, or near-isotropic, island shapes [12,16].

Many solid surfaces, such as Pb(1 1 1) [4,8],

Si(0 0 1) [5], TiN(0 0 1) [13], and TiN(1 1 1) [14],

exhibit equilibrium shapes which are highly an-

isotropic. Here, we proceed by developing a gen-

eral theory applicable to both anisotropic and

isotropic islands. Our approach combines the an-
alytical Wulff construction, described in the pre-

vious section, with temporal fluctuations about

equilibrium island shapes to determine k and,

hence, absolute orientation-dependent step ener-

gies. The symbols R and r in the following dis-

cussion refer to the equilibrium island shape RðhÞ
and the time-dependent fluctuating shape rðh; tÞ.
Fig. 3 is a schematic diagram illustrating R and r
for an anisotropic hexagonal-shaped island, as

observed on TiN(1 1 1) [14].

The total free energy F ðtÞ of an island is related

to the island shape r through the relationship

F ðtÞ ¼
Z 2p

0

dhfb½uðh; tÞ
ðr2 þ _rr2Þ1=2g: ð20Þ

uðh; tÞ in Eq. (20) is the angle between the local

normal to the fluctuating shape at rðh; tÞ and the x-
axis as shown in Fig. 3. This is in contrast to Eq.

(17a), where uðhÞ corresponds to the local normal

to the equilibrium shape at RðhÞ. Thus, bðuÞ in Eq.
(20) is also a function of r and t. Since the equi-

librium shape corresponds to the minimum free

energy F0, temporal deviations gðh; tÞ from the

equilibrium shape result in a change in free energy

DF ðtÞ � F ðtÞ � F0, where we have defined g �
gðh; tÞ (as in Refs. [12,16]) to be the normalized

Fig. 3. Schematic diagram of the 2D equilibrium shape RðhÞ of

an anisotropic island together with the time-dependent shape

rðh; tÞ. The center of mass of the island is at O. The inset on the

right shows the step orientations uðhÞ and uðh; tÞ, as the angles

made by the normals to the curves RðhÞ and rðh; tÞ with the

horizontal line respectively. h ¼ 0 is along the horizontal line.
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deviation of the temporal shape r from the equi-

librium shape R. Thus,

g � ½r � R
=R: ð21Þ
In order to derive an expression for k in terms of

the measurable quantity g, we construct a function

f � f ðh; r; _rrÞ as

f ðh; r; _rrÞ ¼ b½uðh; tÞ
ðr2 þ _rr2Þ1=2 � kðr2=2Þ ð22Þ

such that F ðtÞ ¼
R 2p

0
dh½f ðh; r; _rrÞ
. The second term

in Eq. (22) accounts for the constant area con-

straint with the Lagrange multiplier k. Expanding

f to second order in r and _rr by Taylor�s theorem

and neglecting higher order terms, we obtain

f ðh; r; _rrÞ ¼ f 0ðh; r; _rrÞ þ f 1ðh; r; _rrÞ þ f 2ðh; r; _rrÞ;
ð23Þ

where the superscripts to the function f denote

the order of differentiation. 1 For the equilibrium

island shape (r � R, and _rr � _RR), u and b are given
by Eqs. (17a) and (17b). Thus, from Eq. (22),

f 0ðh; r; _rrÞ ¼ ðkR2Þ=2. We note that f 1ðh; r; _rrÞ ¼ 0 is

the stability condition for equilibrium. Upon

simplification, 2 with b and ~bb expressed in terms of

R and k according to Eqs. (17a)–(18b), Eq. (23)

reduces to

f ðh; r; _rrÞ ¼ kR2

2
1

(
þ R2 _gg2

ðR2 þ 2 _RR2 � R€RRÞ
� g2

)
:

ð24Þ
Thus, the fluctuating component of the free energy

functional DF ðtÞ is given by

DF ðtÞ ¼ �k
Z 2p

0

dhðP ðhÞg2 � X ðhÞ _gg2Þ ð25aÞ

with functions PðhÞ and X ðhÞ defined as

PðhÞ � R2

2
ð25bÞ

and

X ðhÞ � R4

2ðR2 þ 2 _RR2 � R€RRÞ
: ð25cÞ

Representing the functions gðhÞ, P ðhÞ, and X ðhÞ,
as Fourier series gðhÞ ¼

P
n gnðtÞeinh, P ðhÞ ¼P

n Pn einh, and X ðhÞ ¼
P

n Xn einh, respectively, Eq.

(25a) can be written in terms of the Fourier com-

ponents gn(t), Xn, and Pn as

DF ðtÞ ¼ �2pk
X
m;n

½P�n�m þ ðmnÞX�n�m
gmðtÞgnðtÞ:

ð26Þ

We note that P�n�m and X�n�m in Eq. (26) are in-
dependent of time; temporal changes in the total

free energy are only due to gnðtÞ and gmðtÞ. From

the definition of g in Eq. (21), hgðh; tÞi � g0ðtÞ � 0.

Thus, for fluctuation modes with either m ¼ 0 or

n ¼ 0, the summations in Eq. (26) are equal to zero.

Furthermore, under complex conjugation (denoted

by superscript *), g�nðtÞ � g�nðtÞ, P �
n � P�n, and

X �
n � X�n guarantee that the functions g, P , and X

are all real. Since DF ðtÞ is a homogeneous second-

order function in fgnðtÞg (i.e., DF ðfngngÞ ¼ n2 �
DF ðfgngÞ, where fgng denotes gnðtÞ at all allowed

values of n and n is any arbitrary scaling parame-

ter), Euler�s theorem [18] requires

X
n

gnðtÞ
oDF
ogn

� �
¼ 2DF ðtÞ: ð27Þ

1 We define:

f 1ðh; r; _rrÞ � ðr � RÞ of
or

� �
þ ð_rr � _RRÞ of

o_rr

� �

and

f 2ðh; r; _rrÞ � 1

2
ðr

(
� RÞ2 o2f

or2

� �
þ ð_rr � _RRÞ2 o2f

o_rr2

" #

þ 2ðr � RÞð_rr � _RRÞ o2f
oro_rr

� �)
;

where all the partial derivatives in rectangular brackets are

evaluated at r ¼ R and _rr ¼ _RR.
2 We obtain:

of
or

¼
 

� kr þ b½uðh; tÞ
r
ðr2 þ _rr2Þ1=2

þ _rr

ðr2 þ _rr2Þ1=2

ob
ou

!
;

of
o_rr

¼ b_rr
�

� ob
ou

� �
r
�

1

ðr2 þ _rr2Þ1=2
;

o2f
or2

¼
 

� k þ
~bbðuÞ_rr2

ðr2 þ _rr2Þ3=2

!
;

o2f
o_rr2

¼
~bbðuÞr2

ðr2 þ _rr2Þ3=2

 !
;

o2f
oro_rr

¼ �~bbðuÞr _rr
ðr2 þ _rr2Þ3=2

:
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According to the generalized equipartition theo-

rem [18], a Hamiltonian HðfxngÞ which is a ho-

mogeneous function of fxng satisfies the condition

xn
oH
oxm

�  
¼ dm;nkBT ; ð28Þ

where xn represents either canonical momenta pn
or coordinates qn and dm;n is the Kronecker delta
function. Ignoring the entropic contribution to the

free energy yields DF � DU , where DU is the in-

ternal energy of the fluctuating island. Identifying

DF with H and combining Eqs. (27) and (28), we

find that the time-averaged free energy is given by

hDF i ¼ ðNmaxkBT Þ=2; ð29Þ
where Nmax corresponds to the maximum number

of allowable fluctuation modes 3 for a finite-sized

island. Eliminating hDF i from Eqs. (26) and (29),

we derive an expression for k in terms of the ex-

perimentally-measurable parameters R and g as

k ¼ �NmaxkBT
4ph
P

m;n ½P�n�m þ ðmnÞX�m�n
gmðtÞgnðtÞi
:

ð30Þ

Eq. (30), together with Eqs. (17a)–(18b), can be

used to determine absolute values of bðuÞ and
~bbðuÞ. These relations are exact and applicable to

both isotropic and anisotropic island shapes. For

an isotropic (circular) equilibrium shape, RðhÞ ¼
R, a constant. Thus, PðhÞ ¼ X ðhÞ ¼ R2=2 and Pn ¼
Xn ¼ ðR2=4pÞdn;0. Since the only non-zero terms

that contribute to Eq. (30) are those satisfying the

condition m ¼ �n, we obtain

k ¼ NmaxkBT

R2
P

n ðn2 � 1Þhjgnj2i
� � ; ð31Þ

similar to earlier results 4 for isotropic islands

[12,16], which were used to relate the fluctuation
modes gn to orientation-averaged step energies.

5. Conclusions

We have derived general expressions in or-

thogonal curvilinear (with specific solutions in

Cartesian, spherical polar, and circular cylindrical)
coordinates for surface and step energies from the

equilibrium 3D crystal and 2D island shapes, re-

spectively. For 2D islands, explicit relations for the

relative orientation-dependent step energies in

terms of the equilibrium shape are presented. In

order to determine the absolute step energies and

step stiffnesses, we have developed a general for-

malism, exact to second order, for the analysis of
shape fluctuations applicable to both isotropic and

highly anisotropic islands. Our analysis for 2D

islands has been used to extract the absolute ori-

entation-dependent step energies for highly an-

isotropic islands on TiN(1 1 1) [14].

Acknowledgements

The authors gratefully acknowledge the finan-

cial support of the US Department of Energy

under contract no. DEFG02-91ER45439 and the
NSF focused research group at the Materials

Computation Center under contract no. DMR-

9976550. SK is partially supported by the Uni-

versity of Illinois Critical Research Initiative

program (CRI00HSIA). We thank T.L. Einstein

for comments on the manuscript.

References

[1] W.W. Mullins, Interf. Sci. 9 (2001) 9;

J.W. Cahn, D.W. Hoffman, Acta Metall. 22 (1974) 1205.

[2] H. van Beijeren, I. Nolden, in: Topics in Current Physics,

43, Springer, Berlin, 1987, p. 259;

M. Wortis, in: R. Vanselow, R.F. Howe (Eds.), Chemistry

and Physics of Solid Surfaces VII, Springer, New York,

1988, p. 367.

[3] P. Nozi�eeres, in: C. Godr�eeche (Ed.), Solids Far From

Equilibrium, Cambridge University Press, Cambridge,

England, 1992, p. 1.

[4] C. Bombis, A. Emundts, M. Nowicki, H.P. Bonzel, Surf.

Sci. 511 (2002) 83.

[5] N.C. Bartelt, R.M. Tromp, E.D. Williams, Phys. Rev. Lett.

73 (1994) 1656.

3 If the shortest fluctuation mode corresponds to two surface

atoms as in Ref. [12], Nmax is defined as one half of the total

number of atoms along the island periphery.
4 The term (n2 � 1) in Eq. (31) appears as ðn2Þ in Ref. [16]

since they ignored the term arising from the constant area

constraint in their analysis.

82 S.V. Khare et al. / Surface Science 522 (2003) 75–83



[6] H.P. Bonzel, A. Emundts, Phys. Rev. Lett. 84 (2000) 5804;

K. Arenhold, S. Surnev, H.P. Bonzel, P. Wynblatt, Surf.

Sci. 424 (1999) 271.

[7] G.S. Icking-Konert, M. Giesen, H. Ibach, Phys. Rev. Lett.

83 (1999) 3880;

M. Giesen, C. Steimer, H. Ibach, Surf. Sci. 471 (2001) 80.

[8] A. Emundts, M. Nowicki, H.P. Bonzel, Surf. Sci. 496

(2002) L35.

[9] K. Morgenstern, G. Rosenfeld, G. Comsa, Phys. Rev. Lett.

76 (1996) 2113.

[10] S. Kodambaka, V. Petrova, A. Vailionis, P. Desjardins,

D.G. Cahill, I. Petrov, J.E. Greene, Surf. Rev. Lett. 7

(2000) 589.

[11] G.S. Icking-Konert, M. Giesen, H. Ibach, Surf. Sci. 398

(1998) 37.

[12] D.C. Schl€ooßer, L.K. Verheij, G. Rosenfeld, G. Comsa,

Phys. Rev. Lett. 82 (1999) 3843;

C. Steimer, M. Giesen, L. Verheij, H. Ibach, Phys. Rev. B

64 (2001) 085416.

[13] S. Kodambaka, S.V. Khare, V. Petrova, A. Vailionis, I.

Petrov, J.E. Greene, Surf. Sci. 513 (2002) 468.

[14] S. Kodambaka, V. Petrova, S.V. Khare, D.D. Johnson, I.

Petrov, J.E. Greene, Phys. Rev. Lett. 88 (2002) 146101.

[15] S.B. van Albada, M.J. Rost, J.W.M. Frenken, Phys. Rev.

B 65 (2002) 205421.

[16] S.V. Khare, T.L. Einstein, Phys. Rev. B 54 (1996) 11752.

[17] G.F. Arfken, H.J. Weber, Mathematical Methods for

Physicists, Academic Press, San Diego, 2001, Chapter 2.

[18] K. Huang, Statistical Mechanics, Wiley Eastern Ltd., 1963,

p. 149.

S.V. Khare et al. / Surface Science 522 (2003) 75–83 83


	Determining absolute orientation-dependent step energies: a general theory for the Wulff-construction and for anisotropic two-dimensional island shape fluctuations
	Introduction
	Wulff construction in generalized coordinates
	2D Wulff construction in polar coordinates
	Anisotropic 2D island shape fluctuation analysis
	Conclusions
	Acknowledgements
	References


