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Diffusion of Monolayer Adatom and Vacancy Clusters: Langevin Analysis and Monte Carlo
Simulations of their Brownian Motion

S. V. Khare, N. C. Bartelt, and T. L. Einstein
Department of Physics, University of Maryland, College Park, Maryland 20742-4111

(Received 10 May 1995)

In recent observations of Brownian motion of islands of adsorbed atoms and of vacancies with
mean radiusR, the cluster diffusion constant varies asR21 and R22. From an analytical Langevin
description of the cluster’s steplike boundary, we find three cases,R21, R22, andR23, corresponding
to the three microscopic surface mass-transport mechanisms of straight steps. We thereby provide a
unified treatment of the dynamics of steps and of clusters. For corroboration, we perform Monte Carlo
simulations of simple lattice gases and derive atomistic diffusion constants.

PACS numbers: 68.35.Fx, 36.40.Sx, 66.30.Fq, 82.20.Wt
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Characterizing the mechanisms of atomic mass tran
port on surfaces is crucial to the understanding of ma
important processes, such as epitaxial growth. A notab
manifestation of surface transport is the diffusion of clus
ters [1–5]. Of the few experimental studies relating th
cluster diffusion to the island size, most have consider
islands of no more than a few tens of atoms [2,3]. Fo
such small sizes, the details of the geometry of the stru
ture and the many energy barriers for single-atom diffusio
significantly affect the diffusion process, complicating th
analysis. Recently, however, there have been two stud
[4,5] in which the diffusion constant of the islandsDc was
measured as a function of large approximate island rad
R. Morgensternet al. (MRPC) [4] have studied single-
layer vacancy clusters on Ag(111). Wenet al. (WCBET)
[5] have studied adatom islands of Ag on Ag(001). In bot
experiments the number of vacancies (atoms) in the isla
ranged from102 to 103. For such sizes it becomes mean
ingful to describe the step edge position by a continuo
variable. This Letter shows how the same processes t
govern continuous step fluctuations also produce adat
and vacancy cluster diffusion. These equilibrium fluctua
tions of steps on vicinal surfaces have been observed a
analyzed in detail [6–8]; specifically, their spatial and tem
poral correlations have been characterized in the cont
uum limit using Langevin dynamics [9–11]. From the
similar Langevin analysis of islands that follows, we sho
how the Brownian motion of clusters is directly related t
the various mechanisms of atomic transport across the s
face. By comparison with experiment, we check that th
unification of coarse-scale and atomic motion presents
self-consistent picture that is fuller than the one obtain
by scaling arguments [4,5,12] alone.

Consider an adatom or vacancy island whose center
mass undergoes some random fluctuations. We assu
that these fluctuations are caused entirely by the fluctu
tions of the boundary of the island, defined in cylindrica
coordinates by

r ­ r̃su, td , (1)
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where r and u are the usual radial and azimutha
coordinates andt is the time variable. We assume that th
boundary fluctuates around a fixed mean radiusR. Under
these conditions we can define a dimensionless varia
gsu, td for the island boundary by

gsu, td ­ fr̃su, td 2 RgyR . (2)

The diffusion constantDc of thecluster is defined as

Dc ;
k$r2

CMstdl
4t

, (3)

where $rCMstd is the position vector of the center of mas
of the island, and$rCMs0d is taken as the origin.

There is a close relationship between the microscop
mechanisms of mass transport and the Langevin equati
that follow from them [9–11,13]. This analysis for step
fluctuations of straight steps can be generalized to a circ
lar geometry [14]. This can be shown to yield a Langev
equation forgsu, td of the form

≠gsu, td
≠t

­ F sg, u, td 1 z su, td , (4)

whereF sg, u, td is a functional ofg, u, andt, andz su, td
is a noise term. Reminiscent of capillary-wave analys
of step motion [10,11,15], this analysis is simplified in
the Fourier representationsgsu, td ­

P
n gnstd expsinud,

z su, td ­
P

n znstd expsinud, with n ­ 0, 61, 62, . . . .
Then

≠gnstd
≠t

­ 2t21
n gnstd 1 znstd . (5)

Heretn is the relaxation time of an excitation of thenth
mode, with wavelength2pRyn, of the cluster boundary.
These relaxation times have been measured, for exam
for steps on Si(111) and Si(001) [8]. From the equipart
tion of energy among the capillary modesgnstd, it follows
that

kjgnstdj2l ­ kBTy2pb̃Rn2 (6)

in equilibrium [15], wherekB is the Boltzmann constant,T
is the absolute temperature, andb̃ is the step edge stiffness.
© 1995 The American Physical Society
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Combining the definition (3) forDc with Eqs. (2), (5), and
(6), and linearizing ing, we get

Dc ­ kBTRypb̃t1 . (7)

As in the case of “straight” steps (or the decay o
surface profiles [16]), there are three possibilities for th
functionalF (or the linear coefficientt21

n ) and the noise
z , corresponding to three distinct mechanisms of ma
transport occurring at the island boundary [14]. Thes
are illustrated schematically in Fig. 1. The expression
for t21

n can be drawn from the Langevin analyses o
straight steps [10,11] essentially by substituting into th
analogous expressionsjnjyR for the wave vectorq along
the step [14].

Periphery or edge diffusion (PD).—When the mass
transport occurs only along the edge of the bounda
(and the number of atoms or vacancies in the island a
preserved),t21

n is given by

t21
n ­ DstcstV

2b̃n4ykBTR4 , (8)

where Dst is the (tracer) diffusion constant of a single
atom diffusing along a step edge,cst is the line concentra-
tion of atoms along the step edge, andV is the area of the
surface unit cell.

Terrace or surface diffusion (TD).—Suppose that the
boundary of the island can emit atoms very rapidly, b
atoms can only slowly diffuse away from the boundary
The rate limiting step in mass transport is then th
diffusion on terraces. We find

t21
n ­ 2DsucsuV2b̃jnj3ykBTR3 , (9)

where Dsu is the (tracer) diffusion constant of a single
adatom on a flat step-free surface;csu is the surface
concentration of adatoms on the surface far away from t
step edge in the case of an adatom island. In the case
vacancy cluster,csu is the average surface concentration o
adatoms in the interior of the monolayer vacancy islan

FIG. 1. Schematic representation of the three types of diff
sion mechanisms considered here. The large circle represen
vacancy island on the surface. Two paths of the adatom mot
marked TD (for terrace diffusion) and PD (for periphery diffu
sion) for the same initial and final positions of the migratin
atom are depicted with arrows. The atoms marked EC rep
sent the third mechanism of evaporation and condensation fr
the vacancy edge. The atom marked by a cross is one that
just condensed onto the vacancy edge. The one with a fill
circle on it is the one that will soon evaporate from the edge.
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Furthermore, if carriers attach or detach from only on
side, as is believed to be the case for Ag(111) [4], o
must remove the factor of 2 in Eq. (9).

Evaporation and condensation limited diffusio
(EC).—In this case the rate limiting step for mass tran
port is the random attachment or detachment of adato
(or vacancies) at the edge of the boundary (from or to
reservoir of adatoms on the terraces, or in principle in t
vapor). Thent1 takes the form

t21
n ­ Gb̃n2ykBTR2 , (10)

whereG, the step mobility, is proportional to the rate o
random attachments (detachments) [8,15].

The cases PD, TD, and EC are examples of models
C, and A, respectively, in dynamical critical phenomen
[17]. In all three cases the diffusion constantDc of the
island or cluster is given, for small values of the time, b
a relation of the form

Dc ­ Dc0R2a , (11)

where a ­ 3, 2, and 1 for the cases of PD, TD, an
EC, respectively, and the corresponding expressions
Dc0 are DstcstV

2yp, 2DsucsuV2yp , and Gyp. Gruber
[18] found an expression forDc for a three-dimensional
void diffusing in a solid for the case of PD. Generalizin
his arguments to two dimensions, we obtained the sa
expression forDc as in our Langevin analysis of the PD
case. To our knowledge, the expressions for TD and
are new.

These results clearly show that the exponenta is a
signature of the microscopic mechanisms of mass transp
involved in the diffusion of the island. To check tha
these continuum results apply for the island sizes of t
experiments, we also performed Monte Carlo simulatio
of three simple lattice-gas models corresponding to t
three types of mass transport. We used the Metropo
algorithm on a square lattice with an attractive neare
neighbor (NN) energye. Vacancy clusters with initially
square shapes of linear dimensionL were simulated (so
R ­ Ly

p
p ). Data were not taken until the cluster ha

equilibrated to a nearly circular shape. In all three mode
L was chosen to be 10, 20, 40, and 80 atomic spacings

In the model for PD, Kawasaki dynamics (i.e., single
atom hops to a neighboring [vacant] site) was used w
the restriction that adatoms were allowed to diffuse on
along the edge of the island via next-nearest-neighb
(NNN) exchange between a vacancy and an adato
The temperature was set atT ­ 0.6eykB. For present
purposes we define an isolated adatom (vacancy)
as one that has all four NN sites empty (occupied
atoms). On a perfectly straight step, a NN hop of an ed
atom causes the formation of an isolated vacancy and
isolated adatom. This process costs an energy6e and
hence is very slow. If the isolated adatom now hops alo
the edge to remove the isolated vacancy-adatom pair
generated, then it can do so with unit probability sinc
the energy cost is2e. However, if the isolated adatom
2149
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created does not hop along the edge before the vaca
penetrates the bulk, then we get bulk vacancy diffusio
which is prohibited in PD. (If an isolated vacancy
were created, its hops in the surrounding area wou
happen with unit probability since they involve no energ
change.) Also, most atoms on an equilibrated vacanc
island edge can make NNN hops—but not NN hops—
without generating an isolated vacancy. The exclusive
NNN-hop dynamics avoids these problems of very slo
PD diffusion with NN hops and penetration of isolate
vacancies into the bulk [19]. Any NNN hop that create
an isolated vacancy is also forbidden. So long as t
diffusion is restricted to the periphery and is local, th
exponenta should be independent of the specific choic
of dynamics.

In the model for TD, the lattice-gas Hamiltonian wa
slightly modified so that the energy of an isolated adato
on the terrace within the vacancy island was assigned
energy of e rather than4e, increasing the equilibrium
adatom density to about 10%. This modification allow
the vacancy cluster edge to emit atoms rapidly, there
facilitating adatom motion across the pit. Kawasak
dynamics was again used, but now diffusion of adatom
was allowed only via nearest-neighbor exchange betwe
a vacancy and an adatom. The temperature was se
T ­ 0.5eykB.

In the model for EC, Glauber dynamics (i.e., remova
or addition of single atoms) was used with random
attachment or detachment of adatoms allowed only alo
the edge of the island, atT ­ 0.6eykB. In this dynamics
the number of vacancies in the cluster fluctuates. For ea
value of L, the chemical potential of the reservoir wa
adjusted so that the mean number of vacancies compris
the cluster remained approximately the same as in t
initial square configuration.

From the vacancy island simulations, plots of logDc

vs logL were made in all three cases. These plots wi
their best linear fits are shown in Fig. 2. The slopes
the linear fits gave the three values ofa ­ 3.1, 2.03, and
0.97, respectively. These values confirm the prediction
of the Langevin analysis and the correspondence of t
mass-transport mechanisms with the different values
a. They intercepts of these fits gave the values ofDc0,
which in turn giveDst, Dsu, andG in the three cases.

In each case, to check the derived value ofDc0, we
computed using the same Hamiltonians and dynamics,
applying a weak potential gradientF in various ways, the
constituent diffusion constant,Dst, Dsu, or Gya (where
a is a lattice constant along the step). The avera
velocity v̄ of the diffusing species was calculated as
function of F, and the carrier diffusion constant obtaine
by applying the Einstein-Nernst relationD ­ kBT jv̄jyjFj.
For PD F was applied along (parallel to) the initial
straight edge of a step of widthw ­ 40. For the TD
caseF was applied along one direction of a flat step-fre
square terrace with an adatom densitycsu. For ECF was
applied perpendicular to an initial straight step of widt
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FIG. 2. Plot of log(Dc) vs log(L) obtained from simulations
of the three cases: EC (asterisks), TD (diamonds), and
(triangles) is shown along with the best linear fits.L ­ R

p
p

is the linear dimension of the initial square shape of t
vacancy. Dc is the diffusion constant of the cluster define
by Eq. (3). The arbitrary termS shifts they intercepts to allow
display of all three cases together.

w ­ 40. In this casev̄ refers to the average velocity o
the whole step. The three diffusion constantsDst, Dsu,
and Gya calculated from the set of simulations withF
agreed to within 25% with their values obtained fro
the y intercepts (Dc0) in Fig. 2. The vacancy islands
are finite in size and hence have a nonzero curvature
their boundaries even when they are perfectly circu
(i.e., even wheng ­ 0). Also the Langevin analysis wa
done only to first order ing. Considering this finite size
effect of the simulations and the linear approximation
the Langevin approach we see that the agreement betw
diffusion constants obtained in the two ways is good. T
agreement shows that the Langevin analysis gives a g
description of the simulations.

The area fluctuations appear to be crucial to obt
a ­ 1. In a separate simulation, we modified the T
program so that atoms were removed from one posit
along the boundary and immediately reattached to
elsewhere [so that area is conserved:

H
z su, td du ­ 0].

The resulting log-log plot indicateda ­ 1.97. In fact,
this scenario might better describe the diffusion of clust
on terraces with low diffusion barriers (especially clos
packed faces). For adatom islands (but not vacancy p
another diffusion mechanism is possible on such fac
e.g., onh111j fcc or hcp faces with adsorption in eithe
threefold site. Here diffusion can occur rapidly by th
passage through the island of a dislocation line betw
domains in each of the two kinds of sites [20].

For PD diffusion WCBET [5] cite values ofa from
different simulations [21,22] in the range of 3 to 4. I
these simulations the number of single atoms or vacan
in the islands were less than102. We believe that these
values should converge toa ­ 3 for larger island sizes.
WCBET [5] also present heuristic arguments for obtaini
the value of a for EC and PD diffusion. Stimulated
by the work of Pimpinelliet al. [23], MRPC [4] give
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a similar explanation of the phenomenon. Though th
approach predicts the correct exponents for the PD a
TD mechanisms of diffusion, it does not readily provid
precise quantitative information, such as the single-ato
diffusion constants and the step stiffness.

This Letter demonstrates that the phenomenon of s
face diffusion of large islands can be viewed in a broad
perspective: the cluster diffusion is a natural by-produ
of the fluctuations of the bounding step. Observatio
of step fluctuations can then be used to make predictio
about island diffusion. This approach also gives quan
tative predictions for tracer diffusion constants from th
observations of large island diffusion, as we illustrate f
the two experiments at hand. UsingDc ø 0.1 Å2ys for
an adatom island of 100 atoms on Ag(001) from WCBE
[5], we getGya ø 1.8 Å2ys for the diffusion of a step on
Ag(001) at room temperature. Approximating the diffu
sion prefactor by1013 Å2ys [2], we obtain an activation
energy ofø0.7 eV, which is a reasonable magnitude fo
a single atom detaching from a close-packed step. Fr
MRPC [4] we useDc0 ø 1.3 3 104 Å4ys to get the
surface mass diffusion coefficient of Ag adatoms o
Ag(111), Dsucsu ø 750 s21. Using an upper limit of
0.01% (1%) adatom density in the pit, we get a low
limit for Dsu of 5 3 107 s105d Å2ys. With the prefactor
1013 Å2ys [2], we get an upper limit for the activation
energy for an atom to diffuse on a Ag(111) terrace of abo
0.3 (0.4) eV, again of a plausible order of magnitude.

In conclusion, a Langevin analysis of diffusion o
large islands has been developed. With Monte Ca
simulations we have illustrated the predictions of th
analysis for surface mass transport. This approach allo
us to measure single-adatom diffusion constants fro
observations of large island diffusion.
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