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Breaking of general rotational symmetries by multidimensional classical ratchets
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We demonstrate that a particle driven by a set of spatially uncorrelated, independent colored noise forces in
a bounded, multidimensional potential exhibits rotations that are independent of the initial conditions. We
calculate the particle currents in terms of the noise statistics and the potential asymmetries by deriving an
n-dimensional Fokker-Planck equation in the small correlation time limit. We analyze a variety of flow patterns
for various potential structures, generating various combinations of laminar and rotational flows.
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I. INTRODUCTION

One of the cornerstones of equilibrium statistical mech
ics is the second law of thermodynamics, which preclu
extraction of pure work out of a heat source~e.g., a thermal
noise! without an accompanying change of state@1#.
Fluctuation-dissipation theorem makes it impossible fo
system to extract work out of a noise source in equilibriu
with it, even if the system is in a potential with a built-i
directionality. The impossibility of such a thermal nois
induced rectification was lucidly explained by Feynman@2#
using the concept of a ‘‘ratchet,’’ a device whose static p
tential is periodic, but with a spatial asymmetry within ea
period ~such as a sawtooth potential!. Although motion in a
ratchet is easier in one direction than the other, it is imp
sible to exploit this asymmetry to drive a particle in th
potential using a simple thermal environment. This is b
cause the probability of a noise-induced jump over a bar
in a ratchet depends only on the barrier height, and is th
fore the same to the right and to the left, irrespective of
different slopes in the two directions.

Directed motion in a ratchet potential requires an exter
source of energy that isout of equilibriumwith the system,
thus negating the necessity to obey the fluctuati
dissipation theorem@3,4#. A trivial example is a fully corre-
lated noise source such as a deterministic unidirectional fo
exerted to an axle attached to a ratchet wheel. Remarka
the rectification persists even for a nonequilibrium no
force with zero time average. The minimal condition for
ratchet to operate isbroken detailed balance~such as a ‘‘col-
ored’’ or temporally correlated external noise! which in con-
junction with thespatial asymmetrywithin each ratchet pe
riod, andbroken time-reversal symmetry~dissipation! leads
to directed motion.

The successful extraction of work out of a nonequilibriu
source of energy has far-reaching implications. Therm
ratchets are not limited by energetic restrictions associa
with equilibrium statistical mechanical principles@4–8#.
Massive~underdamped! ratchets exhibit a parametric curre
reversal that could be useful for continuum mass separa
@9,10# and designing ‘‘molecular shuttles’’@11#. Furthermore,
ratchet motion is considered to be a possible explanation
the long-range cellular transport of motor proteins@12#. On
the experimental front, Brownian ratchets have been dem
1063-651X/2003/67~5!/056110~11!/$20.00 67 0561
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strated in the rectified motion of polystyrene spheres an
drop of mercury@13#, and in current rectification in a dc
superconducting quantum interference device@14#.

A ratchet-induced rectification using a two- or thre
dimensional apparatus has been investigated recently, pr
rily with the aim of separating particles of different diffusio
constants or sizes@10,15#. Though the particle motion in
such studies@10,15,16# is in multidimensions the ratchet ef
fect is usually along a single direction. Relatively little in
vestigation has been done on systems where the ratche
fect exists in multiple spatial directions@17,18#. Extending
ratchet motion to higher dimensions involves more than j
a simple extension of one-dimensional arguments. One
envisage breaking of higher symmetries such as rotatio
symmetry, by the broken detailed balance, leading to a
structure of loops and vortices. Generalizing the concept
‘‘coordinate,’’ one can map the motion of a stochastic p
ticle in phase space~semiclassical evolution in a multiquan
tum well system, for example!, or in chemical coordinates
into ann-dimensional motion in real space. The interplay
rectification and dimensionality can lead to very interest
flow patterns. For instance, a judicious combination of o
dimensional ratchets can lead to steady-state rotations,
if the noise sources themselves are restricted only to ap
along the orthogonal directions and are uncorrelated w
each other. A simple realization in two dimensions~2D! is as
follows: Consider Fig. 1, where a two-dimensional rotati
due to ratchet motion is shown schematically. In the prese
of spatial asymmetry in one dimension, a time-correla
noise is known to produce a drift@3,21#; the direction of the
drift is determined by the sense of the potential asymme
For a potential in multiple dimensions, the sense of the
tential asymmetry along one coordinate can be reversed
varying the other coordinates, leading to a change in sign~or
reversal of asymmetry! of the potential. As indicated in Fig
1, the coordinate-dependent reversal of the one-dimensi
drifts could then conspire together to generate a steady-s
rotation. Contrary to rotation generated by purely poten
forces, determined by the initial conditions of the partic
the sense of our rotation isindependentof initial conditions
and is given by the combination of the potential asymme
and the noise statistics. Furthermore, removing either the
tential asymmetry or the correlation in the noise destroys
rotation. In effect, we have thus produced a rotational mot
©2003 The American Physical Society10-1
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A. W. GHOSH AND S. V. KHARE PHYSICAL REVIEW E67, 056110 ~2003!
along a cyclical track using combinations of one-dimensio
ratchets, although thex andy noise forces are totally uncor
related. A generalization of this process can generate r
tions for any asymmetric potential inx andy that is nonsepa-
rable in the individual coordinates. Rotation then become
necessary outcome of motion in such a potential@18#.

In this paper, we develop a formalism for dealing wi
classical ratchet motion inn dimensions. We generate
bona-fide Fokker-Planck equation~FPE! in terms of a sys-
tematic expansion in the correlation time for a Gaussian
tributed noise. The work is presented as follows. Section
sets up the functional calculus in arbitrary dimensions t
allows us to derive a bona-fide FPE in the presence of
ored noise. The formalism in itself is nonperturbative in t
noise color. In Sec. III, we derive then-dimensional FPE. In
Sec. IV we specialize to the case of one-dimension and a
lyze the ratchet motion. We also discuss the various len
and time scales built into the dynamical process of a part
in a potential driven by colored noise. In Sec. V, we pres
a time-dependent solution to then-dimensional FPE, just be
fore steady state is reached. In Sec. VI, we analyze
steady-state part of the solution of Sec. V and describe
variety of flow patterns that may arise in two and three
mensions. We conclude in Sec. VII. Appendix A gives so
algebraic details of the calculations. Appendix B discus
questions about convergence.

II. FUNCTIONAL CALCULUS FOR THE PROBABILITY
IN MULTIPLE DIMENSIONS

Consider an overdamped classical particle in a mult
mensional potentialU(rW) driven by an external time
correlated noise with forceg fW(t), whereg is the damping
constant. The motion of the particle is governed by
Langevin equation, which is essentially Newton’s law wit
out the inertial term:

FIG. 1. Schematic description of rotation over one unit cell o
two-dimensional periodic potential, caused by spatial asymm
and temporal correlations. One-dimensional drifts are produced
asymmetric potentials inx and y, in conjunction with time-
correlated noise. The drifts along thex andy directions switch signs
owing to coordinate-dependent changes in overall sign of the
tential asymmetry, and in combination produce rotation. A spec
example of a potentialV(x,y) that generates these flows is show
in gray.
05611
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rẆ~ t !5WW ~rW !1 fW~ t !, ~1!

where rW(t) is the position vector of the particle at timet,
gWW 52¹W U(rW) is the force exerted by the potential on th
particle, and the dot overrW(t) denotes a derivative with re
spect to time. The stochastic process described above
pends crucially on the statistics of the noisefW . We assume
that the noise has a Gaussian probability distribution wit
correlation timet i

c and strengthDi along thei th coordinate
direction. Furthermore, we assume that the noise along
two orthogonal coordinate directions are uncorrelated. T
probability distributionP(rW,t) @22# can be described in term
of a functional integral over different realizations offW as
follows:

P~rW,t !5E DW f P@ fW#d„rW2rW~ t !…,

P@ fW#5N expF2
1

2E E dsds8(
i j

Ki j ~s2s8! f i~s! f j~s8!G ,
^ f i&50; ^ f i~ t ! f j~ t8!&5

Di

t i
c Ci S ut2t8u

t i
c D d i j . ~2!

The Diracd function in Eq.~2! equates thearbitrary position
variablerW with the functional formrW(t) stipulated by Eq.~1!.
The dimensionless correlation functionCi can, in principle,
have multiple time scales built into it. The formalism w
develop can be easily generalized to take such extens
into account.

We generalize the functional calculus outlined by F
@19# to develop abona-fideFokker-Planck equation for the
probability distributionP(rW,t). Using Eqs.~1! and ~2!, we
get

]P~rW,t !

]t
52E DfWP@ fW#(

i
ṙ i

]

]r i
d„rW2rW~ t !…

52(
i

]

]r i
@Wi„rW~ t !…P~rW,t !1Qi~rW !#, ~3!

where Qi(rW)[*DfWP@ fW#d„rW2rW(t)…f i(t). Using results de-
rived in Appendix A, we can write the productP@ fW# f i(t) as
follows:

P@ fW# f i~ t !5(
l
E dsP@ fW# f l~s!d i l d~ t2s!

5(
l

Di

t i
cE dsP@ fW# f l~s!E ds8Kil ~s2s8!

3Ci S t2s8

t i
c D

52
Di

t i
cE ds8Ci S t2s8

t i
c D dP@ fW#

d f i~s8!
. ~4!
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Substituting in Eq.~3!,

]P~rW,t !

]t
52¹W •~WW P!2(

i j

]2Q̃i j

]r i]r j
, ~5!

where

Q̃i j ~ t !5
Di

t i
cE ds8Ci S @ t2s8#

t i
c D E DfWP@ fW#d„rW2rW~ t !…

3
dr j~ t !

d f i~s8!
. ~6!

At this stage, we see that in the presence of color, the
chastic process is non-Markovian, which means that
value of P at time t depends on earlier instants of times8
through the kernelK(t2s8), or equivalently, through the
correlation functionC which represents the inverse ofK ~Ap-
pendix A!. To evaluate the role of color, we now need
evaluate the functional derivative in Eq.~6!. This is best
done with the help of the Langevin equation~1! for ṙ j ,

d

dt F dr j~ t !

d f i~s8!G5
d ṙ j~ t !

d f i~s8!
5

d

d f i~s8!
@Wj1 f j~ t !#

5(
k

M jk

dr k~ t !

d f i~s8!
1d i j d~ t2s8!, ~7!

where we defineMi j []Wi(t)/]r j . The solution to the
above equation is

dr j~ t !

d f i~s8!
5H~ t2s8!d i j TS expF E

s8

t

dsM„rW~s!…G D
j i

, ~8!

as can be verified by direct substitution. In the above,T is
the time-ordering operator andH(x) is the Heaviside step
function ~defined to be unity for positivex and zero other-
wise!. Substituting this functional derivative in Eq.~5!, we
manage to reduce the equation forP(rW,t) into the form of a
continuity equation:

Ṗ52¹W •JW ,

with

Ji[Wi P2
]

]r i
@Q i P#,

Q i[
Di

t i
cE

0

`

dt8Ci S t8

t i
cDTS expF E

t2t8

t

dsM„rW~s!…G D
i ,i

. ~9!

III. GETTING A BONA FIDE FOKKER-PLANCK
EQUATION

To get the steady-state (t→`) limit of the above equa-
tion, we expand the integral inside the exponential:
05611
o-
e

E
t2t8

t

dsMi j „rW~s!…'t8Mi j „rW~ t !…

2
t82

2 (
k

]2Wj

]r k]r j
@Wk1 f k#1O~ t82!. ~10!

The expansion does not introduce any singularities, as
cussed in Appendix B. After changing variablest8→x
5t8/t i

c , we can now rewriteQ i as

Q i5DiE
0

`

dxCi~x!T$exp@xt i
cM2x2~t i

c!2R/2

1O~x3~t i
c!3!#% i ,i , ~11!

where the matrixR has componentsRi j given by Ri j
5(kWk]

2Wi /]r j]r k . The components ofM andR have di-
mensions of 1/t i

g'U0 /gLi
2 (U0 is the maximum height of

the potential andLi is the length scale of variation of th
potential in thei th direction, which equals its period for
periodic potential!, while x is dimensionless. For small cor
relation timest i

c!t i
g ~time scales described in detail in th

following section!, we can further Taylor expand the expo
nent to give us the effective diffusion constantQ i in terms of
the noise statistics defined by$mn

i %, where mn
i

[*0
`dxCi(x)xn is the nth moment of the noise correlatio

function. For well-behaved functions with rapidly vanishin
higher moments, terms likexn(t i

c)n can be ignored for smal
t i

c and largen ~cf. Appendix B!. Then, we can truncate th

equation of motion forP(rW,t) to second order, leading
thereby to a bona-fide Fokker-Planck equation. For sm
correlation timet i

c , the equation reads

]P~rW,t !

]t
52(

i

]Ji

]r i
52(

i

]

]r i
S Wi P2

]

]r i
@Q i P# D ,

Q i5DiF11m1
i t i

cM ii 2
~t i

c!2

2
m2

i ~R2M2! i i G ,
Mi j [

]Wi~ t !

]r j
,

Ri j [(
k

Wk

]2Wi

]r j]r k
. ~12!

The above set of equations are the central equations fo
our analyses.The effect of the noise correlation shows up
the effective diffusion constantQ i , which picks up a position
dependence [23] in a well-defined manner through the
tential gradient terms M and R. The statistics of the noise
shows up through the moments$mn

i % of the temporal corre-
lation function.

IV. APPLICATION: 1D RATCHET

Having established an approximate thoughbona fide
Fokker-Planck equation forarbitrary correlation functions
0-3
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Ci and arbitrary dimensions at small correlation times, w
now use our results to obtain the dynamics of a class
particle in various kinds of ratchet potentials. As a first st
we calculate the steady-state current density in a o
dimensional periodic potential using our Fokker-Planck f
malism for exponential correlation (m151, m252). In one
dimension,Q can be written as

Q5D@11tcW82~tc!2$WW92W82%# ~13!

to second order intc and where prime denotes a derivativ
The expression forQ to first-order intc is well known in the
literature@19#. However, we need to retain the second ord
corrections intc to get any nontrivial current density out o
the noise, as we shall shortly see.

At steady state (Ṗ50), the Fokker-Planck equation read

dJ

dx
50,

J5WP2
d

dx
@QP#. ~14!

The continuity equation dictates a constant (x-independent!
current. Using an integrating factor exp(2f), wheref(x)
5*0

xdyW(y)/Q(y), ‘‘0’’ being an arbitrary point on thex
axis, we solve the above first-order ordinary different
equation forP,

P~x!Q~x!e2f(x)5P~0!Q~0!2JE
0

x

dye2f(y). ~15!

Imposing periodic boundary conditionsP(0)5P(L), Q(0)
5Q(L), one then gets the following equation for the dr
currentJ:

J5P~0!Q~0!@12e2f(L)#Y E
0

L

dxe2f(x). ~16!

We can solve forP(0)Q(0) by normalizingP(x) within a
period with a normalization constantN representing the
number of particles within a period at steady state. T
yields finally

J5
N@12e2f(L)#

E
0

L

dx
ef(x)

Q~x! H E0

L

dye2f(y)2@12e2f(L)#E
0

x

dye2f(y)J .

~17!

For small correlation timestc, using the expression fo
Q(x) from Eq. ~13!, one can expandf(L) as follows:

f~L !5E
0

L

@W~x!/Q~x!#dx

'E
0

L

dx
W~x!

D
@12tcW8~x!1~tc!2W~x!W9~x!

1O„~tc!3
…#. ~18!
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The first and second terms in the integrand are proportio
to exact derivatives~of U andW2/2, respectively!, and van-
ish due to periodic boundary conditions, so thatJ}(tc)2.
This allows us to replace 12exp@2f(L)# in Eq. ~16! by the
small quantityf(L). The current density is then given, t
leading order intc, by

J5~tc!2

NE
0

L

dxW2~x!W9~x!

E
0

L

dxe2U(x)/gDE
0

L

dxeU(x)/gD

. ~19!

A nonzero drift current density in a ratchet is generated
cause the following two quantities do not vanish:~a! corre-
lation time (tcÞ0), which signifies a nonequilibrium nois
that breaks detailed balance and~b! potential asymmetry,
meaning that there exists noDx such thatU(x1Dx)5
2U(x). This makes the integral in the numerator of Eq.~19!
nonzero although the integrand itself is periodic.

The dynamics of the particle has three time scales b
into it.

(a) Correlation timetc. This is the time governing the
rate of loss of memory in the noise. A convenient way
view the correlation time~as we establish later in this sec
tion! is an effective partitioning of the dynamics such that f
times less than the correlation time the motion is ballis
while for times greater than the correlation time the moti
is diffusive.

(b) Diffusion timetD5L2/D. L is the typical length scale
built into the potential. For a periodic potential, for examp
L denotes the period.tD describes the time taken to diffus
over one unit length scaleL of the potential.

(c) Drift time tg5gL2/U0. U0 is the maximum height of
the potential, which serves as a typical energy scale in
problem. The drift time describes the amount of time for
overdamped particle to drift from the maximum to the min
mum of the potential over a distance;L, and serves as the
time scale for noise-free motion in the system.

Let us calculateJ for a 1D periodic asymmetric potentia
with periodL and heightU0, and impose periodic boundar
conditionsP(0)5P(L). Using Eq.~19! for J, we get the 1D
drift current as

J5
~tctD!2

~tg!5 gS tD

tg D , ~20!

whereg(x) is a factor that depends on the geometry of t
potentialV(x). Figure 2 shows the steady-state current d
sity for a specific example of a periodic potential for varyin
correlation timestc. The current density is positive, tendin
to drive the particle out of the potential well in the directio
where the restoring force2dU(x)/dx is less.

A heuristic argument can illustrate the origin of the dire
tionality of the current. For a correlation functio
^ f (t) f (0)&5(D/tc)C(utu/tc), one can use Langevin’s equa
tion ~1! to get
0-4
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^r 2~ t !&52DtE
0

t/tc

dYC~Y!22DtcE
0

t/tc

dYYC~Y!

52DC~0!t2/t ~ t!tc!

52D@ t2m1t# ~ t@tc!, ~21!

wherem1 is the first moment of the noise. The above scal
of the particle coordinate with time means that the parti
motion can be looked upon asballistic for t!tc anddiffusive
for t@tc. In absence of correlations (tc50), the particle
jumps over the barriers purely due to diffusive transport, a
this has equal likelihood in either direction, since the barr
height is the same to the right and to the left. However, fo
correlated noise, there is a net drift over an initial timetc

that pushes the particle ballistically more to the right than
the left, since the restoring force is less to the right~see Fig.
2!. At the end of the drift process, therefore, the particle h
reached a higher elevation to the right than to the left. The
after, the barrier height is smaller to the right, so there i
higher probability of crossing it to the right. Thus, the n
drift in the positive x direction is a consequence ofdrift
assisted thermal activation, produced by the presence of
relation in the noise.

Figure 2 shows the steady-state probability distribut
function for varying values of the correlation timetc. For
white noise (tc50), the probability distribution is given by
the Maxwell-Boltzmann resultP}exp@2U(x)/gD#. As the
correlation time is cranked up, however, the probability d
tribution within each well of the potential progressive
shifts in weight to the left. This corresponds to a nonvani
ing steady-state current densityJ in the positive direction.
The direction of the current density can be obtained ea
from Eq. ~14!, whereby the peak (dP/dx50) of the prob-
ability density is given for small correlation times (Q'D)
by the point whereJ5WP. SinceP.0, therefore for posi-
tive currentJ.0, we have2W5dU/dx,0, meaning the
peak shifts to the left. Note that the directionality of th
ratchet motion depends on the specific nature of the corr
tion, and can be different depending on whether the ti
correlation is incorporated into the driving force, or into
fluctuating version of the periodic asymmetric potential

FIG. 2. PotentialU(x)5Ax13(12x)7 ~solid line! periodically
extended, and the corresponding steady-state probability dist
tions for tc5131025 ~dash-dot!, 131023 ~dotted!, and 131022

~dashed!. Here, the potential heightU051 and D51. As tc in-
creases, the probability peaks to the left in the right well, indicat
a positive current density, in the direction of lower restoring for
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have been dealing with. The current density plotted vs
barrier height shows a maximum, as is seen in Fig. 3.
small barrier heights, there is an equal chance of jump
over the barrier to the right and to the left, so the curren
small. Similarly at large barrier heights, the chance is equ
small, so the current is small once again. Thus, the pea
the current arises out of a competition between ratchet
tion to the right and current backflow to the left.

One-dimensional ratchet motion has been observed
polystyrene beads in an aqueous solution driven by a s
soidal current between lithographically patterned electro
@13#. In addition, ratchet motion has also been observed
beads in a ‘‘flashing potential’’ generated by a laser syst
modulated suitably by a chopper@3#. In the flashing geom-
etry, the beads are trapped in deep potentials while the l
is on, and allowed to diffuse symmetrically while the laser
turned off. On subsequently turning on the laser, the be
slide back into the wells of the pieces of the potential who
basin of attraction they are individually in. For an asymm
ric potential, the beads distribute asymmetrically. The en
process of turning on, switching off, and turning on aga
leads in effect to a net drift of the particles out of the well
the direction of the steeper slope~opposite to the drift direc-
tion for the noise force-driven ratchet!. Such drifts were re-
ported by direct visual observation.

Our setups can be imagined to be the same, except
the driving force is neither an ac signal nor a switching p
tential. Instead, we imagine a static asymmetric poten
generated as above, but driven by a colored noise gene
~the simplest example is a white noise passed through anRC
low-pass filter!. Imagine a potential with a period;1 mm
(a50.7 mm, b50.3 mm) and fluorescent charged polyst
rene beads (;0.07–1mm) diameter in an aqueous solutio
at room temperature. The energy of the potentialU0 is set to
'75 meV. For this set of parameters,tD'3 s andtg'1 s.
For a piecewise linear potential,f (tD/tg)'tD/tg. Assume a
bandwidth of the colored noise of;40 Hz ~these parameter
satisfytc!tg<tD). Thent'10 h. Such a slow drift of the

u-

g
.

FIG. 3. Steady-state current density for a potentialU(x)
5Ax13(12x)7, plotted for varying values of the maximum poten
tial energyU0. The peak structure arises out of an interplay b
tween increasing ratchet effect and increasing backflow of cur
as the potential maximum is increased. AsU0 increases from zero
initially the ratchet effect dominates and when it becomes too h
the current backflow dominates giving rise to a peak in the ratc
current at intermediate values.
0-5
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fluorescent beads under colored noise should be readily
servable with a microscope. Subsequently, measuring
current density for varying values ofU0 should generate a
graph similar to Fig. 3, the position of the peak depend
on the shape of the potential, but the tail varying
exp(2U0 /gD).

Let us calculate the efficiency of the ratchet process.
sentially, the energy for the directed motion is extracted fr
the correlated pieces of the noise force. The input pow
given by the product of the force of the noise and the vel
ity obtained in the absence of the potential, is given by

Pin5^g f 3 f &5
tgU0

tDtc . ~22!

To calculate the output power, we use the generated
velocity and the force2dU/dx(x) required to overcome a
potential barrier, and we get

Pout'J3
U0

L
. ~23!

This yields an efficiency

h[
Pout

Pin
5

~tc!3~tD!2

~tg!5 exp~2tD/tg!. ~24!

For the typical values cited above for our proposed exp
ment, this corresponds toh'1025. The transduction is no
very efficient, although there have been proposals for ratc
mechanisms that perform almost with 100% Carnot e
ciency @20#.

V. TIME-DEPENDENT PROBLEM

The steady-state probability distribution obtained in E
~12! is, in effect, the long-term (t→`) solution to the full
time-dependent Langevin problem. To solve for the trans
responseP(rW,t), let us expand the spatially periodic var
ablesWW andQ i in their Fourier modes:WW 5(kWWW kWe

ikW•rW and
Q i5(kWQ i ,kWe

ikW•rW. Expanding P(rW,t)5(kWPkWe
ikW•rW2 ivkW t, we

get from Eq.~12!

(
kW

2 ivkWPkWe
ikW•rW2 ivkW t5(

kW ,kW8
@2 i ~kW1kW8!•WW kW8

2~kW1kW8!2QkW8#PkWe
i (kW1kW8)•rW2 ivkW t.

~25!

Changing summation variables on the right fromkW ,kW8 to
kW ,kW1kW8, we have

(
kW

PkWe
2 ivkW t3F ivkWe

ikW•rW2(
kW8

ikW8•WW kW82kWe
ikW8•rW

2( ~k8!2QkW82kWe
ikW8•rWG50. ~26!
kW8
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Setting the terms in square brackets equal to zero, and
forming an inverse Fourier transform, we get the dispers
relation

2 ivkW52k2^Q&2 ikW•^WW &, ~27!

where ^•••& denotes a spatial average over the periodL.
Substituting back into the definition ofP, and including the
steady-state solution ast→`, i.e., the long wavelength (k
50) limit, we get

P~rW,t !5 (
kWÞ0

PkW exp$ ikW•@rW2^WW &t#2k2^Q&t%1Pst~rW !,

~28!

as one expects for a drift-diffusion equation. Since the av
age effective diffusion constant^Q& is positive, the probabil-
ity distribution decays with time to the stable steady-st
solution.

The ‘‘initial conditions’’ for the Fourier coefficientsPkW in
Eq. ~28! are set by the value ofP(rW,t0), wheret0@tc. We
get PkW5*d3rWP(rW,t0)exp@2kW•rW1k2^Q&t0#/L

3. At times less
than tc, memory effects become important, the tempo
evolution is non-Markovian and the corresponding equat
for the probability distributionP(x,t) cannot be truncated to
second derivatives inx to construct the bona-fide FPE. Th
means that for small times the transient equation is not o
drift-diffusion form, but depends in fact on higher correl
tions. This disallows the use of the FPE structure to s
from an initial condition att50 and propagate to a stead
state. However, using an intermediate distribution att0 ~with
t0@tc) is allowed. In order to obtain this intermediate di
tribution from an initial condition att50, one actually needs
to work with Eq. ~9!, which has a more complicated tim
dependence and associated memory effects built into
However, for times much larger than the lifetime of th
memory effects (;tc), Eq.~28! should work well. For times
larger than the correlation timetc, the approach to equilib-
rium is governed by the diffusion constant averaged ove
potential period̂ Q& , while the associated drift is governe
by the corresponding average potential force^W&, which is
zero for a periodic potential.

VI. MULTIDIMENSIONAL ANALYSIS: ROTATIONS AND
PATTERNS

Let us generalize our results of the previous sections
higher dimensions. We consider a periodic potential so t
U(rW)ur i505U(rW)ur i5Li

, whereLi is the period of the poten

tial along thei th direction. Imposing periodic boundary con
ditions along thei th direction and integrating Eq. 12 leads
an integral equation forJi ,

E
0

Li
dr iJi~rW !e2f i (r

W)5@P~rW !Q i~rW !#ur i50@12e2f i (r
W)# r i5Li

,

~29!

where
0-6
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f i~rW ![E
0

r i
dzi@Wi~zW !/Q i~zW !#. ~30!

In one dimension, steady-state implies constant current d
sity, which allows us to pullJ out of the integrals@as shown
in Eq. ~15!# and solve for it, with the boundary value ofP(rW)
at r i50 andLi being fixed by normalization. The situation
quite different in multidimensions. At steady-state, the c
rent density is not a constant, in general. However, we
still make a few observations that lead to nontrivial conc
sions: ~i! the right-hand side of Eq.~29! is, in general, not
identically zero,~ii ! the integrand on the left-hand side is
product of Ji(rW) and a positive definite quantity, and~iii !
definition of steady state@ Ṗ(rW,t)[0# implies ¹W •JW (rW)[0.
The first two observations imply thatJW cannot be identically
zero everywhere. Combining this with the third observat
leads to the unavoidable conclusion that¹W 3JW is not identi-
cally zero over one period of the potential~excluding the
trivial case whereJW is a constant vector!. In other words,
there necessarily are local rotational patterns.

The necessity of color and potential asymmetry in o
arguments is now easily seen. Analogous to Eq.~18! of the
one-dimensional case, for small correlation timest i

c , we get

f i~Li !5E
0

Li
dzi

Wi~zW !

Di
F12m1

i t i
cM ii ~zW !1

~t i
c!2

2
@$m2

i R~zW !

2m2
i M2~zW !% i i 12$m1

i M ii ~zW !%2#1O„~t i
c!3

…G . ~31!

Terms of zeroth and first order int i
c in Eq. ~31! are zero

since the integrands in them are proportional to exact der
tives~of U andWi

2 , respectively!, and vanish due to periodi
boundary conditions. Hence,f i(Li)}(t i

c)2. Thus, from Eq.
~31!, we see thatf i(Li)50 either for white noise~i.e., when
t i

c50) or when the potential is symmetric within a sing
period @i.e., the net integral multiplying (t i

c)2 vanishes#. If
either of these conditions holds then our observation~i! is
invalidated leaving open the possibility thatJi(rW)50 every-
where.

Having established the existence of rotations, we nee
solve Eq. ~12! numerically in n dimensions with given
boundary conditions to get specific flow patterns forJW (rW).
For the purpose of illustrations, we specifically adopt t
following simplifications:~a! we concentrate on two dimen
sions (i 5x,y), where Eq.~31! becomes

fx~Lx ,y!52
~tx

c!2

Dx
E

0

Lx
dxWx~x,y!Fm2

x

2 S ]Wx

]y D 2

2S 3m2
x

4
2

m1
x2

2 DWx

]2Wx

]x2 2
m2

x

2
Wy

]2Wx

]x]y G ;
~32!

~b! next we will consider the specific case of exponen
correlation function (m1

i 51, m2
i 52); ~c! finally, we con-
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sider a restricted class of potentials and noise such
U(x,y)5U(y,x), Dx5Dy , andtx

c5ty
c . At steady state, this

implies thatJx(x,y)5Jx(y) and Jy(x,y)5Jy(x), i.e., thex

component of vectorJW (x,y) is only a function ofy and itsy
component is only a function ofx. Before proceeding further
we emphasize that our arguments@following Eq. ~29!# show-
ing the necessary existence of rotations do not depend on
restricted class of noises and potentials; the class of po
tials is adopted just to simplify the algebra for illustrativ
purposes. The calculation ofJx(y) and Jy(x) can now pro-
ceed smoothly by observing thatJx ~or Jy) may be pulled out
of the integral in Eq.~29!. The total current densityJW (rW) is
then obtained by solving the set of Eqs.~29!–~32!. The cur-
rent densityJx(y) depends on the Dirichlet boundary cond
tions P(0,y), which we will set to a constant@P(0,y)
5P(x,0)5const#, since it allows us to get simple flow pa
terns.

Table I shows the three general cases of multidimensio
flows which may be created by appropriate choice of
potential. Figures 4–7 show contour plots of different pote
tials and their corresponding current densitiesJW . The first
case is shown in Fig. 4 which shows that for nonsepara

TABLE I. Table showing the general flow patterns that can
constructed by combining appropriate ratchet potentials in mult
dimensions. Examples of such flows are depicted in Figs. 4–7

Flow pattern Coupling mechanism

Rotation Ratchets coupled inx andy
Laminar flow Decoupled ratchets inx andy
Rotation1 net drift Coupled ratchets asymmetric

underx↔-x, y↔-y

FIG. 4. Contour plots of the potentialU(x,y)5sin(x)sin(y)
2a sin(2x)sin(2y) with a51, and all lengths expressed in units
2p. White ~dark! regions show maxima~minima! of U(x,y). Su-
perposed on top are arrows showing the two-dimensional ve

field JW (x,y), where the arrow lengths are scaled touJW u. The rota-
tions are produced by inversion of drift currents produced by

posing ratchet potentials in a given direction. The current densiJW

scales with the asymmetry parameter ‘‘a’’ and the square of the
correlation timetc, so for white noise or symmetric potentials, the
are no rotations.
0-7
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potentials one gets, in general, rotational vortices. This d
onstrates the breaking of rotational symmetry of the sys
by construction of an appropriate ratchet potential. Not
that the total circulation along the boundary is zero, wh
means that although there are local circulation patterns,
global average is zero. This is a consequence of perio
boundary conditions that we use. Global rotations will nee
net rotation along the boundary, which is a different set

FIG. 5. Same as Fig. 4 with the potential replaced with a se
rable oneU(x,y)5sin(x)2sin(2x)1sin(y)2sin(2y), which leads to
laminar flow, caused by two independent decoupled ratchets in
x andy directions.
05611
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boundary conditions~similar to that in Fig. 1! than we are
analyzing here. The absence of any global circulation cau
the current circulation patterns to come in vortex-antivor
pairs.

Figure 5 shows how in a separable potential one ge
laminar flow. By adjusting the relative magnitude of the p
tential terms involving thex and y coordinates one can
change the angle the laminar flow makes with thex axis.
Thus, we can obtain the breaking of reflection symme
about the two axesx andy, with this flow pattern. Notice tha

-

he

FIG. 6. Combination of drift and laminar flow in coupled pote
tial U(x,y)5@sin(x)sin(y)2sin(2x)sin(2y)#10.2(x1y). The term
x1y is periodically repeated outside the interval@0,1#.
ights
FIG. 7. The 3D flow patterns in the potentialU(x,y,z)5A@sinx siny sinz2a sin(2x)sin(2y)sin(2z)# for A51, a51. The 3D potential
leads to a rich structure of loops and vortices~left!. In the panels to the right, componentsJx andJy of the current are plotted at variousz
slices, corresponding to heightsz/2p5 ~a! 0.2 ~top left!, ~b! 0.4 ~top right!, ~c! 0.6 ~bottom left!, and~d! 0.8 ~bottom right!. Note that the
sizes of the arrows show the relative magnitudes of theJx , Jy currents within each panel, and should not be compared for varying he
~such a comparison is shown in the 3D plot on the left!.
0-8



e
n

a
ta

at

w
a

f
s
A
e

t in
is

ry

e
ri

b
l i
th

n
s
av
ed
tr
e
o
he

as

he

n as
ero

o

BREAKING OF GENERAL ROTATIONAL SYMMETRIES . . . PHYSICAL REVIEW E 67, 056110 ~2003!
although there are local swings in the current density, th
are no vortex-antivortex pairs, since only the relative mag
tudes~but not the signs! of Jx(y) and Jy(x) change. For a
combination of separable and nonseparable potentials
shown in Fig. 6, one gets equivalent combinations of p
terns, i.e., one can generate net drifts along with local ro
tions.

It is a straightforward generalization to produce flow p
terns for a three dimensional~3D! potential using approxi-
mations similar to those made for Figs. 4–6. Figure 7 sho
a flow pattern for a 3D potential, shown as a 3D plot, and
2D plots at differentz slices. Infinitely many combinations o
such potentials can be generated to break different kind
symmetries in higher dimensions as shown in Figs. 4–7.
an example, in 3D one could have a 1D ratchet along thz
direction completely decoupled from a rotating 2D ratche
the x-y plane. This would give rise to a helix with its ax
along thez direction.

Finally, we note that we have used Dirichlet bounda
conditions with specifiedP(x,0) andP(0,y) functions ~as-
sumed to be constant!, in order to get our flow patterns. W
could use Neumann boundary conditions as well, by rew
ing P(0,y) in Jx(y) in terms of the normal derivative
]P(x,y)/]xux50. This is done using the definition ofJW from
Eq. ~9! and in Eq.~29!, settingr i5x

P~0,y!5
1

x~y!
Qx~0,y!

]P~x,y!

]x U
x50

, ~33!

where

x~y!5S Wx~x,y!2
]Qx~x,y!

]x D
x50

2Qx~0,y!
@12e2fx(Lx ,y)#

E
0

Lx
dxe2fx(x,y)

, ~34!

and an analogous equation forP(x,0) in terms of
]P(x,y)/]yuy50.

VII. CONCLUSIONS

We have shown that a Fokker-Planck equation may
derived for a weak colored noise for a bounded potentia
multiple dimensions. Using this we have demonstrated
an asymmetric periodic potential with a colored noise in
dimensions willnecessarilylead to breaking of many type
of symmetries of the particle motion. Specific examples h
been solved for laminar flow and laminar flow combin
with rotations in two and three dimensions. Such symme
breaking in higher dimensions should also be readily gen
alizable to other types of noise statistics, such as a n
Gaussian probability distribution, and other types of ratc
potentials. This could include time-dependent~‘‘flashing’’ !
ratchet potentials@25#, as well as discrete versions such
multidimensional Parrondo’s games@26#.
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APPENDIX A: MATHEMATICAL DETAILS

(i) Lemma: dN/d f k(t)50.
Proof.

dN

d f k~ t !
52N2

d~1/N!

d f k~ t !
. ~A1!

From the normalization condition*P@ fW#DW f 51 and Eq.~2!,
we get

1

N
5E DW f expF2

1

2E E dsds8(
i j

Ki j ~s2s8! f i~s! f j~s8!G .
~A2!

Hence, we get

dN

d f k~ t !
52N2E DfW exp~••• !F2

1

2E E dsds8

3(
i j

Ki j ~s2s8!$d ikd~ t2s! f j~s8!

1d jkd~ t2s8! f i~s!%G
5N2E DfW exp~••• !(

i
E ds@ f i~s!/2#

3@Kki~ t2s!1Kik~s2t !#

5~N/2!(
i
E ds@Kki~ t2s!

1Kik~s2t !#E DfWP@ fW# f i~s!, ~A3!

where the second integral on the last line can be rewritte
^ f i&, which is zero since we assume that the noise has z
average@cf. Eq. ~2!#. This completes the proof.

As a corollary to the above, we obtain the following tw
equations:

dP@ fW#

d f k~ t !
52(

i
E dsKik~ t2s! f i~s!P@ fW#, ~A4!

d2P@ fW#

d f k~ t !d f l~ t8!
52Kkl~ t2t8!P@ fW#

1(
i j

E E dsds8Kik~ t2s!

3 f i~s!K jl ~ t82s8! f j~s8!P@ fW#. ~A5!
0-9
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(ii) Lemma: *ds8Kil (t82s8)Ci(@s2s8#/t i
c)5t i

cd i l d(t
2s8)/Di5*ds8Kil (s2s8)Ci(@ t82s8#/t i

c).
This equation establishes thatK is a diagonal matrix,

whose inverse givesC. Differentiating the normalization
equation 15*DfWP@ fW#, we get

05
d2

d f k~ t !d f l~ t8!
E DfWP@ fW#5E DfW

d2P@ fW#

d f k~ t !d f l~ t8!

5(
i j

E E dsds8@Kik~ t2s!K jl ~ t82s8!^ f i~s! f j~s8!&

2Kkl~ t2t8!#. ~A6!

RewritingKkl(t2t8) as( i*dsKik(t2s)d i l d(s2t8), and us-
ing ^ f i(s) f j (s8)&5d i j (Di /t i

c)Ci(@s2s8#/t i
c) leads immedi-

ately to the above proof.

APPENDIX B: CONVERGENCE ISSUES

It is important to establish the validity of various expa
sions that we do in the correlation time at various stage
the derivation of Eq.~12!. In particular, the current distribu
tion may not necessarily be an analytic function oftc for an
arbitrary noise source, in which case any perturbative exp
sion in tc yields results that are wrong. The nonanalytic
can arise from three possible sources:~i! the potential itself
may be nonanalytic,~ii ! the noise statistics has a finite su
port, ~iii ! the perturbative expansion may be a nonanaly
function of tc.

Case (i). A piecewise linear sawtooth potential has infin
derivatives at the kinks, leading to potential divergent ter
Re

.

e-

05611
of

n-

c

s

in the current. This can be avoided, in principle, by restri
ing our arguments to a smoothened function.

Case (ii). The derivation of the Fokker-Planck structu
itself depends crucially on the statistics of the noise. If t
noise distribution has a finite support so that arbitrarily lar
noise amplitudes are excluded from consideration, then
computation of the current density along the lines we p
scribed would be totally wrong. For example, if the height
the potential barrier is larger than the maximum allow
noise amplitude, then there will be no current, contrary
what an injudicious application of the formalism will yield
In our analyses, we have assumed a Gaussian distribu
function for the noise@Eq. ~2!#. This has an infinite suppor
and thereby avoids such nonanalyticities@24#. However, for
a discrete noise process such as dichotomous noise,
must be exercised in obtaining the Fokker-Planck desc
tion. Often, an additional white noise source is included w
the explicit purpose of handling such nonanalyticities. We
not need such sources since our probability distribution
Gaussian.

Case (iii). The functional calculus as outlined by Fox an
extended by us to several dimensions is nonperturbativ
the correlation time. As argued by Fox in Ref.@19#, the pre-
scription leads to currents that are uniformly convergent
tc50. The nonperturbative description leads us to Eq.~9!
that involves the exponential of integrals of matrix eleme
of M. We finally performed an explicit evaluation of the m
trix elements in Eq.~11! for small tc. This does involve a
perturbative expansion intc, but of an exponential function
analytic intc. Thenth term of the expansion is proportiona
to mn(tc/tg)n/n!. For well-behaved correlation function
such as an exponential or a Gaussian, this term tends to
rapidly asn increases to infinity, providedtc,tg, as we
have assumed.
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