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Breaking of general rotational symmetries by multidimensional classical ratchets
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We demonstrate that a particle driven by a set of spatially uncorrelated, independent colored noise forces in
a bounded, multidimensional potential exhibits rotations that are independent of the initial conditions. We
calculate the particle currents in terms of the noise statistics and the potential asymmetries by deriving an
n-dimensional Fokker-Planck equation in the small correlation time limit. We analyze a variety of flow patterns
for various potential structures, generating various combinations of laminar and rotational flows.
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[. INTRODUCTION strated in the rectified motion of polystyrene spheres and a
drop of mercury[13], and in current rectification in a dc
One of the cornerstones of equilibrium statistical mechansuperconducting quantum interference deyit4).
ics is the second law of thermodynamics, which precludes A ratchet-induced rectification using a two- or three-
extraction of pure work out of a heat sour@g., a thermal dimensional apparatus has been investigated recently, prima-
noise without an accompanying change of staf#]. rily with the aim of separating particles of different diffusion
Fluctuation-dissipation theorem makes it impossible for aconstants or sizefl0,15. Though the particle motion in
system to extract work out of a noise source in equilibriumsuch studie$10,15,14 is in multidimensions the ratchet ef-
with it, even if the system is in a potential with a built-in fect is usually along a single direction. Relatively little in-
directionality. The impossibility of such a thermal noise- vestigation has been done on systems where the ratchet ef-
induced rectification was lucidly explained by Feynm&h  fect exists in multiple spatial directiorfd47,1§. Extending
using the concept of a “ratchet,” a device whose static po-ratchet motion to higher dimensions involves more than just
tential is periodic, but with a spatial asymmetry within eacha simple extension of one-dimensional arguments. One can
period (such as a sawtooth potenjiahlthough motion in a envisage breaking of higher symmetries such as rotational
ratchet is easier in one direction than the other, it is impossymmetry, by the broken detailed balance, leading to a rich
sible to exploit this asymmetry to drive a particle in the structure of loops and vortices. Generalizing the concept of a
potential using a simple thermal environment. This is be-‘coordinate,” one can map the motion of a stochastic par-
cause the probability of a noise-induced jump over a barrieticle in phase spacéemiclassical evolution in a multiquan-
in a ratchet depends only on the barrier height, and is thereum well system, for exampleor in chemical coordinates,
fore the same to the right and to the left, irrespective of thénto ann-dimensional motion in real space. The interplay of
different slopes in the two directions. rectification and dimensionality can lead to very interesting
Directed motion in a ratchet potential requires an externaflow patterns. For instance, a judicious combination of one-
source of energy that isut of equilibriumwith the system, dimensional ratchets can lead to steady-state rotations, even
thus negating the necessity to obey the fluctuationif the noise sources themselves are restricted only to apply
dissipation theorem3,4]. A trivial example is a fully corre- along the orthogonal directions and are uncorrelated with
lated noise source such as a deterministic unidirectional forceach other. A simple realization in two dimensid@p) is as
exerted to an axle attached to a ratchet wheel. Remarkablfpllows: Consider Fig. 1, where a two-dimensional rotation
the rectification persists even for a nonequilibrium noisedue to ratchet motion is shown schematically. In the presence
force with zero time average. The minimal condition for aof spatial asymmetry in one dimension, a time-correlated
ratchet to operate isroken detailed balancesuch as a “col-  noise is known to produce a dr{f8,21]; the direction of the
ored” or temporally correlated external nojsghich in con-  drift is determined by the sense of the potential asymmetry.
junction with thespatial asymmetryvithin each ratchet pe- For a potential in multiple dimensions, the sense of the po-
riod, andbroken time-reversal symmetfgissipation leads tential asymmetry along one coordinate can be reversed by
to directed motion. varying the other coordinates, leading to a change in &gn
The successful extraction of work out of a nonequilibriumreversal of asymmetjyof the potential. As indicated in Fig.
source of energy has far-reaching implications. Thermal, the coordinate-dependent reversal of the one-dimensional
ratchets are not limited by energetic restrictions associatedrifts could then conspire together to generate a steady-state
with equilibrium statistical mechanical principldgt—8]. rotation. Contrary to rotation generated by purely potential
Massive(underdampedratchets exhibit a parametric current forces, determined by the initial conditions of the particle,
reversal that could be useful for continuum mass separatiothe sense of our rotation independenbf initial conditions
[9,10] and designing “molecular shuttle$11]. Furthermore, and is given by the combination of the potential asymmetry
ratchet motion is considered to be a possible explanation faand the noise statistics. Furthermore, removing either the po-
the long-range cellular transport of motor protefdg]. On  tential asymmetry or the correlation in the noise destroys the
the experimental front, Brownian ratchets have been demorrotation. In effect, we have thus produced a rotational motion
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F(t) =W(H)+F (1), (6h)

where F(t) is the position vector of the particle at time

yW=—VU(r) is the force exerted by the potential on the
particle, and the dot ovei(t) denotes a derivative with re-
spect to time. The stochastic process described above de-

pends crucially on the statistics of the noiseWe assume

that the noise has a Gaussian probability distribution with a

correlation timer{ and strengttD; along theith coordinate

direction. Furthermore, we assume that the noise along any

two orthogonal coordinate directions are uncorrelated. The
FIG. 1. Schematic description of rotation over one unit cell of aprobability distributionP(r ,t) [22] can be described in terms

two-dimensional periodic potential, caused by spatial asymmetryf 5 functional integral over different realizations bfas

and temporal correlations. One-dimensional drifts are produced byg|iows:

asymmetric potentials inx and y, in conjunction with time-

correlated noise. The drifts along tkendy directions switch signs R R ..

owing to coordinate-dependent changes in overall sign of the po- P(r,t)=f DIP[f]6(r—r(1)),

tential asymmetry, and in combination produce rotation. A specific

example of a potentidV(x,y) that generates these flows is shown R 1

in gray. P[f]=N exr{— EJ f dsds X, Kjj(s—s)fi(s)f;(s)|,
]

along a cyclical track using combinations of one-dimensional D, lt—t'|

ratchets, although the andy noise forces are totally uncor- (fiy=0; (fi(Of;(t"))= —CCi(—C) i (2

related. A generalization of this process can generate rota- Ti 7i

tions for any asymmetric potential inandy that is nonsepa- . S . .
rable in the individual coordinates. Rotation then becomes él’he Diracs function in Eq.(2) equates tharbitrary position

necessary outcome of motion in such a potertal. variabller Wit.h the functionallforn"r(t) _stipulategl by _qul).

In this paper, we develop a formalism for dealing with The d|mer]S|onI_ess correlat|on. fu.nctm.h can, in prmqple,
classical ratchet motion im dimensions. We generate a have multiple time s_cales bunt_ into it. The formalism we
bona-fide Fokker-Planck equatidFPB in terms of a sys- _develop can be easily generalized to take such extensions
tematic expansion in the correlation time for a Gaussian disMto account. _ _
tributed noise. The work is presented as follows. Section 1| We generalize the functional calculus outlined by Fox
sets up the functional calculus in arbitrary dimensions that19] to develop abona-fideFokker-Planck equation for the
allows us to derive a bona-fide FPE in the presence of colprobability distributionP(r,t). Using Egs.(1) and (2), we
ored noise. The formalism in itself is nonperturbative in theget
noise color. In Sec. Ill, we derive thedimensional FPE. In ‘1
Sec. IV we specialize to the case of one-dimension and ana- dP(r,t P . d . -
lyze the ratchet motion. We also discuss the various length g _f Df P[f]Z ria—rié(r—r(t))
and time scales built into the dynamical process of a particle
in a potential driven by colored noise. In Sec. V, we present d - - -

a time-dependent solution to thedimensional FPE, just be- = _Ei a_n[wi(r(t))P(r’t)+Qi(r)]' 3
fore steady state is reached. In Sec. VI, we analyze the
steady-state part of the solution of Sec. V and describe thgpare Qi(F)EfDFP[F] S(r— F(t))fi(t). Using results de-

variety of flow patterns that may arise in two and three di- . . . . 2
mens?i)ns. We (E)onclude in SecK/II. Appendix A gives some“ved in Appendix A, we can write the produB{ f]f;(t) as

algebraic details of the calculations. Appendix B discussegonowsz
guestions about convergence.

PLTI=3 [ dsPflf(s)a 05

Il. FUNCTIONAL CALCULUS FOR THE PROBABILITY D; .
IN MULTIPLE DIMENSIONS =E| ?f dsP[f]ﬁ(s)f ds'K; (s—s')
i
Consider an overdamped classical particle in a multidi- g
. . ~ . : -s
mensional potentialU(r) driven by an external time- X C; - )
i

correlated noise with force/f(t), wherey is the damping

constant. The motion of the particle is governed by the D. s 5P[f]
Langevin equation, which is essentially Newton’s law with- =— _ij ds’Ci< = ) = (4)
out the inertial term: Ti 7 ) ofi(s")
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Substituting in Eq(3), r r
ubstituting in Eq(3) Jt dsM;j(r(s))=t"M;;(r(t))
t—t’

IP(r,t) R P20
=V (WP =X (5) t'2 )
7 dridr; ——2 [Wk+f J+O(t'?). (10
Irar;
where
The expansion does not introduce any singularities, as dis-
_ cussed in Appendix B. After changing variablé5— x
Qij(H)= fd C( )foP[f]c?(r—r( t) =t'/7°, we can now rewritd®; as
o ©) @izDif dxG () T{exg x7°M —x%(7%)?R/2
5fi(S,) 0

3/.C\3
At this stage, we see that in the presence of color, the sto- +O0C(T) ) i (11)

chastic process is non-Markovian, which means that the
value of P at timet depends on earlier instants of tingé
through the kerneK(t—s'), or equivalently, through the
correlation functiorC which represents the inverse Kf(Ap-
pendix A). To evaluate the role of color, we now need to
evaluate the functional derivative in E@6). This is best

done with the help of the Langevin equati@l) for 'rj ,

Wwhere the matrixR has componentsR;; given by R;;
=3 W, 9*W, /dr; jorg. The components d¥l andR have di-
mensions of ]a‘7~U /yL (Ug is the maximum height of
the potential and_ is the length scale of variation of the
potential in theith direction, which equals its period for a
periodic potentigl while x is dimensionless. For small cor-
relation timesr{< 7} (time scales described in detail in the
following section, we can further Taylor expand the expo-

E[ orj(v | _ arH W+ (1)] nent to give us the effective diffusion const&tin terms of
tysfi(s’)] ofi(s’)  ofi(s’)- the noise statistics defined by{u;}, where uj,
Sr(t) = [,dxCi(x)x" is the nth moment of the noise correlation

=> M=o +6ij6(t—s"), (7)  function. For well-behaved functions with rapidly vanishing
k ofi(s’) higher moments, terms like'(7)" can be ignored for small

7. and largen (cf. Appendix B. Then, we can truncate the

equation of motion forP(F,t) to second order, leading

thereby to a bona-fide Fokker-Planck equation. For small

correlation timer’, the equation reads

where we defineM;;=4dW,(t)/drj. The solution to the
above equation is

or(t) t -
57.(s) =H(t—s )5,JT(exp{ Js/dsM(r(s))

). ®)

ji JP r t J
' ‘ )=—2 Fri) ( —;[G)ip]),
as can be verified by direct substitution. In the aboves :
the time-ordering operator and(x) is the Heaviside step 2
fu.nction (defjne_d to pe unity' for posit_ivel'and. zero other- ®,=D, 1+M M — ( .) 2(R M )”},
wise). Substituting this functional derivative in E¢(), we 2
manage to reduce the equation R;(rf,t) into the form of a
continuity equation: M. = IW;(t)
g ar;
i
P=-vd _z W, 17
with =z karjark- (12)

The above set of equations are the central equations for all
our analysesThe effect of the noise correlation shows up in
the effective diffusion consta@ , which picks up a position
dependence [23] in a well-defined manner through the po-
) . (99 tential gradient terms M and RThe statistics of the noise
i shows up through the momerita,} of the temporal corre-
lation function.

J
JiEWiP_a_ri[®iP]y

iz—lcf dtC( ) (ex;{fttt,dsM(F(S))

Ill. GETTING A BONA FIDE FOKKER-PLANCK

EQUATION IV. APPLICATION: 1D RATCHET
To get the steady-staté-{o0) limit of the above equa- Having established an approximate thougbna fide
tion, we expand the integral inside the exponential: Fokker-Planck equation foarbitrary correlation functions
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C; and arbitrary dimensions at small correlation times, we The first and second terms in the integrand are proportional
now use our results to obtain the dynamics of a classicdl® exact derivativesof U andW?/2, respectively, and van-
particle in various kinds of ratchet potentials. As a first step;Sh due to periodic boundary conditions, so tat(7°)?.
we calculate the steady-state current density in a onelhis allows us to replace-iexd—¢(L)] in Eq. (16) by the
dimensional periodic potential using our Fokker-Planck for-small quantity¢(L). The current density is then given, to
malism for exponential correlationug=1, u,=2). In one  leading order inr®, by

dimension,® can be written as

L
O=D[1+7°W' —(7°)2{WW'—W'?}] (13 Nf dXWA(X)W”(X)
0
to second order in® and where prime denotes a derivative. J=(1%? L L ' (19)
The expression fo® to first-order in7® is well known in the fo dxe V1P JO dxe’ (P

literature[19]. However, we need to retain the second order
corrections in7° to get any nontrivial current density out of
the noise, as we shall shortly see. A nonzero drift current density in a ratchet is generated be-
At steady stateR=0), the Fokker-Planck equation reads cause the following two quantities do not vanigh\ corre-
lation time (7°#0), which signifies a nonequilibrium noise
dJ that breaks detailed balance aflg) potential asymmetry,
&:O' meaning that there exists nax such thatU(x+Ax)=
—U(x). This makes the integral in the numerator of Etf)

d nonzero although the integrand itself is periodic.
J=WP- d—X[@ P]. (14 The dynamics of the particle has three time scales built
into it.
The continuity equation dictates a constartifdependent (a) Correlation time7°. This is the time governing the

current. Using an integrating factor expg), where ¢(x) ~ rate of loss of memory in the noise. A convenient way to
= [XdyW(y)/O(y), “0” being an arbitrary point on thex ~ View the correlation timéas we establish later in this sec-
axis, we solve the above first-order ordinary differentialtion) is an effective partitioning of the dynamics such that for

equation forP, timgs Iess_ than the correlation time the_ mofcion is baIIis.tic,
while for times greater than the correlation time the motion
— o) X a) is diffusive.
P(x)0(x)e” "= P(O)G)(O)—JJO dye ?¥. (15 (b) Diffusion timer®=L?%/D. L is the typical length scale

built into the potential. For a periodic potential, for example,

Imposing periodic boundary conditio®0)=P(L), ®(0) L denotes the periodt® describes the time taken to diffuse

—@(L), one then gets the following equation for the drift OVer one unit length sczalb of the potential. ,
currentJ: (c) Drift time 77= yL“/U,. Ug is the maximum height of

the potential, which serves as a typical energy scale in the
3 — (L) L 6 problem. The drif_t time de_scribes the amount of time for_ an
J=P(0)®(0)[1-e "] fo dxe” . (16)  gverdamped particle to drift from the maximum to the mini-
mum of the potential over a distaneelL, and serves as the

We can solve folP(0)®(0) by normalizingP(x) within a time scale for noise-free motion in the system.

period with a normalization constar representing the  Let us calculatd) for a 1D periodic asymmetric potential
number of particles within a period at steady state. Thigvith periodL and heightUy, and impose periodic boundary
yields finally conditionsP(0)=P(L). Using Eq.(19) for J, we get the 1D
drift current as
N[1-e ¢1)]
G x ' (°°)2 [P
-0 _[1_ e 4(L) - () () [T
Jo dx®(x)[j0 dye [1-e ]fodye } J_Wg(7>’ (20
17)
For small correlation times®, using the expression for whereg(x) is a factor that depends on the geometry of the
O (x) from Eq.(13), one can expang(L) as follows: potentialV(x). Figure 2 shows the steady-state current den-

sity for a specific example of a periodic potential for varying
L correlation timesr®. The current density is positive, tendin
P(L)= fo [W(x)/©(x)]dx to drive the particle out of the potentia)llweFI)I in the directio%
where the restoring force dU(x)/dx is less.

A heuristic argument can illustrate the origin of the direc-
tionality of the current. For a correlation function
(f(t)f(0))=(D/7°)C(|t|/7°), one can use Langevin's equa-
+0((793%)]. (18)  tion (1) to get

JL W(X)
~ | dx 5 [1— 7°W' (X) + (7°)°W(X)W"(X)
0
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FIG. 2. Potentialu(x)=Ax3(1—x)7 (solid line periodically Barrier Height (arb. units)

extended, and the corresponding steady-state probability distribu- gig. 3. Steady-state current density for a potentif(x)
tions for 7°=1x10"° (dash-do, 1x 10" (dotted, and 1><%0_72 =Ax*¥(1—x)7, plotted for varying values of the maximum poten-
(dashegl Here, the potential heightp=1 andD=1. As 7°in-  tja| energyU,. The peak structure arises out of an interplay be-
creases, the probability peaks to the left in the right well, indicatingyyeen increasing ratchet effect and increasing backflow of current
initially the ratchet effect dominates and when it becomes too high
the current backflow dominates giving rise to a peak in the ratchet

/7° t/7¢
2 _
(r (t)>_ ZDtj dYC(Y)_ZDTCJO dyyay) current at intermediate values.

t
0
=2DC(O)t*/ 7 (t<79) have been dealing with. The current density plotted vs the
=2D[t—pu 7] (t>7°), (21 barrier height shows a maximum, as is seen in Fig. 3. For
small barrier heights, there is an equal chance of jumping
whereu, is the first moment of the noise. The above scalingover the barrier to the right and to the left, so the current is
of the particle coordinate with time means that the particlesmall. Similarly at large barrier heights, the chance is equally
motion can be looked upon &sllistic for t< 7° anddiffusive ~ small, so the current is small once again. Thus, the peak in
for t>7°. In absence of correlationsr{=0), the particle the current arises out of a competition between ratchet mo-
jumps over the barriers purely due to diffusive transport, andion to the right and current backflow to the left.
this has equal likelihood in either direction, since the barrier One-dimensional ratchet motion has been observed for
height is the same to the right and to the left. However, for gpolystyrene beads in an aqueous solution driven by a sinu-
correlated noise, there is a net drift over an initial tinfe  soidal current between lithographically patterned electrodes
that pushes the particle ballistically more to the right than td13]. In addition, ratchet motion has also been observed for
the left, since the restoring force is less to the rigdge Fig. beads in a “flashing potential” generated by a laser system
2). At the end of the drift process, therefore, the particle hagnodulated suitably by a choppg8]. In the flashing geom-
reached a higher elevation to the right than to the left. Thereetry, the beads are trapped in deep potentials while the laser
after, the barrier height is smaller to the right, so there is as on, and allowed to diffuse symmetrically while the laser is
higher probability of crossing it to the right. Thus, the netturned off. On subsequently turning on the laser, the beads
drift in the positivex direction is a consequence dfift slide back into the wells of the pieces of the potential whose
assisted thermal activation, produced by the presence of coasin of attraction they are individually in. For an asymmet-
relation in the noise. ric potential, the beads distribute asymmetrically. The entire
Figure 2 shows the steady-state probability distributionprocess of turning on, switching off, and turning on again
function for varying values of the correlation timé. For  leads in effect to a net drift of the particles out of the well in
white noise ¢°=0), the probability distribution is given by the direction of the steeper slogepposite to the drift direc-
the Maxwell-Boltzmann resulP«=exd —U(x)/yD]. As the tion for the noise force-driven ratchetSuch drifts were re-
correlation time is cranked up, however, the probability dis-ported by direct visual observation.
tribution within each well of the potential progressively — Our setups can be imagined to be the same, except that
shifts in weight to the left. This corresponds to a nonvanishthe driving force is neither an ac signal nor a switching po-
ing steady-state current densilyin the positive direction. tential. Instead, we imagine a static asymmetric potential
The direction of the current density can be obtained easilgenerated as above, but driven by a colored noise generator
from Eq. (14), whereby the peakdP/dx=0) of the prob- (the simplest example is a white noise passed througR@n
ability density is given for small correlation time® (D)  low-pass filtey. Imagine a potential with a periogt1 um
by the point wherel=WP. SinceP>0, therefore for posi- (a=0.7 um, b=0.3 um) and fluorescent charged polysty-
tive currentJ>0, we have—W=dU/dx<0, meaning the rene beads~0.07-1um) diameter in an aqueous solution
peak shifts to the left. Note that the directionality of the at room temperature. The energy of the potentliglis set to
ratchet motion depends on the specific nature of the correla=75 meV. For this set of parameterd~3 s and7’~1 s.
tion, and can be different depending on whether the timd=or a piecewise linear potentidk 7°/ 77)~ 7°/ 7. Assume a
correlation is incorporated into the driving force, or into a bandwidth of the colored noise 6f40 Hz (these parameters
fluctuating version of the periodic asymmetric potential wesatisfy 7°< r?<7°). Then7~10 h. Such a slow drift of the
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fluorescent beads under colored noise should be readily olsetting the terms in square brackets equal to zero, and per-
servable with a microscope. Subsequently, measuring thirming an inverse Fourier transform, we get the dispersion
current density for varying values &f, should generate a relation

graph similar to Fig. 3, the position of the peak depending

on the shape of the potential, but the tail varying as —ilwg= —k2(®)—iE~(VV>, (27
exp(—Uo/yD).

Let us calculate the efficiency of the ratchet process. Eswhere (- --) denotes a spatial average over the period
sentially, the energy for the directed motion is extracted fromSubstituting back into the definition &, and including the
the correlated pieces of the noise force. The input powersteady-state solution ds-«, i.e., the long wavelengthk(
given by the product of the force of the noise and the veloc=0) limit, we get
ity obtained in the absence of the potential, is given by

U, P(rt)= 2 Prexp(ik-[r—(W)t]—kX(@)t}+Py(r),
Pin=(yfxf)= 5. (22) kr0 (28)

To calculate the output power, we use the generated drifas one expects for a drift-diffusion equation. Since the aver-
velocity and the force-dU/dx(x) required to overcome a age effective diffusion constaf®) is positive, the probabil-

potential barrier, and we get ity distribution decays with time to the stable steady-state
solution.
Ug The “initial conditions” for the Fourier coefficient®y in
POUt%‘JX_' (23)

Eq. (28) are set by the value d?(F,tO), wherety>7°. We
get Pi=Jd3rP(r to)exd —k-r+kX(@) /L3 At times less
This yields an efficiency than 7°, memory effects become important, the temporal
evolution is non-Markovian and the corresponding equation
for the probability distributiorP(x,t) cannot be truncated to
second derivatives iR to construct the bona-fide FPE. This
means that for small times the transient equation is not of a
For the typical values cited above for our proposed experidrift-diffusion form, but depends in fact on higher correla-
ment, this corresponds tg~10 °. The transduction is not tions. This disallows the use of the FPE structure to start
very efficient, although there have been proposals for ratchdtom an initial condition at=0 and propagate to a steady
mechanisms that perform almost with 100% Carnot effi-state. However, using an intermediate distributiotydtvith
ciency[20]. to>7°) is allowed. In order to obtain this intermediate dis-
tribution from an initial condition at=0, one actually needs
V. TIME-DEPENDENT PROBLEM to work with Eq. (9), which has a more complicated time
dependence and associated memory effects built into it.
The steady-state probability distribution obtained in Eq.However, for times much larger than the lifetime of the
(12 is, in effect, the long-termt{—) solution to the full memory effects & 7°), Eq.(28) should work well. For times
time-dependent Langevin problem. To solve for the transienfarger than the correlation time*, the approach to equilib-
responseP(F,t), let us expand the spatially perngic vari- rium is governed by the diffusion constant averaged over a
ablesW and®; in their Fourier modeswzzlzv'\’llzeik»r and Potential perioc{@)} , while the associgted drift is gpverned
0,=30, . Expanding P(F,t)=2nge‘k"‘i‘“'€t, we by the correspondmg average potential fo(@é), which is
' zero for a periodic potential.
get from Eq.(12)

L

pout_(Tc)s(TD)2
TP (P

exp(— 72/ 77). (24

. VI. MULTIDIMENSIONAL ANALYSIS: ROTATIONS AND

> —iwlZPnZe'k'“""EEZ [—i(k+K")- W, PATTERNS
‘ . N T Let us generalize our results of the previous sections to

—(k+k')?0; [Pge! (k) rie, higher dimensions. We consider a periodic potential so that

(250 U(N)|;,—o=U(r)|; -, whereL; is the period of the poten-
. tial along theith direction. Imposing periodic boundary con-

Changing summation variables on the right frdgk’ to  ditions along theth direction and integrating Eq. 12 leads to
k,k+k’, we have an integral equation fod; ,

- .. Li - - - - -
o T S iR W el fo drdi(Ne 4O=[P()O,(N]], —o[1-e 4], _ ,

> Premloktx >
k k (29)

— > (k)20 g™ | =0. (26)  where
kl
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¢i<F>Ej:da[wid)/@i(i’)]. (30

In one dimension, steady-state implies constant current de

sity, which allows us to pull out of the integral$as shown
in Eq. (15)] and solve for it, with the boundary value B{r)

atr;=0 andL; being fixed by normalization. The situation is Laminar flow
quite different in multidimensions. At steady-state, the cur-Rotation+ net drift
rent density is not a constant, in general. However, we can

still make a few observations that lead to nontrivial conclu-

sions: (i) the right-hand side of E¢29) is, in general, not
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TABLE I. Table showing the general flow patterns that can be
constructed by combining appropriate ratchet potentials in multiple
dimensions. Examples of such flows are depicted in Figs. 4-7.

Fow pattern

Coupling mechanism

Rotation Ratchets coupled mandy
Decoupled ratchets inandy
Coupled ratchets asymmetric

underx«-x, y«-y

identically zero,(ii) the integrand on the left-hand side is a Sider a restricted class of potentials and noise such that

product of J,(r) and a positive definite quantity, an(di)
definition of steady statéP(r,t)=0] implies V-J(r)=0.
The first two observations imply thdtcannot be identically

zero everywhere. Combining this with the third observation

leads to the unavoidable conclusion tRax J is notidenti-
cally zero over one period of the potenti@xcluding the
trivial case where] is a constant vector In other words,
there necessarily are local rotational patterns.

U(x,y)=U(y,x), D,=Dy, andr;= 7y . At steady state, this
implies thatJ,(x,y) =Jy(y) andJy(X,y) =Jy(X), i.e., thex
component of vectoﬁ(x,y) is only a function ofy and itsy
component is only a function of Before proceeding further,

we emphasize that our argumeffisllowing Eq. (29)] show-

ing the necessary existence of rotations do not depend on this
restricted class of noises and potentials; the class of poten-
tials is adopted just to simplify the algebra for illustrative
purposes. The calculation df(y) andJ,(x) can now pro-

The necessity of color and potential asymmetry in ourceed smoothly by observing that (orJy) may be pulled out

arguments is now easily seen. Analogous to @@®) of the
one-dimensional case, for small correlation timgs we get
Li W|(£) i ¢ > IC)Z i >

¢i(Li)= . dz—— 1_MlTiMii(Z)+T[{M2R(Z)

— usMA(2) i+ 2{ uiM;i (2)}21+0((7H)%) |. (3D)

Terms of zeroth and first order in® in Eq. (31) are zero

of the integral in Eq(29). The total current density(r) is
then obtained by solving the set of Eq29)—(32). The cur-
rent densityd,(y) depends on the Dirichlet boundary condi-
tions P(0y), which we will set to a constanfP(0,y)
=P(x,0)=consi, since it allows us to get simple flow pat-
terns.

Table | shows the three general cases of multidimensional
flows which may be created by appropriate choice of the
potential. Figures 4—7 show contour plots of different poten-

tials and their corresponding current densitlesThe first

since the integrands in them are proportional to exact derivacase is shown in Fig. 4 which shows that for nonseparable

tives (of U andW?, respectively, and vanish due to periodic

boundary conditions. Hence;(L;)>(7")2. Thus, from Eq.
(31), we see thatp;(L;) =0 either for white noiséi.e., when

7°=0) or when the potential is symmetric within a single

period[i.e., the net integral multiplying#{)? vanishes If
either of these conditions holds then our observatioris
invalidated leaving open the possibility tha(r)=0 every-
where.

Having established the existence of rotations, we need to

solve Eq. (12 numerically in n dimensions with given
boundary conditions to get specific flow patterns 3¢r).

For the purpose of illustrations, we specifically adopt the
following simplifications:(a) we concentrate on two dimen-

sions (=x,y), where Eq.(31) becomes

C\2 X 2
) Lx Mo JW.
X X
¢X(Lxly)_ Dx fo dXWx(X:y) 7 ay
(3 A W s W,
4 2 )" ax? 2 Yoxay |

(32

G0 02 04 06 08 1
X

FIG. 4. Contour plots of the potentidl (x,y)=sin()sin(y)
—asin(2)sin(2y) with a=1, and all lengths expressed in units of
2. White (dark) regions show maxim@inima) of U(x,y). Su-
perposed on top are arrows showing the two-dimensional vector
field J(x,y), where the arrow lengths are scaled|b. The rota-
tions are produced by inversion of drift currents produced by op-
posing ratchet potentials in a given direction. The current deﬁsity
scales with the asymmetry parametea”“and the square of the

(b) next we will consider the specific case of exponentialcorrelation timerS, so for white noise or symmetric potentials, there

correlation function =1, u,=2); (¢ finally, we con-

are no rotations.
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— 1
2 25
0.8
1 2
5 0.6 15
>
1
-1 0.4
0.5
-2 0.2
0 . é % 02 04 06 08 1
0 02 04 06 08 1 < HE U9 L

X

FIG. 5. Same as Fig. 4 with the potential replaced with a sepa FIG. 6. Combination of drift and laminar flow in coupled poten-
.9 : = - +0.2(x+Y).
rable oneU(x,y) =sinx)—sin(2)+sin(y)—sin(2), which leads to ;Iilins(Xg;giocgisclgl(l);)?g]sgat;nE)Zu?zilgézﬁ]e i?ltze(l’)ilﬁli]). The term
laminar flow, caused by two independent decoupled ratchets in the
x andy directions. boundary conditiongsimilar to that in Fig. 1 than we are
analyzing here. The absence of any global circulation causes

potentials one gets, in general, rotational vortices. This demthe current circulation patterns to come in vortex-antivortex
onstrates the breaking of rotational symmetry of the systerpairs.
by construction of an appropriate ratchet potential. Notice Figure 5 shows how in a separable potential one gets a
that the total circulation along the boundary is zero, whichlaminar flow. By adjusting the relative magnitude of the po-
means that although there are local circulation patterns, thential terms involving thex and y coordinates one can
global average is zero. This is a consequence of periodichange the angle the laminar flow makes with thaxis.
boundary conditions that we use. Global rotations will need a'hus, we can obtain the breaking of reflection symmetry
net rotation along the boundary, which is a different set ofabout the two axes andy, with this flow pattern. Notice that

1 1
0.8 0.8
1 - 0.6 0.6
TUAE St ! g, ot I 1
l : LR 0.4 0.4
0-8"'-;,}_:" \ : L
: 0.2
Z %
0.2 0.8/
0.6
1 T
0.54 0.5 1 o4
X y 02
%

FIG. 7. The 3D flow patterns in the potentild(x,y,z) =A[sinxsiny sinz—a sin()sin(2y)sin(2)] for A=1, a«=1. The 3D potential
leads to a rich structure of loops and vorti¢t). In the panels to the right, componestsandJ, of the current are plotted at varioas
slices, corresponding to height®27= (a) 0.2 (top left), (b) 0.4 (top righy, (c) 0.6 (bottom lef), and(d) 0.8 (bottom righ}. Note that the
sizes of the arrows show the relative magnitudes ofithel, currents within each panel, and should not be compared for varying heights
(such a comparison is shown in the 3D plot on the)left
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although there are local swings in the current density, there ACKNOWLEDGMENTS
are no vortex-antivortex pairs, since only the relative magni-
tudes(but not the signsof J,(y) andJ,(x) change. For a
combination of separable and nonseparable potentials
shown in Fig. 6, one gets equivalent combinations of pat-
terns, i.e., one can generate net drifts along with local rota-
tions. APPENDIX A: MATHEMATICAL DETAILS
It is a straightforward generalization to produce flow pat- (i) Lemma N/ 8f,(t) =0.

terns for a three dimension&BD) potential using approxi-
mations similar to those made for Figs. 4—6. Figure 7 shows
a flow pattern for a 3D potential, shown as a 3D plot, and as SN S(1IN)
2D plots at different slices. Infinitely many combinations of (D) =—N? FAOR
such potentials can be generated to break different kinds of K K
symmetries in higher dimensions as shown in Figs. 4-7. A?:rom the normalization conditioﬁP[f]ﬁf=l and Eq.(2).
direction completely decoupled from a rotating 2D ratchet in
the x-y plane. This would give rise to a helix with its axis 1

_ N —zfﬁf exp{——f fdstZ Kij(s—s’)fi(s)fj(s’)}

Finally, we note that we have used Dirichlet boundary N 2 ]

conditions with specifie®(x,0) andP(0yy) functions (as- (A2)
could use Neumann boundary conditions as well, by rewrit-
ing P(0y) in J.(y) in terms of the normal derivative

We would like to thank O. Pierre-Louis for suggesting the
roblem, and C. Jayaprakash, Flicher, J. W. Wilkins, S.
atta, D. Basu, and S. S. Khare for useful discussions.

Proof.

(A1)
an example, in 3D one could have a 1D ratchet alongzthe
we get
N 1
along thez direction.
sumed to be constantin order to get our flow patterns. We

Hence, we get

- 6N - 1
dP(x,y)/3%|y—o. This is done using the definition dffrom =—N?| Df expi~-~){—— dsds
Eqg. (9) and in (I)Eq.(29), settingr; =x ofi(t) f ZJ j

1 IP(X,y) X Kij(s—s) {8 8(t—s)fi(s")
P(O,Y)—X(y)x(O,Y) x| (33 I
where + o) o(t—s")fi(s)}
90 (X, =N? | Dfexp(- - dg(fi(s)/2
x(y>=(wx<x,y>—%) J pren3 [ asnon
x=0
[1—e Hx)] X[Ki(t—s) +Kj(s—1)]
—0,(0y) (34
fxdxe_¢x(xvy) =(N/2)E jqukl(t_s)
0 |
and an analogous equation foP(x,0) in terms of +Kik(s_t)]fDFP[F]fi(S)v (A3)

IP(X,y)/3yly=o-

where the second integral on the last line can be rewritten as
VII. CONCLUSIONS (f;), which is zero since we assume that the noise has zero
averagdcf. Eq. (2)]. This completes the proof.
We have shown that a Fokker-Planck equation may be As a corollary to the above, we obtain the following two

derived for a weak colored noise for a bounded potential inequations:

multiple dimensions. Using this we have demonstrated that

an asymmetric periodic potential with a colored noise in n SP[f] .

dimensions willnecessarilylead to breaking of many types STl —Z f dsKi(t—s)fi(s)P[f], (A4)

of symmetries of the particle motion. Specific examples have K '

been solved for laminar flow and laminar flow combined

with rotations in two and three dimensions. Such symmetry 8°P[f] _ K NPT

breaking in higher dimensions should also be readily gener- St (V) 8f () ~Ki(t=t")P[f]

alizable to other types of noise statistics, such as a non-

Gaussian probability distribution, and other types of ratchet f j e
potentials. This could include time-dependétftashing”) +Z dsdsKi(t=s)

ratchet potential$25], as well as discrete versions such as _
multidimensional Parrondo’s gamgz6]. X fi(s)K; (t"=s")f(s")P[f]. (AS)
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(i) Lemma [ds'K;(t'—s")Ci([s—s']/7)=18;d(t
—s")/ID;j=Jds'K;(s—s")Ci([t' —s']/ ).

This equation establishes th&t is a diagonal matrix,
whose inverse give<£. Differentiating the normalization

equation & [DfP[f], we get

- . S8°P[f]
0 DfP[f]=J Df

52
- 5fk(t)5fl(t,)f 5 (1) 8F, (1)

=2 f Jdeg[Kik(t_S)KjI(t,_S/)<fi(s)fj(s,)>
i
—Kp(t=t")]. (A6)
Rewriting Ky (t—t') asZ; fdsK(t—s) & 8(s—t’), and us-

ing (fi(s)fj(s"))=6,(Di/m)Ci([s—s']/7) leads immedi-
ately to the above proof.

APPENDIX B: CONVERGENCE ISSUES

It is important to establish the validity of various expan-

PHYSICAL REVIEW E67, 056110 (2003

in the current. This can be avoided, in principle, by restrict-
ing our arguments to a smoothened function.

Case (ii) The derivation of the Fokker-Planck structure
itself depends crucially on the statistics of the noise. If the
noise distribution has a finite support so that arbitrarily large
noise amplitudes are excluded from consideration, then any
computation of the current density along the lines we pre-
scribed would be totally wrong. For example, if the height of
the potential barrier is larger than the maximum allowed
noise amplitude, then there will be no current, contrary to
what an injudicious application of the formalism will yield.

In our analyses, we have assumed a Gaussian distribution
function for the noisdEq. (2)]. This has an infinite support
and thereby avoids such nonanalyticitj@d]. However, for

a discrete noise process such as dichotomous noise, care
must be exercised in obtaining the Fokker-Planck descrip-
tion. Often, an additional white noise source is included with
the explicit purpose of handling such nonanalyticities. We do
not need such sources since our probability distribution is
Gaussian.

Case (iii) The functional calculus as outlined by Fox and
extended by us to several dimensions is nonperturbative in
the correlation time. As argued by Fox in REL9], the pre-

sions that we do in the correlation time at various stages oécription leads to currents that are uniformly convergent for

the derivation of Eq(12). In particular, the current distribu-
tion may not necessarily be an analytic functionsdffor an

7°=0. The nonperturbative description leads us to .
that involves the exponential of integrals of matrix elements

arbitrary noise source, in which case any perturbative exparef M. We finally performed an explicit evaluation of the ma-
sion in 7° yields results that are wrong. The nonanalyticity trix elements in Eq(11) for small 7°. This does involve a

can arise from three possible sourcég:the potential itself

may be nonanalyticii) the noise statistics has a finite sup-

perturbative expansion ir°, but of an exponential function,
analytic in7°. Thenth term of the expansion is proportional

port, (i) the perturbative expansion may be a nonanalytico u,(7/7?)"/n!. For well-behaved correlation functions

function of 7°.

such as an exponential or a Gaussian, this term tends to zero

Case (i) A piecewise linear sawtooth potential has infinite rapidly asn increases to infinity, provided®<rs?, as we
derivatives at the kinks, leading to potential divergent termshave assumed.
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