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A B S T R A C T   

We have studied the disordered rocksalt, orthorhombic, and disordered wurtzite phases of the ternary nitride 
semiconductor MgSnN2 by first-principles methods using density functional theory (DFT) and beyond. The re-
sults imply that MgSnN2 is mechanically and dynamically stable in all three phases. However, pCOHP analysis 
suggests that the disordered rocksalt structure has antibonding states below the Fermi level between − 5 eV and 
− 2 eV, as compared to the bonding states in the other two phases, indicative of its thermodynamic metastability. 
Computed lattice constant and electronic band-gap values of 4.56 Å and 2.69 eV for MgSnN2 in the disordered 
rocksalt structure compare well with experimentally reported values of 4.48 Å and 2.3 eV, respectively. 
Furthermore, band gaps were computed for MgSnN2-xOx (x = 0.5, 1.0, 1.5, 2.0) to elucidate the role of possible 
oxygen impurities. Band-gap bowing is suggested to occur upon alloying with oxygen. Of the three phases, the 
disordered rocksalt structure shows the lowest charge carrier effective masses. Moreover, the absorption coef-
ficient and reflectivity of this phase make it promising for use as the absorber layer of tandem solar cells in the 
higher energy region of the visible portion of the solar spectrum. The other two phases, disordered wurtzite and 
orthorhombic, might be utilized as the window layer of solar cells owing to their larger band-gap values of 4.36 
eV and 4.86 eV, respectively.   

1. Introduction 

Inorganic nitrides have been historically divided into two main 
groups based on their electronic properties, namely semiconductor 
wurtzite main group metal nitrides and superconducting rocksalt tran-
sition metal (TM) nitrides [1]. Exceptions include semiconducting 
rocksalt nitrides (e.g., ScN) [2] and metallic wurtzite nitrides (e.g., 
ZnMoN2) [3]. The nitrides of the first type, that is, semiconducting 
wurtzites such as AlN, GaN, and InN, are well known for their direct 
band-gaps and high carrier mobilities [4,5]. They are widely used in 
solid-state lighting, radiofrequency transistors, laser diodes, 
high-data-density optical storage media, and so on [4–9]. The second 
type, superconducting rocksalt TM nitrides, such as TiN, VN, and NbN, 
are utilized in hard coatings [10–13], and as diffusion barriers in sem-
iconducting devices and superconductors with transitions at tempera-
tures of the order of 20 K [13,14]. 

Ternary nitride semiconductors with rocksalt structure of formula II- 
IV-N2 have been widely studied in the past decade [15]. They are ob-
tained by replacing metal atoms in a binary metal nitride with Group 

II2+ and Group IV4+ atoms. For example, a metal such as Ti has the 3+
valence state in its nitride (TiN) [16]. Inserting a low-valent alkalin-
e-earth cation such as Mg2+ results in MgTiN2, forcing the TM to adopt a 
higher oxidation state, prohibiting the metal d-shell from engaging in 
bonding, and thereby introducing semiconductor properties [17–20]. 
Moreover, cation- and anion-substoichiometric defect phases are found 
in binary TM nitrides with rocksalt structure [21–23]. This implies the 
possibility of newly inserted alkaline-earth cations occupying metal site 
vacancies [1]. 

Epitaxial growth of these new ternary nitrides on multiple substrates 
is facilitated by congruent lattice parameters. Thus, they can be metic-
ulously grown over their binary semi- and super-conducting antecedents 
[1]. These nitrides are synthesized from highly Earth-abundant and 
non-toxic metals and are semiconducting [24]. Moreover, the relatively 
low cost and ease of recyclability of the constituent metals such as Zn, 
Mg, and Sn in comparison to In and Ga makes them promising for 
scalable electronic applications. Examples such as ZnSnN2, MgSnN2, 
MgHfN2, Mg2NbN3, and MgZrN2 have electronic band gaps in the range 
1.5–3.5 eV, akin to those of their binary counterparts AlN, InN, and GaN, 
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which are optimal for visible and short-wavelength opto-electronic de-
vice applications [25,26]. These ternary nitride semiconductors also 
overcome the issue of lattice mismatch. AlN-based hetero-structures, 
such as AlGaN, InGaN, and InAlGaN, exhibit lattice mismatch and po-
larization, reducing the efficiency of devices, although this has been 
mitigated in more recently studied ternary systems [27]. 

Despite these possibilities, only a few such systems, such as BaHfN2, 
SrHfN2, and SrTiN2, have hitherto been synthesized [28–31]. Recently, a 
new ternary nitride semiconductor with a disordered rocksalt structure, 
MgSnN2, was synthesized by Kawamura et al. [24], which showed 
interesting material properties. These authors reported that MgSnN2 was 
synthesized by a metathesis reaction under a high pressure of 5.5 GPa at 
850 ◦C for 1 h. The product adopted a disordered rocksalt structure with 
a lattice constant of 4.48 Å and a direct electronic band gap of 2.3 eV. 
The possibility of 9.4% oxygen impurity in the anionic position was 
suggested by energy-dispersive X-ray (EDX) measurements. Besides the 
rocksalt structure, orthorhombic and wurtzite structures of MgSnN2 [25, 
32,33] are also well known, as synthesized and characterized by Makin 
et al. They reported many intermediate structures between these two 
phases characterized by disorder in the cationic site, quantified by the 
long-range order parameter ‘S’ (defined as S = rα + rβ − 1, where rα 
and rβ are the fractional occupancies of Mg and Sn, respectively, at their 
ordered positions) [25]. Greenaway et al. recently synthesized MgSnN2 
in a mixed rocksalt-wurtzite phase with stoichiometric values of 
Mg/(Mg + Sn) ranging from 0.28 to 0.73, and characterized the ab-
sorption properties of these products by means of spectroscopic ellips-
ometry [34]. Their computations, using the kinetically limited 
minimization (KLM) approach and electronic properties, predicted 
various crystal structures, with varying formation energies in wurtzite, 
zinc blende, and rocksalt crystal structures. Other preliminary work on 
the orthorhombic structure has involved computations of band structure 
and elastic constants using generalized gradient approximation (GGA) 
pseudopotentials [32,33]. However, a combined and holistic study of 
these three MgSnN2 phases is essential to provide insight into the origin 
of experimental observations. Therefore, we present here a thorough 
computational investigation of the structural, energetic, bonding, ther-
modynamic, mechanical, vibrational, and optical properties of MgSnN2. 

To fully elucidate the behavior of MgSnN2, we have analyzed and 
compared all three crystal structures. The main findings of this work are 
as follows. (i) All three phases of MgSnN2, disordered rocksalt, ortho-
rhombic, and disordered wurtzite, are both mechanically and dynami-
cally stable. (ii) Calculated lattice constants and electronic band gaps are 
in good agreement with experimental results [24]. The calculated band 
gap is indirect, whereas the experimentally reported one is direct. (iii) 
Computations of MgSnN2 alloyed with oxygen to analyze the effects of 
possible oxygen impurities imply bowing of the band-gap plots. (iv) The 
disordered rocksalt structure has lower effective masses than the other 
two crystal structures. Analysis of absorption coefficient and reflectivity 
indicates that the disordered rocksalt structure may be suitable as an 
absorber layer for solar cells operating in the higher energy region of the 
solar spectrum, as used in tandem devices. The other two crystal 
structures may serve as window layers of solar cells. 

2. Computational methods 

The Vienna ab initio simulation package (VASP) [35–38] was used 
for all density functional theory (DFT) calculations. The Per-
dew–Burke–Ernzerhof (PBE) [39,40] exchange-correlation functional 
was deployed in the generalized gradient approximation (GGA) to 
perform the projector-augmented-wave (PAW) method [41,42]. Along 
with the outer core, semi-core electrons were included in the calcula-
tions. PAW PBE VASP pseudopotentials, i.e. ‘N_s’, ‘Sn_d’, and ‘Mg_sv’, 
were used. Plane waves of energy cut-off up to 500 eV were used with a 
Γ-centered k-point mesh, leading to 4000 k-points per reciprocal atom 
(KPPRA) in our calculations. Each atom was configurationally relaxed 
until the forces were under 0.01 eV/Å, and convergence in energy in 

electronic iterations of 10− 6 eV/atom was used when deploying a 
Gaussian smearing of width 0.2 eV. At the inception, initial crystal 
structures were taken from the Materials Project [43]. 

Formation energy is defined as the difference in energy between the 
final products and the reactants in a chemical reaction [44–46]. After 
relaxation, high-precision static calculations were conducted to calcu-
late the accurate ground-state energies of the reactants and products to 
calculate formation energy. Formation energy per formula unit of 
MgSnN2-xOx was calculated as:  

ΔEf = E(MgSnN2-xOx) – E(Mg) – E(Sn) – (2–x)E(N2)/2 – xE(O2)/2        (1) 

where E(Mg), E(Sn), E(N2), and E(O2) are the ground-state energies of 
magnesium (space group: P63/mmc), tin (space group: I41/amd), and 
nitrogen and oxygen dimers in vacuo, respectively. 

Computations involving strained supercells were performed to 
calculate elastic constants by calculating the Hessian matrices of direc-
tional second derivatives of energy with respect to cell distortion [45, 
47–54]. Thus, we obtained the elastic tensor (Cij) for each structure, 
from which the mechanical properties were derived by the 
Voigt–Reuss–Hill [55–60] method, as described below: 

The bulk and shear moduli in the Voigt approximation are given by: 

BV = [C11 +C22 +C33 + 2(C12 +C13 +C23)] / 9, and (2)  

GV = [(C11 +C22 +C33 − C12 − C13 − C23)+ 3(C44 +C55 +C66)] / 15 (3)  

respectively. Similarly, in the Reuss approximation, they are given by: 

BR = [(S11 + S22 + S33) + 2(S12 + S13 + S23)]
− 1
, and (4)  

GR = 15[4(S11 + S22 + S33 − S12 − S13 − S23)+ 3(S44 + S55 + S66)], (5)  

respectively, where Sij is the elastic compliance tensor obtained as the 
inverse of elastic tensor Cij. In the Hill approximation, the average bulk 
and shear moduli are given by:  

B = (BV + BR)/2 and G = (GV + GR)/2                                             (6) 

respectively. Eventually, Pugh’s ratio and Vickers hardness can be ob-
tained by:  

κ = G/B and HV = 0.92κ1.137G0.708                                                    (7) 

respectively, as elaborated by Tian et al. [61–64]. 
Electronic band gaps are underestimated by the GGA and local 

density approximation (LDA) exchange-correlation functionals [65]. 
Therefore, in such calculations, we applied the Heyd–Scuser-
ia–Ernzerhof hybrid functional (HSE06) [66,67], which combines 25% 
of the exact exchange from Hartree–Fock theory with 75% of the ex-
change from GGA. This function has been shown to predict experimental 
results more accurately in the context of semiconductors and insulators 
[49,65,68,69]. We deployed a smaller k-point grid of 2000 KPPRA in 
these calculations to reduce the computational burden [49,70] and 
calculated the electronic density of states (DOS), band structure, and 
frequency-dependent complex dielectric function (ε1 + iε2) for 
cation-disordered MgSnN2. Effective masses (m*) of holes (mh/mo) and 
electrons (me/mo) were obtained through band-structure calculation 
using the Sumo [71] package, where mh and me are hole and electron 
masses, respectively, within the material and mo is the standard electron 
rest mass. 

To gain further insight into the chemical bonding, we calculated 
crystal orbital Hamilton populations (COHPs) using the local-orbital 
basis suite towards electric-structure reconstruction (LOBSTER) pack-
age [46,48,62,72–78]. Furthermore, to assess the charge transferred in 
the formation of the compound, we calculated effective charges by 
Bader analysis [79–82]. To elucidate the development of phonons and 
their behavior, we used the Phonopy [83] package to calculate phonon 
DOS and band structure for cation-disordered MgSnN2. 
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3. Results 

3.1. Structural, mechanical, and vibrational properties 

Recently, experimental synthesis of MgSnN2 yielded a cation- 
disordered rocksalt-derived structure. Experimental EDX measure-
ments revealed a possible oxygen impurity of 9.4% in anionic positions 
[24]. Motivated by this finding, we started out with a conventional cell 
of eight atoms in rocksalt structure (space group: Fm3m). Then, we 
substituted all 4a Wyckoff positions by two atoms each of Mg and Sn. 
Furthermore, all 4b Wyckoff positions were substituted by N or O atoms 
in different stoichiometries. The materials thus formed were MgSnN2, 
MgSnN1.5O0.5, MgSnNO, MgSnN0.5O1.5, and MgSnO2, with the disor-
dered rocksalt structure (space group: P4/mmm). We proceeded to 
perform DFT calculations for all 96 possible permutations of the 
eight-atom conventional cell. These structures of MgSnN2-xOx (x = 0.0, 
0.5, 1.0, 1.5, 2.0) with the disordered rocksalt phase are described in 
Tables S1–S5, including sample structures used for computations. For 
comparison, we also investigated MgSnN2 in wurtzite-derived and or-
dered orthorhombic crystal structures, which have been studied both 
theoretically [32,33,84,85] and experimentally [25]. To create a 
cation-disordered wurtzite-derived (space group: P63mc) crystal struc-
ture, we randomly substituted Mg and Sn atoms in a 1:1 ratio in the 2a 
cation Wyckoff positions, whereas we substituted N atoms in the two 
other 2b Wyckoff positions, as shown in Table S6. The two possible 
permutations of the cation-disordered wurtzite-derived crystal structure 
of MgSnN2 (space group: P3m1) were constructed with a conventional 
cell of four atoms. All permutations, 96 in the disordered rocksalt 
structure and 2 in the disordered wurtzite structure, resulted in identical 
values for all computed properties. The results reported in this work 
relate to the structures presented in Table S1. To thoroughly understand 
the effects of disorder, larger supercells would have to be investigated, 
demanding prohibitive computational resources. Such a study of the 
details of the disorder is beyond the scope of the current work, and may 
require other techniques [86–88]. We obtained the ordered ortho-
rhombic crystal structure of MgSnN2 directly from the Materials Project 
database [43]; it has 16 atoms in the conventional cell; 8 cationic and 8 
anionic sites, as shown in Table S7. Computed lattice constants for 
various crystal structures of MgSnN2-xOx are given in Table 1. The 
structure of primary interest here, disordered rocksalt, has a calculated 
lattice constant of 4.56 Å, close to the experimental value of 4.48 Å [24]. 
In our study, all of the disordered rocksalt crystal structures have octa-
hedral arrangements with coordination number six, whereas the disor-
dered wurtzite and orthorhombic crystal structures have tetrahedral 
arrangements with coordination number four. The average bond lengths 
from Mg, Sn, and N to the first nearest neighbors within each crystal 
structure are given in Supplementary Table S8. The average bond length 
is 2.28 Å at each element in the disordered rocksalt structure as a result 

of its cubic symmetry. However, the average bond lengths at each 
element are different in the other two phases. Interestingly, values of 
2.12 Å and 2.09 Å are interchanged for Mg and Sn between the ortho-
rhombic and disordered wurtzite crystal structures. The bond lengths at 
N in these two phases are 2.10 Å, equal to the average of all bond lengths 
at each element. 

The formation energies of the three different crystal structures are 
also given in Table 1. Evidently, the orthorhombic phase has a lower 
formation energy per formula unit, making it more stable than the other 
two forms of MgSnN2. Despite being energetically metastable, the 
disordered rocksalt and wurtzite crystal structures appear to be me-
chanically and vibrationally stable, as discussed below. 

Solar panels are subject to mechanical stresses due to variations in 
temperature, wind, snow or dust covering, mechanical loading in as-
sembly, transport, and installation [89]. In order to consider the effects 
of such mechanical stresses, we computed a variety of elastic and me-
chanical constants and stability conditions. Several of these, namely 
bulk modulus, shear modulus, Pugh’s ratio, and Vickers hardness, for 
the respective crystal systems of MgSnN2, are given in Supplementary 
Table S9. The elastic constants are higher for the disordered rocksalt 
structure than for the other two phases. Moreover, MgSnN2 has lower 
elastic constants than those evaluated in earlier computations on 
MgSiN2 and MgGeN2 in the orthorhombic crystal structure [32]. A 
general softening of the material with the introduction of heavier ele-
ments is observed. We assessed stability conditions [90] and found that 
all of the crystal structures are mechanically stable. The bulk and shear 
moduli in the three phases decrease in the order: disordered rocksalt >
orthorhombic > disordered wurtzite. The Pugh’s ratio is 0.75 for the 
disordered rocksalt structure and 0.49 for the other two phases. All three 
phases have a low value of Pugh’s ratio, implying ductility. Among 
them, the disordered rocksalt structure is the least ductile. The Vickers 
hardness of the disordered rocksalt structure of MgSnN2 is 17.76 GPa, 
higher than those of the orthorhombic (7.59 GPa) and disordered 
wurtzite (6.97 GPa) crystal structures. It is also higher than those of Si 
(11.77 GPa) [91] and CdTe (0.49 GPa) [92]. Thus, MgSnN2, in all of 
these structures, is a mechanically robust candidate for use in solar cells. 

To investigate thermal stability with regard to lattice vibrations, we 
calculated band structure and DOS for phonons for all three crystal 
systems, as plotted in Fig. 1. For each structure, there is no phonon 
population below zero frequency, which clarifies that all the phonons 
are dynamically stable in these crystal phases. Further, we can distin-
guish that N gives rise to prominent peaks in the higher frequency range 
around 10 THz, the Mg peaks are around 5–10 THz, and the Sn peaks are 
below 5 THz in each of the crystal structures. This reflects the fact that 
lighter particles have higher vibrational frequencies than heavier ones. 
In the orthorhombic and wurtzite structures, a gap is apparent in the 
phonon bands, whereas no such gap is seen for the disordered rocksalt 
structure. Due to these phonon band gaps, we surmise that the 

Table 1 
Lattice constants of MgSnN2-xOx in different crystal structures, along with their formation energies per formula unit, calculated using the GGA. Experimental values are 
given in parentheses.  

Material Crystal Structure Lattice Constants (Å) Formation Energy (eV) 

Name Space Group a b c 

MgSnN2 disordered rocksalt P4/mmm 4.56 (4.48p) = a = a − 3.18 
MgSnN2 disordered wurtzite P3m1 3.44 = a 5.58 − 3.64 
MgSnN2 orthorhombic Pna21 5.54, 5.47q 5.97, 5.91q 6.94, 6.88q − 4.12, − 1.32r, − 2.16s, − 3.41t 

MgSnN1.5O0.5 disordered rocksalt P4/mmm 4.63 = a = a − 4.84 
MgSnNO disordered rocksalt P4/mmm 4.71 = a = a − 6.44 
MgSnN0.5O1.5 disordered rocksalt P4/mmm 4.77 = a = a − 8.31 
MgSnO2 disordered rocksalt P4/mmm 4.86 = a = a − 9.94  

p Ref. [24]. 
q Ref. [32]. 
r Ref. [84]. 
s Ref. [43]. 
t Ref. [33]. 
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orthorhombic and wurtzite structures might be used as sound filters and 
ideal mirrors, because any frequency within the gap will not propagate 
in the material and hence will be reflected from its surface [93]. 

3.2. Electronic properties 

The electronic density of states (DOS) for each structure of MgSnN2, 
computed using the HSE06 functional, is displayed in Supplementary 
Fig. S1. We observe that Sn and N states are more pronounced than Mg 
states both above and below the Fermi level in each structure. Above the 
Fermi level, states start to appear after the band gap in each structure, 
confirming the non-metallic behavior of these materials. To augment 
these findings, we also plotted projected crystal orbital Hamilton 

population (pCOHP) vs. energy, as shown in Supplementary Fig. S2, 
which provides insight into the bonding and antibonding characteristics 
of the electronic states. As electronic states are loosely bound above the 
Fermi level in the conduction band, the pCOHP curves above the Fermi 
level are in antibonding states in all three crystal structures. In the 
orthorhombic and wurtzite structures, the interactions of both Mg and 
Sn with N are seen to have bonding character. The total net interactions 
in these structures, shown in green dot-dashed lines, show that they are 
positively bonded. However, in the disordered rocksalt structure, the 
interactions of both Mg and Sn with N, as well as the total net interaction 
in the material, show an anti-bonding area between − 5 eV and − 2 eV, i. 
e., below the Fermi level. From inspection of the electronic states in 
Supplementary Figs. S1 and S2, one may deduce that there is an 

Fig. 1. Comparison of phonon band structures and densities of states (DOS) per unit cell of MgSnN2 for different crystal structures, computed using the GGA.  
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instability in the disordered rocksalt structure. This inference is sup-
ported by the highest formation energy of the disordered rocksalt 
structure, as given in Table 1, and the subsequent phonon contribution 
to the stability as given in Fig. 1. However, the experimental synthesis of 
this material is testament to its thermodynamic stability. This stability 
may have been due to an oxygen impurity, as discussed in relation to the 
experimental work [24]. Alternatively, the metastability does not pre-
clude its synthesis through kinetic pathways under the applied experi-
mental conditions. We compared this antibonding area to the 
coordination number of four in the orthorhombic and disordered 
wurtzite crystal structures vs. six in disordered rocksalt structure. Due to 
the higher coordination number in the disordered rocksalt structure, the 
same elements, Mg, Sn, and N, behave differently. 

The electronic DOS, computed using the HSE06 functional, and the 
pCOHP curves of all nearest-neighbor interactions for the disordered 
rocksalt structure of MgSnO2 are displayed in Supplementary Fig. S3. 
Similar to the situation for MgSnN2, Mg states are less pronounced than 
Sn and O states both above and below the Fermi level in each structure. 

Overall, the electronic states in MgSnO2 manifest in a similar manner to 
those in MgSnN2, as described in the preceding paragraph. Finally, the 
electronic DOS, computed using the HSE06 functional, for MgSnN2-xOx 
(x = 0.5, 1, and 1.5) are displayed in Supplementary Fig. S4. Metallic 
behavior is evident for all of the compounds, with some states around 
the Fermi level. 

In order to identify the bonding type, viz. ionic or covalent, prevalent 
between Mg and N or Sn and N, we deduced the effective charges on 
these atoms in order to elucidate the charge transferred from the elec-
tropositive to the electronegative atom. Supplementary Table S10 shows 
the charges transferred from Mg to N and from Sn to N in all three crystal 
structures considered here. There is no difference in the charge trans-
ferred value of 1.66 e from Mg to N in any of the crystal structures, but 
there is a slight variation in the charge transferred from Sn to N, 
increasing from 1.70 e in wurtzite, to 1.72 e in rocksalt, to 1.78 e in the 
orthorhombic form. Since the values of charge transferred from Mg and 
Sn to N are in excess of 1 e, it can be stated that these bonds have sig-
nificant ionic character. The higher charge-transfer value from Sn to N 

Fig. 2. Electronic band-structure diagrams of energy vs. wave vector for MgSnN2 based on disordered rocksalt and wurtzite structures, computed using the HSE06 
functional. Red dots represent conduction band minima; green dots represent valence band maxima. Fermi energy (Ef) is set at 0 eV. 
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compared to that from Mg to N is consistent with their reported elec-
tronegativities of 1.72 e for Sn and 1.23 e for Mg [94]. 

Fig. 2 shows the electronic band structure of MgSnN2 computed 
using the hybrid HSE06 functional. The band structure of the ortho-
rhombic form is not shown due to the high computing resources 
required. We computed the band gap of the disordered rocksalt structure 
as 2.69 eV, where the transition is from k-point A(0.5, 0.5, 0.5) to Γ(0, 0, 
0), which is comparable to the experimental value of 2.3 eV determined 
by Kawamura et al. [24]. Greenaway et al. computed indirect band gaps 
of 3.17 and 2.93 eV for their two different disordered rocksalt structures, 
consistent with our findings. The experimentally reported band gap is a 
direct transition [24]. As discussed earlier in Section 3.1, experimental 
measurements revealed a possible oxygen impurity of 9.4% in the 
anionic positions [24]. Greenaway et al. [34] also found oxygen in their 
experimentally synthesized crystals of the disordered rocksalt and 
wurtzite phases. Thus, we calculated band gaps for disordered rocksalt 
MgSnN1.5O0.5, MgSnNO, and MgSnN0.5O1.5 using HSE06. All of these 
band gaps were evaluated as 0 eV, as shown in Table 2. As discussed 
above, Supplementary Fig. S4 shows the metallicity of these materials, 
since the valence band and conduction band have no gap. Unfortunately, 
the precise experimental concentration of O of 9.4%, as inferred from 
the EDX data, could not be simulated due to prohibitive computational 
requirements. We also calculated the band gap for disordered rocksalt 
MgSnO2 using HSE06, obtaining a value of 1.01 eV, where the transition 
is direct at k-point A. This result suggests that nitrogen and oxygen 
together in the rocksalt structure as described here render the whole 
structure metallic. Our results suggest that there is some band-gap 
bowing in MgSnN2-xOx (x = 0.0, 0.5. 1.0, 1.5, 2.0) that needs further 
exploration. Fig. S5 shows a band gap vs. oxygen content (x) diagram 
with bowing. The bowing suggests that the band gap will tend to a lower 
value. HSEO6-based computations are known to be successful in deter-
mining the band gaps of binary materials such as AlN and GaN close to 
their measured values [95–97]. For other materials, including ternary 
alloys such as MgSnN2, this success has not been extensively verified. 
Nonetheless, our computed value of 2.69 eV is close to that reported for 
Mg1.084Sn0.916N1.812O0.188 [24]. Considering the difference in compo-
sition, that is, the presence of O in the experiment, the agreement is 
good. Table 2 lists the band-gap values in the other two crystal struc-
tures, orthorhombic and wurtzite, with the direct values at the Γ point 
being 4.86 and 4.36 eV, respectively. 

During our computations, despite trying all permutations of the 
cation disordering in the disordered rocksalt and wurtzite phases, we did 
not observe any changes in the band gaps of the materials. This shows 
that the band gap is not tunable through cationic disorder in these two 
structures, at least for the limited cell sizes in our computations. How-
ever, Veal et al. and Makin et al. experimentally observed band-gap 
tunability in the disordered orthorhombic crystal structure [25,98]. 
We considered only one ordered orthorhombic structure in our calcu-
lations, due to limited computational resources, in which the cationic 
and anionic positions were fixed. Even if we had considered a disorder, 

we might have obtained similar characteristics for each disordered 
structure due to the limited cell size, as discussed above. Differences in 
the band gaps of the different phases may be connected to the bond 
lengths listed in Supplementary Table S8. Longer bonds lead to smaller 
band gaps, as observed in strained materials [99]. We note that the 
average of all bond lengths in the disordered rocksalt structure is higher 
than those in the other two phases, implying a smaller band gap. 
Although the averages of all bond lengths are equal in the orthorhombic 
and disordered wurtzite structures, the average bond lengths around Mg 
and Sn differ. As discussed above, Sn (1.72 e) is more electronegative 
than Mg (1.23 e) [94]. This expresses the greater tendency of Sn to 
control the behavior of electrons compared to Mg. We observe that the 
average bond length around Sn is shorter in the orthorhombic form than 
in the disordered wurtzite crystal, providing a rationale for the larger 
band gap in the former. 

To provide insight into charge transport in these materials, we 
computed their effective masses. Table 2 lists the electron and hole 
effective masses in MgSnN2-xOx for the different crystal structures 
calculated using the HSE06 functional. These are average values of 
different effective masses when charge carriers move between various k- 
points within the crystal at the valence band maximum (VBM) and 
conduction band minimum (CBM). In these calculations, we considered 
two bands in the VBM and one band in the CBM in the disordered 
rocksalt and wurtzite crystal structures, and one band in the CBM and 
one in the VBM in the orthorhombic crystal structure. It is clear that both 
electrons and holes in the disordered rocksalt structure have the lowest 
effective masses in comparison to the orthorhombic and disordered 
wurtzite crystal structures. Thus, this crystal structure is the best form of 
MgSnN2 for charge transport. The hole effective mass is larger in this 
phase, as evidenced by the mh/me ratio of 8.27. Moreover, the effective 
masses in the disordered rocksalt structure are comparable to those in 
silicon [100], making it favorable for solar applications. Though the 
effective masses are comparable to those in Si, the mobility in these 
disordered structures may be lower owing to the possibility of strong 
alloy scattering [101]. Electron effective masses are also smaller than 
those of holes in wurtzite and orthorhombic crystals, with the latter 
having the highest absolute values. 

3.3. Optical properties 

Orthorhombic and disordered wurtzite crystal structures are aniso-
tropic in their interactions with photons, whereas disordered rocksalt is 
isotropic. The orthorhombic form is anisotropic in all three directions, 
whereas wurtzite is anisotropic in the parallel (‖) and perpendicular (⊥) 
directions with respect to the xy plane. The dielectric constant of Si is 
11.7 [102], far higher than those of the disordered rocksalt (3.2), 
orthorhombic (2.1), and disordered wurtzite (2.6) crystal structures of 
MgSnN2, considering the average of various directions in the latter two 
cases. These lower dielectric constants reduce the probability of charge 
separation due to the weakly screened coulombic attraction, thereby 

Table 2 
Band gaps and effective masses of MgSnN2-xOx in different crystal structures calculated using HSE06. Units are in terms of standard electron rest mass, mo. Experi-
mental values are given in parentheses.  

Material Crystal Structure Band Gap (eV) Effective Mass (m*) 

Name Space Group GGA HSE06 Electron (me/mo) Hole (mh/mo) 

MgSnN2 disordered rocksalt P4/mmm 0 2.69; indirect, (2.3; direct)a 0.26 2.15 
MgSnN2 disordered wurtzite P3m1 2.47; direct 4.36; direct 0.69 4.75 
MgSnN2 orthorhombic Pna21 2.84; direct 4.86; direct, 3.43; directb, 2.28; directc 0.47 2.46 
MgSnN1.5O0.5 disordered rocksalt P4/mmm 0 0 – – 
MgSnNO disordered rocksalt P4/mmm 0 0 – – 
MgSnN0.5O1.5 disordered rocksalt P4/mmm 0 0 – – 
MgSnO2 disordered rocksalt P4/mmm 0.01; indirect 1.01; direct 4.093 1.506  

a Ref. [24]. 
b Ref. [33]. 
c Ref. [84]. 
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reducing the efficiency of solar cells [103]. Of the three phases, disor-
dered rocksalt is a better candidate as an absorber layer in solar cells 
because of its comparatively higher dielectric constant of 3.2. Complex 
dielectric function data for photon energies 0–10 eV are provided in 
Supplementary Tables S11 and S12. 

The complex dielectric functions for the disordered rocksalt, ortho-
rhombic, and disordered wurtzite crystal structures are presented in 
Figs. S6, S7, and S8, respectively. For all three phases, the real part 
shows a first peak around the band gap of each material in each direc-
tion. Similarly, the imaginary parts show some positive values after the 
band gap for each material. In the real part of the complex dielectric 
function, the disordered rocksalt crystal structure has a peak value of 
4.1 at a photon energy of 3.26 eV, the disordered wurtzite crystal 
structure has peak values of 3.4 and 3.5 at photon energies of 4.68 and 
4.66 eV in the ⊥ and ‖ directions, respectively, and the orthorhombic 
crystal structure has a peak value of 3.1 at a photon energy of 5.27 eV in 
all directions. After the first peak, the real part declines in all of the 
crystal structures, showing other prominent peaks later. The imaginary 

portion of the dielectric function also shows various peaks, attributable 
to several inter- and intra-band transitions [104]. 

Plots of absorption coefficient and reflectivity versus photon energy 
are shown in Fig. 3 for all three crystal structures of MgSnN2, where 
averages of various directions were considered for the orthorhombic and 
disordered wurtzite crystal structures. The spectral irradiance of the Air 
Mass 1.5 Global spectrum [105] is also plotted, along with the absorp-
tion coefficient for ease of comparison. It can be seen that absorption of 
the disordered rocksalt structure commences at 2.7 eV and then shows a 
steep rise from 3.2 eV to 3.5 eV. For the orthorhombic and wurtzite 
crystal structures, absorption barely starts up to 3.5 eV. Hence, there is 
no reflection from these crystal structures between 1 eV and 3.5 eV, i.e., 
around the visible range. By comparing the spectral irradiance and ab-
sorption coefficient, it can be concluded that the disordered rocksalt 
structure may be used in the higher energy region of the visible range, 
whereas the orthorhombic and wurtzite structures will be of no use in 
visible range applications, but could be used as window layers in solar 
cells. 

Fig. 3. Absorption coefficient, α (top panel), and reflectivity (bottom panel) curves, left axis, of MgSnN2 based on rocksalt structure computed using the hybrid 
HSE06 functional. There is no reflection for orthorhombic and disordered wurtzite structures in the visible range. Standard AM 1.5 G solar spectral irradiance [105], 
right axis, is illustrated in the yellow shaded area along with the absorption curve. 
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4. Conclusion 

We have computationally studied the structural, mechanical, vibra-
tional, and opto-electronic properties of MgSnN2 in three different 
crystal forms. Our study confirms that MgSnN2 in the disordered rock-
salt form is both mechanically and dynamically stable, as are the 
orthorhombic and disordered wurtzite crystal structures. Analysis of 
pCOHP curves, however, implies metastability. Our calculated lattice 
constant and electronic band-gap values of 4.56 Å and 2.69 eV for 
MgSnN2 in the disordered rocksalt structure closely match the recent 
experimentally reported values of 4.48 Å and 2.3 eV, respectively. The 
computed band gap is indirect, while the experimentally reported one is 
direct [24]. We alloyed MgSnN2 with oxygen to account for possible 
oxygen impurities. Computationally, the effect of alloying with oxygen 
implies a bowing of the band gap. Further experimental and theoretical 
work is necessary to explore the details of this bowing. Our study on 
effective masses has clarified that the disordered rocksalt structure has 
lower effective masses than the orthorhombic and disordered wurtzite 
crystal structures. Absorption coefficient and reflectivity curves validate 
that the disordered rocksalt structure might be used as an absorber layer 
in the higher energy region of the visible range in tandem devices, 
whereas the disordered wurtzite and orthorhombic crystal structures 
could serve as window layers of solar cells. 
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