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Abstract

Studies of surface dynamics, including the kinetics of two-dimensional (2D) island coarsening/decay, shape
fluctuations, and shape evolution, enable determination of the rate-limiting mechanisms, corresponding surface
mass transport parameters, and step energies. Most models describing these phenomena assume isotropic (cir-
cular) or near-isotropic island shapes and, hence, isotropic step energies. However, even simple elemental metal
surfaces are anisotropic and more complex compound surfaces such as the low-index planes of TiN, GaAs, GaN,
ZnO, Al2O3, ZrO2, are highly anisotropic. Here, we describe recent progress toward developing generalized the-
oretical and experimental approaches, applicable for analyses of 2D island coarsening/decay kinetics, coalescence
kinetics, and determination of orientation-dependent step energies and step stiffnesses, on both isotropic and highly
anisotropic surfaces.
c© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Thin film growth is a complex phenomenon controlled by the interplay of both thermodynamic
and kinetic driving forces. Fundamental understanding of the processes governing microstructural and
morphological evolution of thin film surfaces can be developed via studies of the dynamics of surfaces at
the atomic scale. Prior to the invention of STM [1] and related scanning probe microscopy tools such as
AFM [2], FIM [3] was the only real-space imaging technique available for resolving individual atoms on
surfaces and for studying dynamic processes such as surface diffusion of single adatoms and small 2D
islands [4,5]. Despite the restrictions on the type and size of materials that can be used for FIM studies,
which require use of high electrical fields and sharp single-crystalline tips, detailed investigations of
adatom transport mechanisms have been carried out on a wide variety of metal surfaces [6].

The advent of high-speed variable-temperature and -pressure STM allows studies of surface dynamics
at video rates [7–11] for a wider range of materials. Using STM, in situ studies of the diffusion of
adspecies (adatoms and advacancies), kinks, steps, and 2D islands [12–21] are carried out over a wide
range of temperatures (20–1500 K). From analyses of the changes in successive images, atomic processes
contributing to these phenomena are quantified. The kinetics of nucleation and growth [22–24] on
crystalline surfaces are routinely studied in situ, either in ultra-high vacuum or electrolytic environments.
A related tool, the AFM, is also used to study the nucleation and growth kinetics of crystals in liquid
environments [25,26].

LEEM [27] is another surface-sensitive technique (complementary to STM) in which a coherent, low-
energy electron beam (typically 1–100 eV) illuminates the sample; the electrons undergo diffraction and
are captured by an objective lens to form a real-space image of the surface. Using a contrast aperture,
diffracted beams corresponding to either (0,0) or fractional order spots are selected to yield bright-field
or dark-field images, respectively. In LEEM, single-atom-height steps on the surface can be resolved
by phase contrast. Surface lateral resolution is typically of the order of several tens of Ångstroms.
Diffraction and chemical contrast also provide information about the surface. Since LEEM is not a
scanning microscope, images are acquired at video rates, thus providing sufficient time resolution for
real-time studies of dynamic phenomena such as epitaxy, interface formation, and surface morphological
evolution on large lateral length scales (1–10 µm) over a wide range of temperatures. LEEM, best suited
for investigating electrically conducting crystalline samples, has been used to study surface diffusion
of 2D metal islands [28], surface phase transformations [29], alloy formation, step fluctuation kinetics,
interlayer mass transport, and bulk diffusion. PEEM is a related technique, in which photo-electrons
generated by an incident UV or an X-ray light source (rather than an electron gun) are used for imaging.
PEEM has proven to be an effective tool for following chemical reactions on catalytic surfaces [30].
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There are several excellent review articles covering different aspects of atomic-scale dynamics of
the early stages of thin film growth. Zinke-Allmang and co-workers [31,32] summarized the theoretical
and experimental understanding of cluster formation phenomena in general, while focusing on the role
of adatom surface diffusion and binding energies on cluster formation kinetics. Tromp and Hannon [33]
described methods for quantitative analyses of nucleation and growth processes on surfaces. The reviews
by Jeong and Williams [34] and Giesen [35] provide theoretical background and describe experimental
and computational techniques for investigating and characterizing the dynamics of metastable structures
on surfaces, determining step energetics and mass transport parameters, and hence developing an atomic-
scale understanding of the stability of solid/vacuum and solid/liquid interfaces. Recently, Bonzel and
co-workers [36–38] reviewed new experimental methods for analyses of temperature-dependent 3D
equilibrium crystal shapes and 2D islands as a means to extract absolute surface, step, and kink formation
energies.

All of the above reviews assume isotropic (circular) or near-isotropic step energies. However, even
simple elemental metal surfaces are anisotropic and more complex compound surfaces such as the
low-index planes of TiN, GaAs, GaN, ZnO, Al2O3, ZrO2, are highly anisotropic. Here, we describe
recent progress toward developing generalized theoretical and experimental approaches for elucidating
the effects of step edge energy anisotropy on 2D island dynamics. We focus on the kinetics of 2D
island coarsening/decay (Ostwald ripening), temporal fluctuations around equilibrium island shapes,
shape relaxation following island coalescence in anisotropic systems, and the effect of intrinsic surface
stress anisotropy on island shapes. Section 2 describes methods to determine absolute step energies
as a function of step orientation, while Sections 3 and 4 discuss theoretical analyses of 2D island
coarsening/decay and coalescence kinetics, respectively. Conclusions and future prospects in this area
are discussed in Section 5.

2. Absolute orientation-dependent step energies

The step formation energy per unit length β is the 2D analog of the surface free energy per unit area
γ , a fundamental parameter used to describe crystals. Just as γ (n̂), where n̂ is a unit vector normal
representing a facet orientation, determines the 3D ECS, β(ϕ) determines the 2D equilibrium island
shape. ϕ is defined as the local normal to the equilibrium shape R at θ . A related property, the step-edge
stiffness β̃(ϕ), defined as

β̃(ϕ) ≡ β(ϕ) + dϕϕβ(ϕ), (1)

is proportional to the island chemical potential, and hence controls island coarsening/decay and shape-
evolution kinetics. For convenience, we use the notation dϕ and dϕϕ to represent d/dϕ and d2/dϕ2,
respectively, in Eq. (1) and in following sections.

Absolute step energy β and stiffness β̃ values for selected orientations have been determined
from equilibrium step distributions on vicinal surfaces [39], step fluctuation measurements [40],
3D ECSs [41–43,160,161], and the temperature-dependence of 2D equilibrium island shapes [44–46,
162]. Orientation-averaged β values have been extracted from 2D island decay [47–49] and near-
isotropic island shape fluctuation measurements [50,51]. Reviews by Bonzel [36,37], Jeong and Williams
[34], Giesen [35], and Zandvliet [52,53], for Si(001) and Ge(001) in particular, summarize available
methods for the determination of either orientation-averaged step energetics or step and surface energies
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for a particular orientation. Extraction of β(ϕ) using these approaches requires additional experiments.
Therefore, we focus only on recently developed methods for direct determination of absolute orientation-
dependent step energies and step stiffnesses from a single experiment.

In the following sections, we describe analyses of equilibrium anisotropic island shapes, in
combination with time-dependent shape fluctuations, as a means to obtain absolute ϕ-dependent step
energies and stiffnesses.

2.1. Equilibrium island shape analyses

The well-known Wulff construction provides a method for determining the 3D ECS from the Wulff
plot. Fig. 1 is a geometric representation of the Wulff and inverse-Wulff construction procedures for
an arbitrary equilibrium crystal shape W (x1, x2, x3) = 0. Geometrically, construction of a Wulff plot
involves drawing planes perpendicular to normal unit vectors at every point on the surface free energy
graph γ (n̂). The inner envelope of these planes corresponds to the equilibrium crystal shape (solid line
in Fig. 1). Similarly, the “inverse” Wulff construction allows a determination of γ (n̂) from the ECS
by drawing normal vectors (short dashed line) to the tangent planes (dashed line) along the crystal
boundary. The inner envelope of these normal vectors shown by the solid arrow in Fig. 1 yields relative
values of γ (n̂). Mathematically, the equilibrium shape function is the Legendre transform of γ (n̂)

and vice versa. Analytical expressions for the Wulff construction have been formulated in Cartesian
coordinates [54–57]. For 2D islands, Nozières [57] derived an expression in polar coordinates relating
β to the equilibrium shape and Khare et al. [58] provided analytical expressions of the Wulff theorem in
generalized orthogonal coordinates. Specifically, in polar coordinates, the inverse Legendre transform of
the 2D equilibrium island shape R(θ) yields relative values of β(ϕ) through the relationship [57,58]

β(ϕ) = λ
R(θ)(

1 +

(
∂θ R(θ)

R(θ)

)2
)1/2 , (2)

where ϕ is defined as

ϕ(θ) = θ − arctan
(

∂θ R(θ)

R(θ)

)
(3)

and the symbol ∂ represents the partial derivative.
The proportionality constant λ in Eq. (2) is the equilibrium island chemical potential per unit area. Eqs.

(2) and (3) offer an analytical approach for computing orientation-dependent β(ϕ) values to within an
orientation-independent constant λ. This method eliminates the conventional geometric construction of
the inverse-Wulff plot, which involves the tedious procedure of drawing normal vectors from the center
of mass of the island to the tangent lines at every point along R(θ), the envelope of which yields β(ϕ). It
is important to note that the equation β1/β2 = R1/R2, often referred to as the “Wulff relationship,” is not
valid for any arbitrary facet/step orientations 1 and 2. The relationship is only valid for the orientations
corresponding to maxima or minima in β, i.e. ∂θ R(θ) = 0, as can be seen from Eqs. (2) and (3) which
are applicable for the analysis of equilibrium shapes of 2D islands on flat terraces and facets on 3D
crystals. 2D islands are routinely observed on solid surfaces using surface imaging techniques such as
LEEM and STM.
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Fig. 1. Geometrical representation of the Wulff and inverse-Wulff plot constructions: at each point
→

R = (x1, x2, x3) on the
equilibrium crystal shape defined by W (x1, x2, x3) = 0, a plane is drawn tangential to the surface. The distance of the plane
from the origin O is proportional to γ (n̂), where γ is the surface energy of the plane with n̂ as the unit normal vector to the
plane. Ref. [58].

Fig. 2. Wulff plots, β versus ϕ, for commonly observed two-dimensional island shapes R(θ) on surfaces of cubic materials:
(a) four-fold, (b) two-fold, (c) six-fold, and (d) three-fold symmetric island shapes. The black curves represent the equilibrium
island shape functions R(θ), while the grey curves correspond to β(ϕ) obtained analytically using Eqs. (2) and (3) with λ set to
unity. Ref. [58].

Fig. 2(a)–(d) are polar plots R(θ) of rectangular, triangular, square, and hexagonal islands on 2-,
3-, 4-, and 6-fold symmetric surfaces, respectively. For an n-fold symmetric surface, island shapes are
obtained using simple functions of the form R(θ) ≡ a + b · sin(nθ), with n = 2, 3, 4, or 6. From R(θ),
relative values of β(ϕ) can be derived using Eqs. (2) and (3). The light grey curves in Fig. 2 are plots of
calculated β(ϕ) data obtained with λ = 1.
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From Eqs. (2) and (3), it can be shown that β̃(ϕ) is related to the curvature κ(θ) of the equilibrium
shape R(θ) through the expression [58,59]

β̃(ϕ) =
λ

κ(θ)
(4)

with

κ(θ) =
R2

+ 2(∂θ R)2
− R∂θθ R

[R2 + (∂θ R)2]3/2 . (5)

Also, from Eqs. (2) and (3), Khare et al. [58] derived the relationship ∂ϕβ/β(ϕ) = ∂θ R/R(θ) and used
this together with the inverse transforms:

R(θ) =

(
1
λ

) √
β2(ϕ) + (∂ϕβ)2 (6)

and

θ = ϕ + arctan(∂ϕβ/β(ϕ)) (7)

to predict island equilibrium shapes from β(ϕ). In the absence of prior knowledge of β(ϕ), a microscopic
approach such as the Ising model [60–66] can be used to calculate β(ϕ) or equilibrium island shapes
directly [67,68].

The procedures described thus far, which are general and valid for any material system, can be
used to analytically determine the relative orientation dependence of β from R(θ), and vice versa.
Fig. 3 shows two sets of consecutive STM images of 2D TiN vacancy islands on atomically smooth
TiN(001) (Fig. 3(a)) and (111) (Fig. 3(b)) terraces at 1140 K and 1200 K, respectively [69–71]. The
observed fluctuations in island shapes r(θ, t) are due to thermally induced random motion of the
diffusing species. Equilibrium island shapes R(θ), defined as R(θ) ≡ 〈r(θ, t)〉, for the TiN(001) and
TiN(111) islands corresponding to Figs. 3(a) and (b) are plotted as open symbols in the upper and lower
panels of Fig. 4(a). The solid lines are analytic fits obtained with Lorentzian functions of general form,
R = Ro +

a
[1+b(θ−θc)2]

, where Ro, a, b, and θc are fitting parameters. From R(θ), relative values of β(ϕ)

can be derived using Eqs. (2) and (3).
Polar plots of β(ϕ) (dotted line) calculated with λ = 1 for TiN(001) and TiN(111) islands in Figs. 3(a)

and (b) are shown in the upper and lower panels, respectively, of Fig. 4(b). The straight and corner steps
are 〈110〉 and 〈100〉 for TiN(001) islands, and 〈110〉 steps with different local symmetry, labeled S1
and S2, for TiN(111) islands. These 〈110〉 steps on NaCl-structure TiN(111) form {100} and {110}
nanofacets with respect to the terrace, analogous to the {111} and {100} nanofacets formed by the
alternating 〈110〉 steps bounding a simple face centered cubic (111) surface.

The relations given above are, however, based upon the assumptions that the island shape is
independent of island size and that the functions R(θ) and β(ϕ) are symmetric about the island’s center
of mass. These assumptions may not be valid for surfaces exhibiting either anisotropic surface stress
or reconstruction [72–74]. Fig. 5 is an illustration of a typical (110) surface of a face-centered cubic
material, for example Au(110), Pt(110), etc., which undergoes a missing row reconstruction and thus
exhibits broken mirror symmetry. In the case of Au(110), Frenken and co-workers [75–79] found that
2D equilibrium island shapes are symmetric about their centers of mass, i.e. R(2π/n −θ) = R(θ) for an
island with an n-fold symmetry. However, the island’s center of mass does not coincide with the point of
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Fig. 3. Consecutive STM images of 2D TiN vacancy islands on atomically smooth (001) and (111) TiN terraces, respectively.
Image size, scan rate, and annealing temperature Ta: (a) 338 × 338 Å2, 15 s/frame, and 1140 K; (b) 430 × 430 Å2, 32 s/frame,
and 1200 K. The images are taken from Refs. [69] and [71].

Fig. 4. Upper panel: (a) plot of R versus θ for the TiN(001) island shown in Fig. 3(a), and (b) polar plot of R versus θ and
β versus ϕ determined using Eqs. (2) and (3) with λ = 1. Lower panel: The corresponding plots for the TiN(111) island in
Fig. 3(b). The two 〈110〉 close-packed steps bounding the TiN(111) island are labeled S1 and S2, while the corresponding radial
distances from the center of the island are R1 and R2, respectively. Open circles represent experimental data and the solid lines
are the analytical fits obtained using Lorentzian functions of general form R = Ro +

a
[1+b(θ−θc)2]

. Refs. [69] and [71].

origin for the Wulff plot [80]. That is, β[(2π/n)−ϕ] 6= β(ϕ). Rather, β[(2π/n)−ϕ] = β(ϕ)+2d cos(ϕ),
where d is the distance between the island’s center of mass and the Wulff point [77]. Fig. 6 shows the
equilibrium shape of the island and its Wulff point.
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Fig. 5. (a) Schematic diagram showing a vacancy island in the (1 × 2) reconstructed Au (110) surface. (b) Cross section along
AB. As a consequence of the missing-row reconstruction inside and outside the vacancy island, the steps at the left and right
sides of the vacancy island are different. (c) Schematic top view of the island contour. The (331) steps are indicated with solid
lines and the (111) steps with dashed lines. Ref. [78].

Fig. 6. Wulff construction for an island on a Au (110)2 × 1 surface. As derived in the text, when the condition β(2π/n − ϕ) =

β(ϕ) + 2d cos(ϕ) is satisfied for all angles ϕ, the shape of the island is mirror symmetric with respect to a symmetry axis at a
distance d from the Wulff point W. Ref. [78].

2.1.1. Effect of surface stress on 2D equilibrium island shapes
So far, we have discussed the case in which 2D island shapes are determined only by the step energy

anisotropy [58] and elastic stress does not play a role. However, as pointed out by Vilfan [81], for
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Fig. 7. Schematic representations of (a) heteroepitaxial and (b) homoepitaxial 2D rectangular-shaped islands with length l and
width w grown on a surface exhibiting twofold symmetry. F represents the elastic force monopole along the island periphery
induced by the lattice mismatch between the island and substrate in Fig. 7(a), and by the intrinsic surface stress anisotropy in
Fig. 7(b). Dashed lines indicate alternating stress domains arising from surface stress anisotropy. Note that the force monopoles
on the two l sides in Fig. 7(b) point in a direction that is opposite to the force monopole in Fig. 7(a). Adapted from Ref. [72].

islands on (110) reconstructed face centered cubic metal surfaces, such as Ag and Au, elastic step–step
interactions can affect 2D island shapes. Carlon and van Beijeren [82] predicted that 2D islands on
reconstructed fcc(110) metal surfaces exhibit “almond” shapes. Frenken and coworkers [75,79] carried
out a detailed study of the decay of such almond-shaped islands on Au (110) and found that the decay
behavior of 2D islands cannot be predicted by classical mean-field theory [83]. They attributed this to
the highly anisotropic shapes of the islands [75,76,79].

Surface reconstruction can cause anisotropic stress on homoepitaxial islands. Consider, for example,
the (2 × 1) reconstructed surfaces of Si(001) and Ge(001). The reconstruction induces surface stress
in which domains on adjacent terraces are oriented perpendicular to each other. The surface stress is
highly anisotropic and is tensile along the dimer bond and compressive along the dimer row [84–89].
Such a surface with a broken orientational symmetry and an intrinsic surface stress tensor leads to the
spontaneous formation of elastic-stress domains [84–86]. A variety of interesting 2D and 3D surface
morphological patterns can form due to interactions between such domains [84–86,90,91]. This intrinsic
surface stress anisotropy also leads to the formation of elastic force monopoles at the 2D island edges, as
shown for 2D rectangular-shaped islands on Si(001) in Fig. 7 [72]. The magnitude of these monopoles
is proportional to the misfit strain and the surface step height and causes even homoepitaxial islands to
have anisotropic shapes [72]. The effect of these forces on the equilibrium shape of hetero- and homo-
epitaxial islands was investigated theoretically by Li et al. [72] using continuum elasticity theory. They
showed that, in the presence of such intrinsic stress anisotropy, island shapes depend not only on the
orientation dependence of the step energies, but also on the anisotropy of the surface stress.

The theoretical ideas presented in Ref. [72] were applied to analyze size-dependent changes in the
shapes of 2D Si(001) [92] and Ge(001) [93] islands. From the temperature- and size-dependence of the
island shapes, absolute step energies and intrinsic surface stress anisotropies were measured. For Si(001),
the surface stress anisotropy was found to be 68 ± 3 meV/Å2 at T = 1128 K and 80 ± 4 meV/Å2

at 968 K [92]. These results are in good agreement with calculated values for Si(001) obtained
using first principles [94–96]. For Ge(001), Middel et al. [93] measured surface stress anisotropy of
80 ± 30 meV/Å2 at 500 K. Xu et al. [97] applied the theoretical formalism in Ref. [72] to investigate the
effect of partial monolayers of Cl on Si(001) surface stress anisotropy and step energies. Anisotropic
island shapes have also been observed on the reconstructed GaAs(001)2 × 4 surface and on Ising
model surfaces [98–100]. For Si(111) at temperatures corresponding to the coexistence of “1 × 1” and
7 × 7 reconstructed phases, elastic force monopoles at the interfaces of the phase domains lead to size-
dependent domain shapes [29,33,101–103].
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Fig. 8. Schematic diagram illustrating the equilibrium R(θ) and temporal r(θ, t) shapes of an anisotropic hexagonal-shaped
island. Ref. [58].

2.2. Anisotropic 2D island shape fluctuation analyses

As shown in the previous section, orientation-dependent β values can be determined analytically to
within the scale factor λ, the equilibrium chemical potential of the island per unit area, from R(θ). λ is
independent of step orientation and sets the energy scale for mass transport on the surface. The theory
of anisotropic shape fluctuations [58] provides a method for determining λ and, hence, absolute β(ϕ)

values from measurements of temporal fluctuations about 2D equilibrium shapes of both isotropic and
highly anisotropic islands. This method has been applied to extract absolute orientation-dependent step
energies on TiN(111) [69,70] and Pb(111) [104].

Thermal fluctuations about the equilibrium island shape are caused by random motion of edge atoms
and/or adatom attachment/detachment at step edges. As a result, the total step free energy of the island
increases. Akutsu and Akutsu [105] have shown that step stiffness β̃ is inversely related to the fluctuation
width of an island step. Khare and Einstein [59,106] derived a formalism relating shape fluctuations to
the step energy for isotropic (i.e., circular) islands. This approach, which is restricted to the case of
isotropic, or near-isotropic, island shapes, was applied to determine orientation-averaged step energies
on Cu(111), Ag(111), and Cu(001) [50] surfaces. However, even simple elemental metal surfaces are
anisotropic. Since the variation of β with ϕ determines the equilibrium shape of 2D islands and the
related property β̃(ϕ) controls 2D island coarsening/decay, coalescence, and shape fluctuation kinetics,
knowledge of β(ϕ) and β̃(ϕ) is essential.

The symbols R and r in the following discussion refer to the equilibrium island shape R(θ) and
the time-dependent fluctuating shape r(θ, t). Fig. 8 is a schematic diagram illustrating the relationship
between R and r for an anisotropic hexagonal-shaped island. The total free energy F(t) of an island is
related to the island shape r through the relationship

F(t) =

∫ 2π

0
dθ (β[ϕ(θ, t)]∂θ s) . (8)

In Eq. (8), ∂θ s = [r2
+ (∂θr)2

]
1/2 is the differential step length element along the island boundary

and ϕ(θ, t) is the angle between the local normal to the fluctuating shape at r(θ, t) and the x axis, as
shown in Fig. 8. β(ϕ) in Eq. (8) is also a function of θ and t . Since the equilibrium shape corresponds to
the minimum free energy Fo, temporal deviations g(θ, t) from the equilibrium shape result in a change
in free energy 1F(t) ≡ F(t) − Fo, where g ≡ g(θ, t) is defined as in Ref. [50] to be the normalized
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deviation of the temporal shape r ≡ r(θ, t) from the equilibrium shape R ≡ R(θ). Thus,

g ≡ [r − R]/R. (9)

In order to derive an expression for λ in terms of the measurable quantity g, a function f ≡ f (θ, r, ∂θr)

is constructed to yield

f (θ, r, ∂θr) = β[ϕ(θ, t)]∂θ s − λ (r2/2) (10)

such that F(t) =
∫ 2π

0 dθ [ f (θ, r, ∂θr)]. The second term in Eq. (10) accounts for the constant area
constraint with the Lagrange multiplier λ. Expanding f to second order in r and ∂θr by Taylor’s theorem
and neglecting higher order terms results in

f (θ, r, ∂θr) = f 0(θ, R, ∂θ R) + f 1(θ, R, ∂θ R) + f 2(θ, R, ∂θ R), (11)

where the superscripts to the function f denote the order of differentiation.
For the equilibrium island shape, β and ϕ are given by Eqs. (2) and (3) with r ≡ R, and ∂θr ≡ ∂θ R.

Thus, from Eq. (10), f 0(θ, R, ∂θ R) = (λR2)/2. Note that f 1(θ, R, ∂θ R) = 0 is the stability condition
for equilibrium. Upon simplification, with β and β̃ expressed in terms of R and λ according to Eqs. (2),
(3), (4), and (5), Eq. (11) reduces to

f (θ, r, ∂θr) =
λR2

2

{
1 +

R2∂θ g2

(R2 + 2(∂θ R)2 − R∂θθ R)
− g2

}
. (12)

Thus, the fluctuating component of the free energy functional 1F(t) is given by

1F(t) = −λ

∫ 2π

0
dθ(P(θ)g2

− X (θ)(∂θ g)2), (13)

with functions P(θ) and X (θ) defined as

P(θ) ≡
R2

2
(14)

and

X (θ) ≡
R4

2[R2 + 2(∂θ R)2 − R∂θθ R]
. (15)

Representing the functions g, P(θ), and X (θ) as Fourier series g =
∑

n gn(t)einθ , P(θ) =
∑

n Pneinθ ,
and X (θ) =

∑
n Xneinθ , respectively, Eq. (13) can be written in terms of the Fourier components gn(t),

Xn , and Pn as

1F(t) = −2πλ
∑
m,n

[P−n−m + (mn)X−n−m]gm(t)gn(t). (16)

Note that Pn and Xn in Eq. (16) are independent of time; temporal changes in the total free energy are
only due to gn(t). From the definition of g in Eq. (9), 〈g(θ, t)〉 ≡ g0(t) ≡ 0. Thus, for fluctuation modes
m = n = 0, the summations in Eq. (16) are equal to zero. Furthermore, the equalities g∗

n(t) ≡ g−n(t),
P∗

n ≡ P−n , and X∗
n ≡ X−n , where the superscript * denotes the complex conjugate, guarantee that
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Fig. 9. Absolute values of β versus ϕ (dashed line) and β̃ versus ϕ (solid line) for a TiN(111) vacancy island at Ta = 1248 K.
Ref. [70].

the functions g, P , and X are all real and have no imaginary components. Szalma and Einstein [104]
expressed 1F(t) as a diagonalizable matrix of the form

1F[{gn}; t] = 2πλ
∑

n
Λngng∗

n , (17)

where Λn in Ref. [104] are the eigenvalues of the matrix [P−n−m + (mn)X−m−n] in Eq. (16) and {gn}

denotes gn(t) at all allowed values of n.
Ignoring the entropic contribution to the free energy yields 1F ≈ 1U , where 1U is the internal

energy of the fluctuating island. 1F has the same functional form as the Hamiltonian H({xn}), a
homogeneous function of {xn} which satisfies the condition given by the generalized equipartition
theorem [107],〈

xn
∂ H

∂xm

〉
= δm,nkB T, (18)

where xn represents either canonical momenta pn or coordinates qn and δm,n is the Kronecker delta
function. Combining Eqs. (17) and (18) yields an expression for λ in terms of the experimentally
measurable parameters R and g as [104]:

λ =

(
kB T

2

)
1

2πΛn〈|gn|
2〉

. (19)

Eq. (19), together with Eqs. (2)–(5), can be used to determine absolute values of β(ϕ) and β̃(ϕ).
The dashed and solid lines in Fig. 9 are typical plots of β(ϕ) and β̃(ϕ), in this case for a 2D TiN(111)
vacancy island at T = 1248 K. For the two 〈110〉 steps, we obtain: β1 = 0.23 ± 0.05 eV/Å and
β̃1 = 1.9 ± 1.1 eV/Å with β2 = 0.33 ± 0.07 eV/Å and β̃2 = 0.08 ± 0.02 eV/Å over the observed
temperature range (1165–1248 K) [69].

An alternate approach to determine absolute step energies, described below, is via the combined
analyses of 2D island decay and equilibrium shape measurements.



S. Kodambaka et al. / Surface Science Reports 60 (2006) 55–77 67

3. Analyses of 2D island decay (Ostwald ripening) kinetics

The phenomenon of 2D island coarsening/decay or Ostwald ripening [54,108–111], where large 2D
clusters grow at the expense of smaller clusters, is described by the Gibbs–Thomson (GT) equation,
which relates the equilibrium free adatom concentration ρeq associated with an island to the equilibrium
island chemical potential per unit area λ through the expression

ρeq
= ρ

eq
∞ exp

(
λΩ
kT

)
. (20)

ρ
eq
∞ is the equilibrium free adatom concentration of a straight step and λ is related to the orientation-

dependent island curvature κ(θ) and the step edge stiffness β̃(ϕ) as [54]

λ = β̃(ϕ)κ(θ), (21)

where Ω is the unit atomic area. Smaller islands have higher curvatures, and hence higher adatom
concentrations, than larger islands resulting in adatom transfer from small to large islands. Thus,
coarsening is simply curvature-driven mass transport. The process involves desorption of the diffusing
species from a parent island, migration across the terrace, and attachment at neighboring step edges.

The general phenomenon of Ostwald ripening was first observed using STM on Au surfaces
by Jaklevic and Elie [112], Gimzewski, Berndt, and Schlittler [113], and Peale and Cooper [114].
Quantitative investigations of 2D island coarsening/decay kinetics were carried out for Si(001) by Theis
et al. [115] using LEEM. Since then, several groups have studied 2D island coarsening/decay kinetics
on metal [47,48,75,79,116–130], semiconducting [101,131–137], ceramic [138,139], and metallic
compound [49,140–144] surfaces, and at solid–liquid interfaces [145–148]. Unusual coarsening behavior
was observed on Au (110) [76,77].

Classical mean-field theory formulations [83,109–111] describing Ostwald ripening kinetics predict
power law behavior for island radii as a function of time with exponents of 1/3 for diffusion-limited
and 1/2 for detachment-limited kinetics. These simple scaling relations are derived on the basis of the
assumptions that the islands are small, the effect of the local adatom environment surrounding the islands
is negligible, and that step energies are isotropic.

Accurate determination of adatom transport parameters and step energies from island
coarsening/decay kinetics requires either solving the decay rate equations numerically [47,48] or detailed
modeling of diffusion-limited decay rates for the entire island ensemble while accounting for differences
in local adatom concentrations across the entire surface slab [119,117,149]. However, these procedures
are tedious and, quite often, surface boundary conditions are not well-defined in experimental results due
to the limited fields of view and the presence of island diffusion and coalescence events. This difficulty
can be overcome by employing an elegant and simple approach [120,142] in which a series of isolated
island configurations, a single adatom island in a vacancy pit and/or on a larger terrace island are prepared
by deposition or sputter-etching.

Two sets of three typical STM images of the decay of a 2D TiN(001) adatom island (light grey) within
a single-atom-deep vacancy island (dark grey) and on an isolated single-atom-height terrace are shown
in Figs. 10 and 11, respectively [142]. In the diffusion-limited regime, the total energy Ea required to
remove an adatom from a step edge is equal to the sum of the adatom formation energy E f and the
activation energy Es for diffusion on the terrace, as shown schematically in Fig. 12. Island decay in both
the above simple isolated island configurations (single adatom islands concentrically placed in a vacancy
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Fig. 10. Scanning tunneling microscopy (STM) images (375 × 300 Å
2
) of a single TiN adatom island (light grey) in a vacancy

pit (dark grey) at times (a) ta = 0, (b) 11, and (c) 23 min during annealing at Ta = 1113 K. Ref. [142].

Fig. 11. Three STM images (800 × 800 Å
2
) of a single TiN adatom island (light grey) on a terrace (darker grey) at times (a)

ta = 0, (b) 23, and (c) 46 min during annealing at Ta = 1123 K. Ref. [142].

Fig. 12. Schematic diagram of surface activation barriers near an island step edge: Es is the diffusion barrier, E f is the adatom
formation energy, and Eb is the Ehrlich step edge barrier. Ref. [142].

pit and on a terrace) involves the detachment of adatoms which diffuse across the surrounding terrace to
reattach at step edges. However, for the island in the pit, attachment occurs at ascending step edges while,
for the terrace island, adatoms have to overcome an additional Ehrlich barrier Eb for adatom transport
over step edges leading to attachment at descending steps. The difference in the activation energies for
island decay on terraces and in the vacancy pits corresponds to Eb. Since boundary conditions for the
island configurations in Figs. 10 and 11 are given exactly by the Gibbs–Thomson relation in Eq. (20),
adatom transport parameters, the Ehrlich barrier, and step energies can be determined accurately from
time- and temperature-dependent measurements of island decay.

However, for anisotropic islands, where β̃ is a strong function of ϕ, the modeling of island dissolution
kinetics using Eqs. (20) and (21) requires the calculation of orientation-dependent island curvature at
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each time step and a priori knowledge of β̃(ϕ). This approach is computationally intensive, prone to
errors, as the calculations are carried out on a discrete set of island shape data, and cannot be employed
if β̃(ϕ) is unknown.

3.1. Modified Gibbs–Thomson relation for anisotropic islands

Here, a modified expression for the Gibbs–Thomson relation is derived that simplifies the analysis for
anisotropic island decay kinetics. κ(θ) in Eq. (21) can be expressed by the relation

κ(θ) =
S(θ)

ravg
, (22)

where

S(θ) =
{[r(θ)/ravg]

2
+ 2 [∂θr/ravg]

2
− [r(θ)∂θθr/r2

avg]}

{[r(θ)/ravg]
2 + [∂θr/ravg]

2}3/2 (23)

is a dimensionless orientation-dependent curvature function describing the equilibrium shape and ravg =
√

A/π is the average island radius. Combining Eqs. (4) and (21)–(23), an exact expression for λ is
obtained in terms of the orientation-independent parameters ravg and B [71]:

λ =
B

ravg
, (24)

with

B ≡ β̃(ϕ)S(θ). (25)

B, defined in Eq. (25), determines the energy scale of the surface equilibrium chemical potential.
It is important to note that the parameter B is related to, but not equal to, the orientation-averaged

step energy βavg, defined as βavg =
1

2π

∫ 2π

0 β(ϕ)dϕ. Using the transformation ∂θϕ = κ(θ)

√
(R2 + ∂2

θ R)

derived from Eq. (3), together with Eqs. (2) and (24), we find that βavg =
B

2πr2
avg

∫ 2π

0 R2(θ)S(θ)dθ .

Eq. (20) can now be written in terms of B and ravg as [71]

ρeq
= ρ

eq
∞ exp

(
BΩ

ravgkT

)
. (26)

For the case of isotropic (circular) islands, B = β and ravg = r̃ and the isotropic GT equation,
ρeq

= ρ
eq
∞ exp(βΩ/r̃ kT ), is recovered. Note that Eq. (26), while analogous to the GT relation for a

circular island, is an exact expression that is valid for anisotropic islands with any arbitrary equilibrium
island shape. More importantly, Eq. (26) provides a convenient and simple approach for modeling the
coarsening/decay kinetics of anisotropic islands based on the measurable parameters B and ravg.

Fig. 13(a) and (b) are plots of ravg versus annealing time ta for the 2D TiN(001) adatom island in a
vacancy pit shown in Fig. 10 and the TiN(001) adatom island on a terrace in Fig. 11, respectively. The
open circles are the measured data, while the solid lines are calculated curves using the least squares
best fit value for B, 0.23 eV, obtained using the diffusion-limited island decay model described in
Ref. [142] to fit STM data for TiN(001) island decay. These results, together with the relative β(ϕ)
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Fig. 13. ravg versus ta plots for (a) the adatom island in a vacancy pit shown in Fig. 10 and (b) the adatom island on a terrace
shown in Fig. 11. The open squares are measured data, while the solid lines are obtained using the diffusion-limited island
decay model with B = 0.23 eV/Å. Ref. [142].

data for TiN(001) islands in Fig. 4(b) obtained from the 2D equilibrium island shape analyses described
in Section 2, are used to extract absolute orientation-dependent step energies and step stiffnesses. For
〈110〉 and 〈100〉 steps on TiN(001), we obtain: β110 = 0.21 ± 0.05 eV/Å, β100 = 0.25 ± 0.05 eV/Å,
β̃110 = 0.9 ± 0.2 eV/Å, and β̃100 = 0.07 ± 0.02 eV/Å [71]. Complete β(ϕ) and β̃(ϕ) data for TiN(001)
are shown in Fig. 14.

Information concerning the variation of β̃ with ϕ is essential for the analysis of island coalescence
whose kinetics are also controlled by step stiffness, as discussed below.

4. Anisotropic 2D island coalescence kinetics

Island coalescence, driven by step edge energy minimization, occurs during film growth or annealing
when two or more islands contact each other as a consequence of coarsening and/or island diffusion.
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Fig. 14. Absolute values of β versus ϕ (dashed line) and β̃ versus ϕ (solid line) for a TiN(001) vacancy island at Ta = 1140 K.
Ref. [71].

Subsequent reshaping of the coalesced island toward its equilibrium shape requires mass transport whose
kinetics depend on one or more of the following mechanisms: edge diffusion, attachment/detachment
at island step edges, and surface diffusion. The equilibration kinetics of 1D step [150–152] and 2D
island [151,153] shapes formed due to step–island and island–island coalescence, respectively, on
(100) and (111) fcc surfaces have been studied experimentally using STM. Kinetic Monte Carlo
simulations [151,154,155] and continuum models [156,157], based on Mullin’s theory for surface
relaxation [54], have also been used to investigate the relaxation kinetics of far-from-equilibrium
structures. In this section, we review recent progress in quantitative analyses of 2D anisotropic island
reshaping kinetics and extraction of edge-atom mass transport parameters.

In a continuum model for 2D island shape evolution via edge diffusion [155], the normal component
vn of the step edge velocity is related to the step chemical potential µ as

vn(ϕ, t) =

(
Ωσedge

kT

)
∇

2
s µ(ϕ, t). (27)

ϕ in Eq. (27) is the local step orientation, i.e. the angle of the local step normal, ∇s = [(∂s x)2
+

(∂s y)2
]
−1/2∂s , in which s is the arc length element along the island boundary [x(s, t), y(s, t)] and σedge

is the edge mobility of the diffusing species. Expressing µ in terms of the step curvature κ(s, t) and step
stiffness β̃(ϕ) as µ(ϕ, t) = β̃(ϕ)κ(s, t)Ω yields

vn(ϕ, t) = C∇
2
s [κ(s, t)β̃(ϕ)] (28)

with C = σedgeΩ2/kT . For an isotropic (circular) island, where β̃(ϕ) ≡ β is a constant, Eq. (28) reduces
to a mathematical representation of the Laplacian of curvature-driven 2D surface evolution [158]. For
anisotropic islands, however, β̃(ϕ) varies with step orientation and Eq. (28) must be used in its exact
form. If σedge is also a function of ϕ, then the solution of Eq. (28) depends on the functional form of
σedge. For convenience, σedge is assumed to be independent of step orientation in the numerical procedure
described below.

Imaging techniques such as STM and LEEM are commonly used to obtain non-equilibrium island
shapes as a function of annealing time ta and temperature Ta. Fig. 15(a)–(d) consists of two sets of four
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Fig. 15. (a)–(d): Representative STM images, acquired at 44 s/frame, showing coalescence and subsequent reshaping of 2D TiN

adatom islands during annealing: (upper panel) TiN(001), Ta = 1123 K, scan size = 220 × 320 Å
2
; (lower panel) TiN(111),

Ta = 1146 K, scan size = 290 × 330 Å
2
. Ref. [159].

representative STM images showing 2D TiN adatom island coalescence and subsequent shape evolution
on atomically smooth (001) (upper panels) and (111) (lower panels) TiN terraces as a function of
annealing time ta [159]. Both sets of images were acquired at a rate of 44 s/frame. We define ta = 0 as the
time at which the first image (Fig. 15(b)) of the coalesced island was acquired. The two square TiN(001)
islands shown in the upper panel of Fig. 15(a) initiate coalescence at corner 〈100〉 steps and form a

“figure-eight” shaped island (Fig. 15(b)), with area A = 1.1×104 Å
2

and perimeter L(ta = 0 s) = 480 Å,
which relaxes to its equilibrium shape in ≈ 840 s (Fig. 15(d)). Truncated-hexagonal TiN(111) islands
shown in the lower panel of Fig. 15(a) coalesce at corner 〈110〉 steps resulting in a “saw-tooth” shape

(figure Fig. 15(b)) with A = 3.6 × 104 Å
2

and L(ta = 0 s) = 934 Å. The coalesced (111) island reaches
its equilibrium shape in ≈2330 s (see Fig. 15(d)). Experimentally determined values for the island
perimeter L are plotted in Fig. 16(a) and (b) as a function of ta during the relaxation of the coalesced
TiN(001) and TiN(111) adatom islands shown in Fig. 15. In both cases, L decreases monotonically to a
minimum value Leq corresponding to the equilibrium island shape.

From the images, island boundaries are determined. The boundary coordinates of the ta = 0 image are
represented by a series of equally spaced points [x(s), y(s)] separated by s. At each time step 1t , a finite
difference approximation is used to compute the first and second spatial derivatives [xs, ys] and [xss, yss]

at positions [x(s), y(s)] along the boundary. The step orientation ϕ(ta) and curvature κ(s, ta) are then
determined from the expressions ϕ(s, ta) = arctan(−xs/ys) and κ = (xs yss − xss ys)/(x2

s + y2
s )3/2,

respectively. β̃[ϕ(s, ta)] values for all step orientations ϕ(s, ta) are interpolated from β̃(ϕ) data. The step
edge velocities vn = [1x/1t, 1y/1t] · n̂(s, ta), where n̂(s, ta) is the unit normal vector to the arc s at ta,
are then obtained. New boundary coordinates [x +1x, y +1y] and the island perimeter L are calculated
as a function of time until L reaches a minimum value corresponding to the equilibrium island shape.

In solving Eq. (28), the only free parameter is the quantity τ = C1t , where C and 1t are inversely
related to each other. The parameter C , and hence the edge mobility σedge, is determined by comparing
the calculated shapes Scalc(τ ) ≡ [x(s, τ ), y(s, τ )] with the experimentally measured island shapes
Sexp(ta) ≡ [x(s, ta), y(s, ta)] using the following procedure. A characteristic function fn(x, y) (n = 1
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Fig. 16. Upper panel: island perimeter L plotted as a function of annealing time ta for the (a) TiN(001) and (b) TiN(111) adatom
islands shown in Fig. 15. Lower panel: time-dependent shapes of the islands labeled 1, 2, 3, and 4 in the upper panel. Symbols
are experimental data while solid lines are calculated curves obtained using (Eq. (28)). Ref. [159].

or 2) is defined such that, for a given set of points (x, y), fn(x, y) = (−1)n−1 if (x, y) is inside the
curves Sexp and Scalc and fn(x, y) = 0 if (x, y) is outside the curves Sexp and Scalc. A new function
h(x, y) = | f1(x, y) + f2(x, y)| is then defined such that h(x, y) = 1 for the set of points (x, y) that
are simultaneously inside (outside) Scalc and outside (inside) Sexp and h(x, y) = 0 if (x, y) is either
inside or outside both Scalc and Sexp. A measure of the agreement between the two curves Scalc and
Sexp is then given by H =

∫∫
dxdyh(x, y), where H = 0 corresponds to Scalc ≡ Sexp. H values

are determined by comparing calculated island shapes Scalc(τ ) at all steps τ with the experimental data
Sexp(ta) at each ta. The minimum value Hmin(ta, τcalc) yields the calculated parameter τcalc for which best
fits are obtained between Scalc(τcalc) and the experimental data Sexp(ta). Calculated island perimeters L ,
plotted as solid lines in Fig. 16(a) and (b) as a function of τcalc/C for TiN(001) and TiN(111) islands,
are in good agreement with the experimental data. The lower panels in Fig. 16 show typical calculated
curves (solid lines) and experimentally determined island shapes (dotted lines) at the times labeled 1–4
in the upper panels. From the τcalc values, we obtain orientation-averaged edge-atom mobilities σedge

of 21.7 ± 0.4 Å/s for TiN(001) and 36 ± 1.1 Å/s for TiN (111) [159]. For comparison, the adatom
mobilities are ≈ 4.9 × 10−2 Å/s and 7.8 × 10−2 Å/s for diffusion- and detachment-limited decay of 2D
TiN adatom islands on (001) and (111) TiN terraces, respectively [141,142]. These results indicate that
edge-atom mobilities on (001) and (111) TiN terraces are faster than terrace adatom mobilities.

5. Conclusions

In this report, we reviewed recent progress toward developing generalized theoretical and
experimental approaches elucidating the effects of step edge energy anisotropy on the temperature-
dependent dynamics of 2D anisotropic islands. Specifically, we focussed on the kinetics of 2D
island coarsening/decay (Ostwald ripening), temporal fluctuations about equilibrium island shapes, and
shape relaxation following island coalescence in anisotropic systems. We presented a combination
of experimental and theoretical methods for the determination of absolute orientation dependent step
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energies and step stiffnesses, which are required for the quantitative description of highly anisotropic
island dynamics.

This report is intended to complement and extend the existing literature on isotropic island dynamics
and to be useful for analyzing surface dynamics on anisotropic (i.e., “real”) material surfaces. With the
recent surge of interest in the synthesis and characterization of nanostructures, there is a growing need for
an understanding of the atomic-scale mechanisms governing nanostructure stability. Hence, the existing
formalism describing anisotropic 2D island dynamics should be extended to the analysis of anisotropic
3D nanostructures.
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