Electronic and bonding analysis of hardness in pyrite-type transition-metal per-nitrides MN₂ A first-principles investigation

Z. T. Y. Liu¹ S. V. Khare¹, D. Gall²

Sanjay V. Khare

Sanjay.khare@utoledo.edu http://astrol.panet.utoledo.edu/~khare/index.html ¹Department of Physics and Astronomy University of Toledo

² Department of Materials Science and Engineering Rensselaer Polytechnic Institute

Motivation for Transition Metal Nitrides (TMNs)

Materials applications interest

hard coatings

optics

micro-electronics

- Refractory hard materials
- Extremely high hardness wear resistance
- High melting points thermal resistance
- Good electrical and thermal conductivity
- Good corrosion or oxidation resistance

Elements of Interest

Can we obtain a predictive understanding of intrinsic hardness from first principles computations to guide experiments?

	1 H 1.00794																	2 He 4.002602
	3 Li 6.941	4 Be 9.012182		-		• . •							5 B 10.811	C 12.0107	7 N 14.00674	8 0 15.9994	9 F 18.9984032	10 Ne 20.1797
	11 Na 22.989770	12 Mg ^{24,3050}		тт 	ans	itior	1 me	etal	eler	nen	ts		13 Al 26 581 538	14 Si 28.0855	15 P 30.973761	16 S 32.066	17 Cl 35.4527	18 Ar 39.948
3 d	19 K 39.0983	20 Ca 40.078	21 Sc 44.955910	22 Ti 47.867	23 V 50.9415	24 Cr 51.9961	25 Mn 54.938049	26 Fe 55.845	27 CO 58.933200	28 Ni ^{58.6534}	29 Cu 63.545	30 Zn 65.39	31 Ga 69.723	32 Ge 72.61	33 As 74.92160	34 Se 78.96	35 Br 79.504	36 Kr 83.80
4d	37 Rb 85.4678	38 Sr 87.62	39 Y 88.90585	40 Zr 91.224	41 Nb 92.90638	42 Mo 95.94	43 Tc (98)	44 Ru 101.07	45 Rh 102.90550	46 Pd 106.42	47 Ag 196.56655	48 Cd 112.411	49 In 114.818	50 Sn 118.710	51 Sb 121.760	52 Te 127.60	53 126.90447	54 Xe 131.29
5d	55 Cs 132.90545	56 Ba 137.327	57 La 138.9055	72 Hf ^{178.49}	73 Ta 180.94.79	74 W 183.84	75 Re 186.207	76 Os 190.23	77 Ir 192.217	78 Pt 195.078	79 Au 196.56655	80 Hg 200.59	81 T 204.3833	82 Pb 207.2	83 Bi 208.58038	84 Po (209)	85 At (210)	86 Rn (222)
	87 Fr (223)	88 Ra (226)	89 Ac (227)	104 Rf (261)	105 Db (262)	106 Sg (263)	107 Bh (262)	108 Hs (265)	109 Mt (266)	110 (269)	111 (272)	112 (277)		114 (289) (287)		116 (289)		118 (293)
				58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy 162.50	67 Ho	68 Er	69 Tm	70 Yb	71 Lu	
				90 Th 232.0381	91 Pa 231.035888	92 U 238.0289	93 Np (237)	94 Pu (244)	95 Am (243)	96 Cm (247)	97 Bk (247)	98 Cf (251)	99 Es (252)	100 Fm (257)	101 Md (258)	102 No (259)	103 Lr (262)	

Published work

Z. T. Y. Liu, D. Gall, and S. V. Khare, Phys. Rev. B 90, 134102 (2014).

Z. T. Y. Liu, X. Zhou, D. Gall, and S. V. Khare, Comput. Mater. Sci. 84, 365 (2014).

Z. T. Y. Liu, X. Zhou, S. V. Khare, and D. Gall, J. Phys.-Condens. Matter 26, 025404 (2014).

X. Zhou, D. Gall and S. V. Khare Journal of Alloys and Compounds 595, 80 (2014).

S. K. R. Patil, N. S. Mangale, S. V. Khare, and S. Marsillac, Thin Solid Films 517, 824 (2008).

Computational Property Database of Likely Cubic Transition Metal Nitrides

M – transition metal

Structures	Formula	Stoichiometry	3d	4d	5d
M_4N	M_4N	4:1			
Anti-ReO3	M_3N	3:1			
Zinc blende	MN	1:1			
Rocksalt	MN	1:1			
Cesium chloride	MN	1:1			
NbO	MN	1:1			
Th_3P_4	M_3N_4	3:4			
Fluorite	MN_2	0.5:1			
Pyrite	MN_2	0.5:1			

Our published work

About to publish

Materials Genome Initiative (MGI)

Designing Materials to Revolutionize and Engineer our Future (DMREF)

X. Zhou, D. Gall and S. V. Khare, J. Alloys Compd. 80, 595 (2014).

 $Z.\,T.\,Y.\,Liu,\,X.\,Zhou,\,S.\,V.\,Khare,\,and\,D.\,Gall,\,J.\,Phys.-Condens.\,Matter~26,025404~(2014).$

Z. T. Y. Liu, X. Zhou, D. Gall, and S. V. Khare, Comput. Mater. Sci. 84, 365 (2014).

Z. T. Y. Liu, D. Gall, and S. V. Khare, Phys. Rev. B 90, 134102 (2014).

S. K. R. Patil, N. S. Mangale, S. V. Khare, and S. Marsillac, Thin Solid Films 517, 824 (2008).

Computed Structures of Transition Metal Nitrides

The General Procedure

Experimental synthesis of pyrite-type PtN₂

E.Gregoryanz, C. Sanloup, M. Somayazulu, J. Badro, G. Giquet, H-K. Mao, and R. J. Hemley, Nat. Mat. 3, 294 (2004).

Although numerous metals react with nitrogen there are no known binary nitrides of the noble metals. We report the discovery and characterization of platinum nitride (PtN_2), the first binary nitride of the noble metals group.

This compound can be formed above 45–50 GPa and temperatures exceeding 2,000 K, and is stable after quenching to room pressure and temperature.

Synchrotron X-ray diffraction shows that the new phase is cubic with a remarkably high bulk modulus of 372±5 GPa.

No thin film fabrication reported yet!

More noble metal nitrides synthesized

Experiments

- PtN₂, (J. C. Crowhurst *et al.*, Science 311, 1275 (2006).)
- IrN₂, OsN₂ (A. F. Young *et al.*, Phys. Rev. Lett. 96, 155501 (2006).)

Computations

- IrN₂, OsN₂ (A. F. Young *et al.*, Phys. Rev. Lett. 96, 155501 (2006).)
- PtN₂, (R. Yu *et al.*, Appl. Phys. Lett. 88, 51913 (2006).)
- PtN₂, (J. C. Crowhurst et al., Science 311, 1275 (2006).)
- PtN, (S. K. R. Patil et al., Phys. Rev. B 73, 104118 (2006).)

Results

- Made in diamond anvil cells at 2000K and P = 50 GPa. Recovered at 300K and 0.1 MPa, ambient conditions.
- PtN₂ is now confirmed to be in pyrite phase.
- IrN₂, (hexagonal symmetry) and OsN₂ (orthorhombic symmetry) structures not fully confirmed.
- No thin film production method discovered!

Fluorite(C1) Phase [MN₂]

Pyrite (C2) Phase [MN₂]

Lattice Vectors

- $\begin{array}{rcl} \mathbf{A}_1 & = & \mathbf{a} \mathbf{X} \\ \mathbf{A}_2 & = & \mathbf{a} \mathbf{Y} \end{array}$
- $A_3 = aZ$

Basis Vectors

B₁ 0 = \mathbf{B}_2 $= \frac{1}{2} \mathbf{A}_2 + \frac{1}{2} \mathbf{A}_3$ $\mathbf{B}_3 = \frac{1}{2} \mathbf{A}_1 + \frac{1}{2} \mathbf{A}_3$ $\mathbf{B}_{4} = \frac{1}{2} \mathbf{A}_{1} + \frac{1}{2} \mathbf{A}_{2}$ $B_5 = u A_1 + u A_2 + u A_3$ B₆ = -u **A**₁ - u **A**₂ - u **A**₃ = $(\frac{1}{2} + u) \mathbf{A}_1 + (\frac{1}{2} - u) \mathbf{A}_2 - u \mathbf{A}_3$ \mathbf{B}_7 B₈ = $-(\frac{1}{2} + u) \mathbf{A}_1 - (\frac{1}{2} - u) \mathbf{A}_2 + u \mathbf{A}_3$ = $- u \mathbf{A}_1 + (\frac{1}{2} + u) \mathbf{A}_2 + (\frac{1}{2} - u) \mathbf{A}_3$ Bo **B**₁₀ = $u \mathbf{A}_1 - (\frac{1}{2} + u) \mathbf{A}_2 - (\frac{1}{2} - u) \mathbf{A}_3$ = $(\frac{1}{2} - u) \mathbf{A}_1 - u \mathbf{A}_2 + (\frac{1}{2} + u) \mathbf{A}_3$ **B**₁₁ = $-(\frac{1}{2} - u) \mathbf{A}_1 + u \mathbf{A}_2 - (\frac{1}{2} + u) \mathbf{A}_3$ **B**₁₂

- = $(\frac{1}{2} \mathbf{u}) \mathbf{a} \mathbf{X} \mathbf{u} \mathbf{a} \mathbf{Z} + (\frac{1}{2} + \mathbf{u}) \mathbf{a} \mathbf{Z}$
- $= -(\frac{1}{2} \mathbf{u}) \mathbf{a} \mathbf{X} + \mathbf{u} \mathbf{a} \mathbf{Z} (\frac{1}{2} + \mathbf{u}) \mathbf{a} \mathbf{Z}$

Pyrite Structure

cubic $Pa\overline{3}$ PtN₂

a = 4.877 Å

Nitrogen atom at

(0.416, 0.416, 0.416)

Cohesive Energy of MN (M – metal)

 $E_{coh} = (E_{M} + E_{N} - E_{MN})/2$

The larger, the more stable thermodynamically

Fluorite phases are in general less stable than pyrite counterparts

13

Cohesive energy E_{coh} of 3d, 4d transition metal nitrides in **pyrite** and **fluorite** structures

Z. T. Y. Liu, D. Gall, and S. V. Khare, Phys. Rev. B **90**, 134102 (2014).

Elastic constants $C_{11} - C_{12}$, C_{44} and mechanical stability of the pyrite-type transition-metal pernitrides, MN₂. Mechanically stable phases are denoted as "S" and unstable ones as "U."

Group	Μ		C ₁₁ - C ₁₂ (GPa)		C ₄₄ (6	GPa)	Mechanical Stability		
3	Sc	Y	-32.7	-160.8	61.6	56.0	U	U	
4	Ті	Zr	205.0	107.6	97.9	98.5	S	S	
5	V	Nb	253.7	89.3	9.4	-38.4	S	U	
6	Cr	Мо	287.7	241.3	61.4	-20.0	S	U	
7	Mn	Тс	360.5	351.4	104.7	24.3	S	S	
8	Fe	Ru	419.4	397.5	30.7	-52.7	S	U	
9	Со	Rh	454.6	428.6	89.1	52.7	S	S	
10	Ni	Pd	274.0	104.0	86.7	33.9	S	S	
11	Cu	Ag	-24.5	5.0	29.2	12.0	U	S	
12	Zn	Cd	112.4	85.9	57.7	14.2	S	S	

14

Mechanically Stable pernitrides MN₂

Only 17 are stable

Z. T. Y. Liu, D. Gall, and S. V. Khare, Phys. Rev. B 90, 134102 (2014).

Density of states (DOS) at E_F and elastic constant C_{44} of pyrite-type 3d, 4d transition metal pernitrides MN_2

Z. T. Y. Liu, D. Gall, and S. V. Khare, Phys. Rev. B 90, 134102 (2014).

16

Total DOS of **pyrite**-type 3d transition metal pernitrides MN₂.

Elastic constant C_{44} and Total DOS at E_F of **pyrite**-type 3d, 4d transition metal pernitrides MN₂

- Left shift and narrowing to accommodate more electrons.
- $E_{\rm F}$ (Fermi energy) can land on peaks, valleys or plateaus.
- Total DOS at $E_{\rm F}$ indicates metallicity.
- C_{44} indicates stability and positively correlates with H_{v} . 17

Density of States (DOS) and Elastic Constant C_{44}

5d period progression

 IrN_2 and PtN_2 are mechanically stable, but AuN_2 is not.

Judging by the DOS at $E_{\rm F}$, PtN₂ is a semiconductor but neither IrN₂ nor AuN₂.

It is the left shift and width-narrowing behavior of DOS, placing a gap of states at the E_F of PtN₂.

Density of States (DOS) and Elastic Constant C_{44}

Group 10 progression 30 - NiN_2 20 -10 -0 per cell 30 - PdN_2 Total DOS 20 -10 -0 30 - PtN_2 20 -10 -0 --22 -10-8 0 -6-44 Energy (eV)

Group 4 progression

 NiN_2 : small notch between the two peaks at $E_{\rm F}$

 \mbox{PdN}_2 or \mbox{PtN}_2 : semiconductors with band gaps

 $\mathrm{TiN}_2\!\!:\!\mathrm{small}$ notch between the two peaks at E_F

 ZrN_2 or HfN_2 : semiconductors with band gaps

Density of States (DOS) and Elastic Constant C₄₄

Conclusion:

As the transition metal choice moves in the periodic table, the pernitride demonstrates metallic or non-metallic behavior, depending on the relative position of E_F in DOS.

The mechanical stability and shear related mechanical properties (like hardness) can be anti-correlated with DOS at E_F , an indicator of metallicity.

Z. T. Y. Liu, D. Gall, and S. V. Khare, Phys. Rev. B 90, 134102 (2014).

Projected COHP

Plane Wave DFT codes express information in the reciprocal space.

Crystal orbital Hamilton population (COHP) analysis is a DFT successor of the familiar crystal orbital overlap population (COOP) concept, based on extended Hückel theory.

COHP is a partitioning of the band-structure energy in terms of orbital-pair contributions

It is therefore based on a local bases.

Projecting plane waves onto local bases gives projected COHP.

V. L. Deringer, A. L. Tchougreeff and R. Dronskowski, J. Phys. Chem. A **115**, 5461 (2011).

pCOHP In Pyrite-Type PtN₂

Mostly d states compared with s + p N-N and Pt-N bonds lower the

energy

Anti-bonding region of N-N

Pt-Pt anti-bonding

Z. T. Y. Liu, D. Gall, and S. V. Khare, Phys. Rev. B **90**, 134102 (2014).

 $H_V = 0.92k^{1.137}G^{0.708}.$ k = G/B

k - Pugh's ratio *G* - shear modulus

Data points (40+ compounds):

Covalent: C, Si, BN... Ionic: NaCl, KBr... Metallic glasses

Figure adapted from Tian *et al.* Y. Tian, B. Xu, and Z. Zhao, Int. J. Refract. Met. Hard Mater. **33**, 93 (2012). X. Q. Chen, H. Y. Niu, D. Z. Li and Y. Y. Li, Intermetallics **19**, 1275 (2011).

Change of Metal Bond Strength Under Shear Stress

3d, 4d **pyrite**-type transition metal pernitrides. PtN_2 being super-hard is shown distinctly.

- k = G/B Pugh's ratio
- **H**_V-Vickers hardness
- **M-M** metal to metal bond.
- **pCOHP** projected Crystal Orbital Hamilton Population.
- **IpCOHP** Integrated pCOHP.
- -IpCOHP a measurement of bond strength.
- δ (-**IpCOHP**) the change of **bond** strength with a C_{44} shearing strain, [110]-oriented.

Anti-correlation between δ (-IpCOHP) of M-M and k, H_V

If M-M bond increases strength with shear, then the material is easier to shear, more ductile, and less hard.

Z. T. Y. Liu, D. Gall, and S. V. Khare, Phys. Rev. B 90, 134102 (2014).

- More charge transfer, longer the bond, and less the density in between (suggesting strength).
- No correlation with shear related mechanical properties.

Charge Transfer

Correlation between d(N-N) and q_{trans} (Bader charge transfer)

Coulomb repulsion induced elongation

Z. T. Y. Liu, D. Gall, and S. V. Khare, Phys. Rev. B **90**, 134102 (2014).

Bond Length and Charge States

M. Wessel and R. Dronskowski, JACS 132, 2421 (2010).

27

Summary I

1. Often cited optimum valence electron concentration (VEC) for shear-related mechanical properties like H_V found in rocksalt-type early transition metal nitrides (8.5 e/formula unit) differs with structures.

 Shear related properties can be correlated with total density of states (DOS) at E_F, an indicator of metallicity.

Z. T. Y. Liu, D. Gall, and S. V. Khare, Phys. Rev. B 90, 134102 (2014).

Summary II

3. The change in M-M bond strength under a shearing strain indicated by crystal orbital Hamilton population (COHP) is predictive of hardness. This is a direct connection between a specific bond and shear related mechanical properties.

4. Charge transfer from M to N controls the length of the N-N bond, dominantly by providing Coulomb repulsion between the pairing N atoms. PtN₂ has additional anti-bonding contribution.

Z.T.Y. Liu, D. Gall, and S.V. Khare, Phys. Rev. B 90, 134102 (2014).

Community-Based Ceramics Database

http://astro1.panet.utoledo.edu/ceramicsdb

Name 👄	University 🗠	Entries Contributed
Z.T.Y.Liu	University of Toledo	202
J. A. Burt	Minnesota State University, Mankato	157
Xiuquan Zhou	University of Maryland College Park	29

Centralized platform for crystal data related to **structure, composition, elastic,** and **mechanical** (more in future) properties for **ceramic** materials

Compiled from the literature, past, present and future

Community-based: participation and contribution expected to populate the database

User-friendly and versatile searching capability

User-specified **tabular** display capability for search results

Graphical display of trends search results

Provides direct links to the original papers and correspondence information of authors

Mechanical stability according to criteria satisfied by elastic constants.

Xiuguan Zhou

Z. T. Y. Liu, X. Zhou, S. V. Khare and D. G.

Include No

Mechanical Stability

Include Yes

Graphical Display of Search Results

Draw Figure

First select rows (by checkbox in the table)

Selected rows (by ID)

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20

Now select a column

Display

bilbao crystallographic server

			-	** ** **	.cryst.cnu.cs								
ıD ₪	A Structure	Space Group	Formula	a(Å) ⇒	Elastic Constants (GPa)	B (GPa) 🛋	$G(\text{GPa}) \cong$	v ~	H_V (GPa) \Rightarrow	Potential Approx.	Potential Type 🔿	Code Package 🔺	Reference 🗠
1	zinc blende	216: F-43m Cubic	ScN	4.84	C11 = 186.9, C12 = 140.9, C44 = 73.8	156.2	46.3	0.37	3.5	LDA	USPP	VASP	Z. T. Y. Liu, X. Zhou, S. V. Khare and D. Gall, Journal of Pa
2	zinc blende	216: F-43m Cubic	TiN	4.529	C11 = 322.2, C12 = 176.4, C44 = 103.1	225.0	89.7	0.32	7.8	LDA	USPP	VASP	Z. T. Y. Liu, X. Zhou, S. V. Khare and D. Gall, Journal of Pl
3	zinc blende	216: F-43m Cubic	VN	4.368	C11 = 346.8, C12 = 229.4, C44 = 43.2	268.5	48.9	0.41	2.1	LDA	USPP	VASP	Z. T. Y. Liu, X. Zhou, S. V. Khare and D. Gall, Journal of Pl
፼ 4	zinc blende	216: F-43m Cubic	CrN	4.262	C11=361.7, C12=258.7, C44=-77.9		-	-	-	LDA	USPP	VASP	Z. T. Y. Liu, X. Zhou, S. V. Khare and D. Gall, Journal of Pi
€ 5	zinc blende	216: F-43m Cubic	MnN	4.188	C11=372.7, C12=279.7, C44=24.0	310.7	31.4	0.45	0.8	LDA	USPP	VASP	Z. T. Y. Liu, X. Zhou, S. V. Khare and D. Gall, Journal of P
@ 6	zinc blende	216: F-43m Cubic	FeN	4.16	C11=379.2, C12=282.8, C44=114.2	314.9	80.8	0.38	4.4	LDA	USPP	VASP	Z. T. Y. Liu, X. Zhou, S. V. Khare and D. Gall, Journal of Pl
2 7	zinc blende	216: F-43m Cubic	CoN	4.177	C11 = 347.4, C12 = 266.0, C44 = 71.2	293.1	56.9	0.41	2.5	LDA	USPP	VASP	Z. T. Y. Liu, X. Zhou, S. V. Khare and D. Gall, Journal of Pi
8	zinc blende	216: F-43m Cubic	NiN	4.241	C11=278.1, C12=246.2, C44=49.9	256.8	31.6	0.44	1.0	LDA	USPP	VASP	Z. T. Y. Liu, X. Zhou, S. V. Khare and D. Gall, Journal of P
9	zinc blende	216: F-43m Cubic	CuN	4.344	C11 = 222.4, C12 = 199.9, C44 = 41.1	207.4	24.5	0.44	0.8	LDA	USPP	VASP	Z. T. Y. Liu, X. Zhou, S. V. Khare and D. Gall, Journal of Pl
10	zinc blende	216: F-43m Cubic	ZnN	4.472	C11 = 178.0, C12 = 159.4, C44 = 47.4	165.6	25.1	0.43	1.1	LDA	USPP	VASP	Z. T. Y. Liu, X. Zhou, S. V. Khare and D. Gall, Journal of Pl
☑ 11	rocksalt	225: Fm-3m Cubic	ScN	4.463	C11=470.1, C12=99.4, C44=164.3	223.0	172.4	0.19	26.3	LDA	USPP	VASP	Z. T. Y. Liu, X. Zhou, S. V. Khare and D. Gall, Journal of Pl
☑ 12	rocksalt	225: Fm-3m Cubic	TiN	4.184	C11 = 712.3, C12 = 123.2, C44 = 171.1	319.6	213.0	0.23	25.8	LDA	USPP	VASP	Z. T. Y. Liu, X. Zhou, S. V. Khare and D. Gall, Journal of Pl
1 3	rocksalt	225: Fm-3m Cubic	VN	4.057	C11 = 751.1, C12 = 178.9, C44 = 126.6	369.6	176.7	0.29	15.5	LDA	USPP	VASP	Z. T. Y. Liu, X. Zhou, S. V. Khare and D. Gall, Journal of P
☑ 14	rocksalt	225: Fm-3m Cubic	CrN	3.987	C11=702.8, C12=227.1, C44=9.3	385.7	57.9	0.43	1.9	LDA	USPP	VASP	Z. T. Y. Liu, X. Zhou, S. V. Khare and D. Gall, Journal of Pl
ඔ 15	rocksalt	225: Fm-3m Cubic	MnN	3.945	C11 = 682.1, C12 = 241.6, C44 = -13.3	-	-	-	-	LDA	USPP	VASP	Z. T. Y. Liu, X. Zhou, S. V. Khare and D. Ga Journal of P

Thank you!

VASP input parameters

Density functional theory (DFT) calculation Ultrasoft Vanderbilt pseudo-potentials (US-PP) Generalized gradient approximation: GGA (PW91) 450 eV kinetic energy cutoff 12 x 12 x 12 k-point Monkhorst-Pack mesh Electronic loop: energetic convergence 10^{-4} eV Ionic loop: force convergence 0.01 eV/Å

Difference in *B* and *G*

$$B = (C_{11} + 2C_{12})/3$$

$$G_v = [(C_{11} - C_{12}) + 3C_{44}]/5$$

$$G_R = [5(C_{11} - C_{12})C_{44}]/[4C_{44} + 3(C_{11} - C_{12})]$$

$$G = G_{VRH} = (G_v + G_R)/2$$

$$k = G/B$$

Difference in *B* and *G*

Bulk modulus (B) only measures the resistance to isotropic hydrostatic pressure, while shear modulus (G) measures the resistance to anisotropic shear strain.

TiN (G: 187.2 GPa, B: 318.3 GPa, H_v: 23 GPa)

 β -SiC (G: 191.4 GPa, B: 224.7 GPa, H_V : 34 GPa)

Gao FM, He JL, Wu ED, Lu SM, Yu LD, Li DC, et al. Phys Rev Lett 2003;91: 015502. Gou HY, Hou L, Zhang JW, Gao FM. Appl Phys Lett 2008;92:241901.

Formulation for H_V (Vickers Hardness)

X. Q. Chen et al., Intermetallics 19, 1275 (2011)

Crystal	H_{Exp} (GPa)	H _{Tian} (GPa)	H _{Simunek} (GPa)	H_{Xue} (GPa)	H _{Chen} (GPa)
С	96 ^a	93.6	95.4 ^b	90 ^e	94.6 ^f
Si	12 ^a	13.6	11.3 ^b	14 ^e	11.2 ^f
Ge	8.8 ^b	11.7	9.7 ^b	11.4 ^e	10.4 ^f
SiC	31 ^b	30.3	31.1 ^b	27.8 ^e	33.8 ^f
BN	63 ^a	64.5	63.2 ^b	47.7 ^e	65.3 ^f
BP	33 ^a	31.2	26 ^b	24.9 ^e	29.3 ^f
BAs	19 ^b	26	19.9 ^b	21.1 ^e	
AIN	18 ^a	21.7	17.6 ^b	14.5 ^e	16.8 ^f
AIP	9.4 ^a	9.6	7.9 ^b	7.4 ^e	7.2 ^f
AlAs	5.0 ^a	8.5	6.8 ^b	6.3 ^e	6.6 ^f
AlSb	4.0 ^a	4	4.9 ^b	4.9 ^e	4.4 ^f
GaN	15.1 ^a	18.1	18.5 ^b	13.5 ^e	13.9 ^f
GaP	9.5 ^a	8.9	8.7 ^b	8 ^e	9.9 ^f
GaAs	7.5 ^a	8	7.4 ^b	7.1 ^e	7.8 ^f
GaSb	4.5 ^a	6	5.6 ^b	4.5 ^e	5.8 ^f
InN	9 ^a	10.4	8.2 ^b	7.4 ^e	7.4 ^f
InP	5.4 ^a	6	5.1 ^b	3.9 ^e	3.7 ^f
InAs	3.8 ^a	3.8	5.7 ^b	4.5 ^e	3.3 ^f
InSb	2.2 ^a	4.3	3.6 ^b	2.2 ^e	2.4 ^f
ZnS	1.8 ^b	6.8	2.7 ^b	2.4 ^e	2.4 ^f
ZnSe	1.4 ^b	5.5	2.6 ^b	1.8 ^e	2.7 ^f
ZnTe	1 ^b	4.1	2.3 ^b	0.9 ^e	2.1 ^f
TiC	32 ^c	34	18.8 ^b	23.9 ^e	27 ^f
TiN	20.6 ^c	21.6	18.7 ^b	23.8 ^h	23.3 ^f
ZrC	25 ^c	21	10.7 ^g	15.7 ^h	27.5 ^f

Y. Tian et al., Int. J. Refract. Met. Hard Mater. 33, 93 (2012).

Crystal	H_{Exp} (GPa)	H _{Tian} (GPa)	H _{Simunek} (GPa)	H_{Xue} (GPa)	H _{Chen} (GPa)
ZrN	15.8 ^c	16.7	10.8 ^g	15.9 ^h	_
HfC	26.1 ^c	26.8	10.9 ^g	15.6 ^h	-
HfN	16.3 ^c	18	10.6 ^g	15.2 ^h	19.2 ^f
VC	27.2 ^c	23	25.2 ^g	17.5 ^h	26.2 ^f
VN	15.2 ^c	14.9	26.5 ^g	16.5 ^h	-
NbC	17.6 ^c	16.1	18.3 ^b	12.8 ^h	15.4 ^f
NbN	13.7 ^c	13.6	19.5 ^b	12 ^h	14.7 ^f
TaC	24.5 ^c	26	19.9 ^g	14.7 ^h	-
TaN	22 ^c	20	21.2 ^g	14.3 ^h	-
CrN	11 ^c	11	36.6 ^g	19.2 ^h	-
WC	30 ^c	31	21.5 ^b	20.6 ^e	31.3 ^f
Re ₂ C	17.5 ^j	19.7 ^j	11.5 ^g	16.2 ^h	26.4 ⁱ
Al_2O_3	20 ^c	18.8	13.5 ^g	18.4 ^h	20.3 ⁱ
MgO	3.9 ^d	4.5	4.4 ^g	5.4 ^h	24.8 ⁱ
LiF	1 ^d	0.8	2.2 ^g	-	8.5 ⁱ
NaF	0.6 ^d	0.85	1 ^g	-	5.7 ⁱ
NaCl	0.2 ^d	0.4	0.4 ^b	-	2.4 ⁱ
KC1	0.13 ^d	0.18	0.2 ^b	-	2.3 ⁱ
KBr	0.1 ^d	0.23	0.2 ^g	-	0.1 ⁱ

^a Reference [34].

^b Reference [37].

^c Reference [32].

^d Reference [60].

^e Reference [58].

f Reference [30]

^g Calculated by authors using method [36][.]

^h Caculated using [35].

ⁱ Calculated with [30][.]

^j Referenece [52]

One Step Back... The Mechanism of Hardness

- Intrinsically hard materials are hard because of their short and strong bonds, often covalent in nature.
 - Diamond C (96 GPa), zinc blende BN (63 GPa), zinc blende SiC (31 GPa).
 - Transition metal borides (B), carbides (C), nitrides (N).
 - TiB₂ (25~35 GPa), rocksalt TiC (32 GPa), rocksalt TiN (21 GPa).
 - Nitrides have better oxidation resistance.

Gao, He, Wu, Liu, Yu, Li, Phys. Rev. Lett. (2003). Guo, Li, Liu, Yu, He, Liu, J. Appl. Phys. (2008). B. Basu et al., International Materials Reviews **51** (2006)

One Step Back... The Mechanism of Hardness

- Nano-/micro-sized effect induced hardness relies on the nano-/micro-structures to inhibit plastic flow (dislocation progression).
 - Hall-Petch effect $\sigma_c = \sigma_0 + \frac{k_{gb}}{\sqrt{d}}$ is effective down to 10~15 nm. Lower sizes result in grain boundary sliding. It is seen and utilized for a wide range of materials.
 - If there is a way to further lower the grain size while keeping the grain boundaries stable and strong to shear, larger hardness will be achieved.
 - By formation of twin boundaries at nano scale, low energy boundaries. Nano-twinned BN, ~4 nm, 108 GPa.
 - By spinodal decomposition of a solid solution to two phases, with one covering another. nc-TiN/a-Si₃N₄, ~4 nm, 60 GPa.

R. W. Hertzberg, *Deformation and Fracture Mechanics of Engineering Materials*, 3rd ed. UUWiley, New York, 1989 UU

Y. Tian et al., Nature **493**, 385 (2013)

S. Veprek, J. Vac. Sci. Technol. A 31 (2013).

One Step Back... The Mechanism of Hardness

The nano-structures are meant to inhibit the plastic flow, but if the flow is difficult to initiate in the first place, we have more room for nano-sized enhancement.

--- The importance of intrinsic (elastic) properties, which can be done by computations on a large scale.

What can be explored:

- Elastic properties, especially hardness/shear related.
- Their trends and correlation with the electronic structures.
- Thermodynamic stability compared with other competing phases at different temperatures.
- Solid solution elastic properties and thermodynamic stability.

Structural Parameters

Correlations among a (lattice constant), $d(M_1-N)$, $d(M_2-N)$, x (internal parameter of nitrogen)

Transition Metal Nitrides

Transition-metal nitrides: applications

Hard wear-resistant coatings (TiN, ZrN, CrN, TaN)

Decorative coatings (TiN, ZrN)

Optical coatings (TiN, ZrN)

- Wear resistant
- Chemical corrosion/oxidation resistant
- Thermal resistant
- Aesthetically pleasing

Excellent coating materials for multiple purposes

Thermodynamic Stability

Any kind of transformation, strain, atomic movement.

Comparison with other calculated and experimental values of pyrite-type PtN . Mechanically stable pyrite-type 5d phases and fluorite-type 3d and 4d phases are also included. Listed values are equilibrium lattice constant (a), internal parameter (x) of Pa3

Wyckoff position 8c, elastic constants C_{11} , C_{12} , C_{44} , and bulk modulus (B).

	a (Å)	х	C ₁₁ (GPa)	C ₁₂ (GPa)	C ₄₄ (GPa)	B (GPa)
PtN ₂ This work	4.877	0.416	661.9	69.3	128.8	266.9
PtN ₂ LAPW-GGA ^a	4.862	0.415	668	78	133	272
PtN ₂ PP-PW91 ^b	4.877	0.417	713	90	136	298
PtN ₂ PP-PBE ^c	4.848	0.415	696	83	136	288
PtN ₂ PAW-PW91 ^d	4.875					278
PtN ₂ , Exp. ^e	4.804					372
pyrite-HfN ₂	5.129	0.415	359.4	171.9	124.7	234.4
pyrite-IrN ₂	4.858	0.418	691.9	97.8	67.5	295.9

<u>a</u>R.Yu, Q. Zhan, and X. F. Zhang, Appl. Phys. Lett. **88**, 051913 (2006).

<u>b</u>H. Gou, L. Hou, J. Zhang, G. Sun, L. Gao, and F. Gao, Appl. Phys. Lett. **89**, 141910 (2006).

A. F. Young, J. A. Montoya, C. Sanloup, M. Lazzeri, E. Gregoryanz, and S. Scandolo, Phys. Rev. B 73, 153102 (2006).

J. C. Crowhurst, A. F. Goncharov, B. Sadigh, C. L. Evans, P. G. Morrall, J. L. Ferreira, and A. J. Nelson, Science **311**, 1275 (2006).

E. Gregoryanz, C. Sanloup, M. Somayazulu, J. Badro, G. Fiquet, H. K. Mao, and R. J. Hemley, Nat. Mater. 3, 294 (2004).

Inverted integrated projected crystal orbital Hamilton population (–IpCOHP) of the closest M-M, M-N, and N-N bonds of the pyrite-type transition-metal pernitrides, MN₂. Listed are the averaged values of equivalent pairs in a cell. The three columns to the right are the changes in values (δ) when a 10% C₄₄ [110]-oriented shearing strain is applied to the conventional unit

cell.

Group of	M of MN ₂			Inverted Ip	COHP (meV)		
Μ		M-M	M-N	N-N	δ (Μ-Μ)	δ (M-N)	δ (N-N)
_	Ti	-2.4	1908.1	5456.0	20.2	25.0	227.1
4	Ti (strained)	26.8	1882.2	5693.1	29.3	-25.9	237.1
F	V	492.8	1654.6	3205.6	42.0	16.0	45.2
5	V (strained)	534.8	1637.7	3250.9	42.0	-10.9	45.5
	Cr	359.2	1604.4	4051.2	20.6	17 1	0.2
0	Cr (strained)	379.8	1592.2	4060.6	20.0	-12.1	5.5
7	Mn	414.6	1559.8	3502.7	19.6	11.0	EQ 2
/	Mn (strained)	433.2	1547.8	3560.8	10.0	-11.9	50.2
0	Fe	486.1	1530.1	3730.2	20.2	-0.1	55 5
0	Fe (strained)	516.3	1521.0	3785.7	50.2	-9.1	55.5
0	Со	121.7	1802.8	7837.0	25.2	-9.3	60.7
9	Co (strained)	146.9	1793.5	7906.7	23.2		09.7
10	Ni	82.9	1537.2	8755.5	11 0	10.4	110.6
10	Ni (strained)	97.7	1517.8	8866.0	14.0	-19.4	110.0
12	Zn	-73.3	1095.1	8479.4	0.0	0.6	65 1
12	Zn (strained)	-64.3	1085.5	8544.5	5.0	-9.0	05.1
7 (44)	Тс	477.4	1754.8	3231.7	10 7	25 /	105 1
7 (4u)	Tc (strained)	526.1	1729.3	3426.8	40.7	-25.4	195.1
10 (54)	Pt	-191.3	2391.5	6544.4	11 0) 2 ⊑	100 6
10 (5d)	Pt (strained)	-202.5	2368.0	6653.9	-11.2	-23.5	109.6

46