

DMREF/Collaborative Research: Nitride Discovery - Creating the Knowledge Base for Hard Coating

Sanjay V. Khare Department of Physics and Astronomy University of Toledo Ohio 43606 <u>http://www.physics.utoledo.edu/~khare/</u> Daniel Gall Department of Materials Science and Engineering Rensselaer Polytechnic Institute NY 12180 http://homepages.rpi.edu/~galld/

NSF: CMMI, CNS; Ohio Supercomputer Center, PVIC, U. of Toledo

Outline

- Transition metal nitrides (TMNs)
- Coatings By Design Approach
- Experimental approaches
- Theoretical Approaches
- Ab initio method
- Results for Cubic structures zincblende, rocksalt, CsCl, NbO
- Structural, mechanical and electronic properties
 - Lattice constants and bulk modulus (B)
 - Elastic constants, C_{11} , C_{12} , C_{44}
 - Ductility indicators
 - Vicker's hardness (H_v)
 - Correlation of H_V with θ_D
 - Correlation of H_V with TDOS
 - LDOS
 - Bader analysis
- Conclusion
- Future

Transition-metal nitrides: applications

Hard wear-resistant coatings (TiN, ZrN, CrN, TaN)

Diffusion barriers (TiN, TaN)

Decorative coatings (TiN, ZrN)

Optical coatings (TiN, ZrN)

Transition Metal Nitrides (TMNs)

- Refractory hard materials
- Extremely high hardness wear resistance
- High melting points thermal resistance
- Good electrical and thermal conductivity
- Good corrosion resistance

Evolutionary Development of Nitride Hard Coatings

Coatings by Design

Knowledge Base I: Knowledge Base II: **Intrinsic Properties Microstructure Effects on** of Single Crystal Nitrides **Physical Properties** properties of grain size and shape binary nitrides grain boundaries anisotropy of intrinsic properties congruent interface between two nitrides properties of solid solutions: ternary, quaternary nitrides random interface between dissimilar nitrides effect of effect of uniform stress off-stoichiometry microstructural anisotropy 2. Coating Synthesis: development of deposition technique/parameters to create desired composition and microstructure

Knowledge Base II

Microstructure Effects on Physical Properties

Experimental work of Prof. Daniel Gall at RPI

Experimental Approach

Brian Ozsdolay and Daniel Gall **Rensselaer Polytechnic Institute** MeN_x **Substrate**

Epitaxial layer deposition by reactive magnetron sputtering

Measurement of properties:

- Lattice constants
- Elastic constants
- Mechanical properties
- Temperature stability
- Oxidation stability

First studied material system:WN_x

X-ray Diffraction

Lattice constant vs composition

 \rightarrow WN_x is epitaxial (two domains)

→ Large single phase field in WN_x (~0.45⊲x<1)

Mechanical Properties Measurements

Knowledge Base I

Intrinsic Properties of Single Crystal Nitrides

Theoretical work by Sanjay V. Khare with students Terence Liu, Xiuquan Zhou, S. K. R. Patil and others

The General Program

Applicability of Ab Initio Methods

Pros

Very good at <u>predicting</u> structural properties:

- (1) Lattice constant good to 1-3%
- (2) Elastic constants good to 1-10%
- (3) Very robust relative energy ordering between structures
- (4) Good pressure induced phase changes

Good band structures, electronic properties Good phonon spectra Good chemical reaction and bonding pathways

Cons Computationally intensive Band gaps are wrong Excited electronic states are difficult

Structural, mechanical and electronic properties of 3d transition metal nitrides in cubic zincblende, rocksalt and cesium chloride structures

Periodic Table 3d highlight Combine with previous slide

Structure – zincblende (MN)

Lattice Vectors

$$A_1 = \frac{1}{2} a Y + \frac{1}{2} a Z$$

$$A_2 = \frac{1}{2} a X + \frac{1}{2} a Z$$

$$A_3 = \frac{1}{2} a X + \frac{1}{2} a Y$$

Basis Vectors

$${\bf B}_1 = 0$$

$$\mathbf{B}_2 = \frac{1}{4} \mathbf{A}_1 + \frac{1}{4} \mathbf{A}_2 + \frac{1}{4} \mathbf{A}_3 = \frac{1}{4} \mathbf{a} \mathbf{X} + \frac{1}{4} \mathbf{a} \mathbf{Y} + \frac{1}{4} \mathbf{a} \mathbf{Z}$$

http://en.wikipedia.org/wiki/File:Sphalerite-unit-celldepth-fade-3D-balls.png

Structure – rocksalt (MN)

Lattice Vectors

A ₁	=	½ a Y + ½ a Z
A ₂	=	½ a X + ½ a Z
A_3	=	½ a X + ½ a Y

Basis Vectors

 ${\bf B}_1 = 0$

 $\mathbf{B}_{2} = \frac{1}{2} \mathbf{A}_{1} + \frac{1}{2} \mathbf{A}_{2} + \frac{1}{2} \mathbf{A}_{3} = \frac{1}{2} \mathbf{a} \mathbf{X} + \frac{1}{2} \mathbf{a} \mathbf{Y} + \frac{1}{2} \mathbf{a} \mathbf{Z}$

http://commons.wikimedia.org/wiki/File:Nacl-structure.jpg

Structure – cesium chloride (MN)

Lattice Vectors

$$A_2 = a Y$$

$$A_3 = a Z$$

Basis Vectors

$${\bf B}_1 = 0$$

$$\mathbf{B}_{2} = \frac{1}{2} \mathbf{A}_{1} + \frac{1}{2} \mathbf{A}_{2} + \frac{1}{2} \mathbf{A}_{3} = \frac{1}{2} \mathbf{a} \mathbf{X} + \frac{1}{2} \mathbf{a} \mathbf{Y} + \frac{1}{2} \mathbf{a} \mathbf{Z}$$

http://meatfighter.com/puls/

Structure – NbO (MN)

Lat	tice	Vectors			
A ₁	=	a X			
A ₂	=	a Y			
A_3	=	a Z			
Ba	sis	Vectors			
B ₁	=	0	\mathbf{B}_4	=	1/2 A ₂
B ₂	=	$\frac{1}{2}$ A ₁ + $\frac{1}{2}$ A ₂	B ₅	=	½ A ₃
B ₃	=	$\frac{1}{2}$ A ₁ + $\frac{1}{2}$ A ₃	B ₆	=	$\frac{1}{2}$ A ₁ + $\frac{1}{2}$ A ₂ + $\frac{1}{2}$ A ₃

м		a (Å))		C11 (GP	a)		C ₁₂ (GP	a)		C ₄₄ (GP	a)	Me St	chanic tability	al
	zb	rs	СС	zb	rs	СС	zb	rs	CC	zb	rs	СС	zb	rs	сс
Sc	4.883	4.503	2.768	179.6	434.7	502.8	132.9	97.7	42.2	71.8	160.9	-119.2	S	S	U
		4.516 ^a			390 ^a			105 ^a			166 ^a				
		4.48 ^b			386.4 ^b			101 ^b			171.7 ^b				
		4.44 ^c													
Ti	4.569	4.221	2.607	307.2	657.7	619.6	165.2	121.0	106.2	99.2	165.4	39.6	S	S	S
		4.253 ^a			560 ^a			135 ^a			163 ^a				
		4.218 ^b			591.8 ^b			123.4 ^b			184.7 ^b				
		4.241 ^c			625 ^d			165 ^d			163 ^d				
					507 ^e			96 ^e			163 ^e				
V	4.407	4.095	2.521	328.1	685.8	969.5	213.0	172.8	33.6	42.8	121.5	160.3	S	S	S
		4.127 ^a			660 ^a			174 ^a			118 ^a				
		4.088 ^b			695.9 ^b			146.7 ^b			152.8 ^b				
		4.139 ^c			533 ^d			135 ^d			133 ^d				
Cr	4.302	4.025	2.477	341.1	636.0	894.3	240.2	218.1	102.1	-66.2	7.0	17.0	U	S	S
•		4.048 ^b			510.5 ^b			217.2 ^b			6.8 ^b				
Mn	4.229	3.985	2.459	352.0	616.0	898.6	257.6	229.7	98.2	33.5	-10.9	38.3	S	U	s
Eo	4 201	3 968	2 /159	356.9	185 9	825.9	258 7	281 /	110.0	112 /	-37.2	29 /	s		s
re	4.201	3.908	2.433	330.5	405.5	542.5	230.7	201.4	110.0	112.4	-57.2	23.4	5	0	5
CO	4.221	3.971	2.485	322.5	468.0	542.2	242.9	258.1	191.8	68.2	65.7	17.8	5	5	5
Ni	4.289	4.029	2.520	255.5	434.1	529.5	223.5	212.4	151.0	46.7	87.7	-5.5	S	S	U
Cu	4.398	4.136	2.585	202.7	352.3	356.0	180.0	171.0	160.8	39.4	62.6	7.5	S	S	S
Zn	4.530	4.258	2.674	161.3	288.7	231.5	143.0	139.2	150.7	45.0	67.3	-39.0	S	S	U

a GGA, D. Holec et al., Phys. Rev. B 85, 064101 (2012).

b Avg. of LDA & GGA, M. G. Brik *et al.*, Comput. Mater. Sci. **51**, 380 (2012).

c Exp., Powder diffraction files: ScN 00-045-0978, TiN 03-065-0565, VN 00-035-0768.

d Exp., J. O. Kim *et al.*, J. Appl. Phys. **72**, 1805 (1992).

e Exp., W. J. Meng et al., Thin Solid Films 271, 108 (1995).

Comparison of direct *ab initio* results with experimental values

NA	a (Å)			C ₁₁ (GPa)			C ₁₂ (GPa)			C ₄₄ (GPa)		
141	zb	rs	СС	zb	rs	СС	zb	rs	СС	zb	rs	сс
Sc	4.883	4.503	2.768	179.6	434.7	502.8	132.9	97.7	42.2	71.8	160.9	-119.2
		4.44 ^a										
Ti	4.569	4.221	2.607	307.2	657.7	619.6	165.2	121.0	106.2	99.2	165.4	39.6
		4.241 ^a	l		625 ^b			165 ^b			163 ^b	
					507 ^c			96 ^c			163 ^c	
V	4.407	4.095	2.521	328.1	685.8	969.5	213.0	172.8	33.6	42.8	121.5	160.3
		4.139 ^a	1		533 ^b			135 ^b			133 ^b	

a Powder diffraction files: ScN 00-045-0978, TiN 03-065-0565, VN 00-035-0768.

b J. O. Kim et al., J. Appl. Phys. 72, 1805 (1992).

c W. J. Meng et al., Thin Solid Films 271, 108 (1995).

Polycrystalline properties

B (bulk modulus), G (shear modulus) and E (Young's modulus)

Μ	B (GPa))	G (GPa)			E (GPa)			
	zb	rs	СС	zb	rs	СС	zb	rs	CC	
Sc	148.5	210.0	195.7	45.8	163.9	U	124.7	390.2	U	zb (zincblende)
Ti	212.6	299.9	277.3	86.8	200.9	93.2	229.1	492.8	251.4	rs (rocksalt)
V	251.4	343.8	345.6	48.2	164.7	250.5	135.9	426.1	605.2	cc (cesium
Cr	273.9	357.4	366.2	U	49.6	98.1	U	142.1	270.3	chloride)
Mn	289.1	358.5	365.0	38.4	U	121.5	110.4	U	328.1	
Fe	291.4	349.5	348.6	80.6	U	103.6	221.5	U	282.8	
Со	269.5	328.0	308.6	55.0	79.3	54.2	154.4	220.2	153.7	
Ni	234.2	286.3	277.1	30.4	96.3	U	87.5	259.8	U	
Cu	187.6	231.5	225.9	24.0	72.6	27.7	69.1	197.3	79.8	
Zn	149.1	189.1	177.6	24.1	70.2	U	68.6	187.3	U	

Polycrystalline properties

P_c (Cauchy's pressure), *v* (Poisson's ratio) and *k* (Pugh's ratio)

М		P _c (GPa	a)		v			k		
	zb	rs	СС	zb	rs	СС	zb	rs	СС	
Sc	61.1	-63.3	U	0.36	0.19	U	0.31	0.78	U	zb (zincblende)
Ti	66.0	-44.4	66.6	0.32	0.23	0.35	0.41	0.67	0.34	rs (rocksalt)
V	170.2	51.3	-126.7	0.41	0.29	0.21	0.19	0.48	0.72	cc (cesium chloride)
Cr	U	211.1	85.1	U	0.43	0.38	U	0.14	0.27	
Mn	224.1	U	59.9	0.44	U	0.35	0.13	U	0.33	
Fe	146.3	U	80.6	0.37	U	0.36	0.28	U	0.30	
Со	174.7	192.4	174.1	0.40	0.39	0.42	0.20	0.24	0.18	
Ni	176.8	124.7	U	0.44	0.35	U	0.13	0.34	U	
Cu	140.6	108.4	153.3	0.44	0.36	0.44	0.13	0.31	0.12	
Zn	98.1	72.0	U	0.42	0.33	U	0.16	0.37	U	

Polycrystalline properties

H_V (Vicker's hardness) and $(\theta_D$ (Debye temperature)

М		H _v (GPa	ı)	θ _D (K)				
	zb	rs	СС	zb	rs	СС		
Sc	3.6	25.7	U	506.8	901.5	U		
Ti	7.8	24.9	6.6	654.9	947.1	648.4		
V	2.2	14.8	31.9	473.6	830.9	1002.8		
Cr	U	1.5	5.3	U	457.0	630.4		
Mn	1.2	U	7.9	403.5	U	681.4		
Fe	4.8	U	6.2	573.8	U	626.2		
Со	2.6	4.1	2.2	466.8	542.6	448.9		
Ni	1.0	6.8	U	352.1	600.1	U		
Cu	0.8	5.1	0.9	306.8	511.9	318.3		
Zn	1.1	6.0	U	307.6	502.9	U		

zb (zincblende) rs (rocksalt) cc (cesium chloride)

V (unit cell volume) and B (bulk modulus)

$$B = (C_{11} + 2C_{12})/3$$

P_{C} , v and k

 P_c (Cauchy's pressure) $P_c = C_{12} - C_{44}$

v (Poisson's ratio) v = (3B - 2G)/[2(3B + G)]

k (Pugh's ratio) k = G/B

26

Chen's formulation for calculating H_V (Vicker's Hardness)

Tian's alternative for calculating *H_V*(Vicker's Hardness)

 $H_V = 0.92k^{1.137}G^{0.708}$ Y. Tian *et al.*, Int. J. Refract. Met. Hard Mater. **33**, 93 (2012).

Crystal	H_{Exp} (GPa)	H_{Tian} (GPa)	H _{Simunek} (GPa)	H_{Xue} (GPa)	H _{Chen} (GPa)
С	96 ^a	93.6	95.4 ^b	90 ^e	94.6 ^f
Si	12 ^a	13.6	11.3 ^b	14 ^e	11.2 ^f
Ge	8.8 ^b	11.7	9.7 ^b	11.4 ^e	10.4 ^f
SiC	31 ^b	30.3	31.1 ^b	27.8 ^e	33.8 ^f
BN	63 ^a	64.5	63.2 ^b	47.7 ^e	65.3 ^f
BP	33 ^a	31.2	26 ^b	24.9 ^e	29.3 ^f
BAs	19 ^b	26	19.9 ^b	21. 1 ^e	_
AlN	18 ^a	21.7	17.6 ^b	14.5 ^e	16.8 ^f
AlP	9.4 ^a	9.6	7.9 ^b	7.4 ^e	7.2 ^f
AlAs	5.0 ^a	8.5	6.8 ^b	6.3 ^e	6.6 ^f
AlSb	4.0 ^a	4	4.9 ^b	4.9 ^e	4.4 ^f
GaN	15.1 ^a	18.1	18.5 ^b	13.5 ^e	13.9 ^f
GaP	9.5 ^a	8.9	8.7 ^b	8 ^e	9.9 ^f
GaAs	7.5 ^a	8	7.4 ^b	7.1 ^e	7.8 ^f
GaSb	4.5 ^a	6	5.6 ^b	4.5 ^e	5.8 ^f
InN	9 ^a	10.4	8.2 ^b	7.4 ^e	7.4 ^f
InP	5.4 ^a	6	5.1 ^b	3.9 ^e	3.7 ^f
InAs	3.8 ^a	3.8	5.7 ^b	4.5 ^e	3.3 ^f
InSb	2.2 ^a	4.3	3.6 ^b	2.2 ^e	2.4 ^f
ZnS	1.8 ^b	6.8	2.7 ^b	2.4 ^e	2.4 ^f
ZnSe	1.4^{b}	5.5	2.6 ^b	1 .8 ^e	2.7 ^f
ZnTe	1 ^b	4.1	2.3 ^b	0.9 ^e	2.1 ^f
TiC	32 ^c	34	18.8 ^b	23.9 ^e	27 ^f
TiN	20.6 ^c	21.6	18.7 ^b	23.8 ^h	23.3 ^f
ZrC	25 ^c	21	10.7 ^g	15.7 ^h	27.5 ^f

UT

Y. Tian *et al.*, Int. J. Refract. Met. Hard Mater. **33**, 93 (2012).

Crystal	H_{Exp} (GPa)	H _{Tian} (GPa)	H _{Simunek} (GPa)	H _{Xue} (GPa)	H _{Chen} (GPa)
ZrN	15.8°	16.7	10.8 ^g	15.9 ^h	-
HfC	26.1 ^c	26.8	10.9 ^g	15.6 ^h	_
HfN	16.3 ^c	18	10.6 ^g	15.2 ^h	19.2 ^f
VC	27.2°	23	25.2 ^g	17.5 ^h	26.2 ^f
VN	15.2°	14.9	26.5 ^g	16.5 ^h	-
NbC	17.6 ^c	16.1	18.3 ^b	12.8 ^h	15.4 ^f
NbN	13.7 ^c	13.6	19.5 ^b	12 ^h	14.7 ^f
TaC	24.5°	26	19.9 ^g	14.7 ^h	-
TaN	22 ^c	20	21.2 ^g	14.3 ^h	-
CrN	11 ^c	11	36.6 ^g	19.2 ^h	_
WC	30 ^c	31	21.5 ^b	20.6 ^e	31.3 ^f
Re ₂ C	17.5 ^j	19.7 ^j	11.5 ^g	16.2 ^h	26.4 ⁱ
Al_2O_3	20 ^c	18.8	13.5 ^g	18.4 ^h	20.3 ⁱ
MgO	3.9 ^d	4.5	4.4 ^g	5.4 ^h	24.8 ⁱ
LiF	1 ^d	0.8	2.2 ^g	-	8.5 ⁱ
NaF	0.6 ^d	0.85	1 ^g	-	5.7 ⁱ
NaCl	0.2 ^d	0.4	0.4 ^b	-	2.4 ⁱ
KCl	0.13 ^d	0.18	0.2 ^b	-	2.3 ⁱ
KBr	0. 1 ^d	0.23	0.2 ^g	_	0.1 ⁱ

^a Reference [34].

^b Reference [37].

^c Reference [32].

^d Reference [60].

^e Reference [58].

^f Reference [30]

^g Calculated by authors using method [36].

^h Caculated using [35][.]

ⁱ Calculated with [30][.]

^j Referenece [52].

G (shear modulus) and H_{VA} (Tian's)

$$\begin{split} G_v &= [(C_{11} - C_{12}) + 3C_{44}]/5\\ G_R &= [5(C_{11} - C_{12})C_{44}]/\\ (4C_{44} + 3C_{11} - 3C_{12})\\ G &= G_{VRH} = (G_v + G_R)/2 \end{split}$$

 $H_{VA} = 0.92 \ k^{1.137} \ G^{0.708}$

θ_D (Debye temperature) vs $f(H_{VA})$

Correlation of stability with DOS

- Pyrite-structured WN₂ is stable, and DOS at E_F is small
- Fluorite-structured WN₂ is unstable, and DOS at E_F is large

S. K. R. Patil et al., Thin Solid Films 517, 824 (2008)

Correlation of C_{44} (indicating H_V and stability) with TDOS

Correlation of C_{44} (indicating H_V and stability) with TDOS of NbO-type

LDOS - zincblende

As transition metal goes from left to right in the 3d row, more states shift below E_F, peaks becoming sharper.

LDOS - rocksalt

As transition metal goes from left to right in the 3d row, more states shift below E_F, peaks becoming sharper.

LDOS – cesium chloride

As transition metal goes from left to right in the 3d row, more states shift below E_F, peaks becoming sharper.

Bader analysis of NbO-type

χ (nitrogen): 3.07

χ (electronegativity) from A. L. Allred *et al.*, J. Inorg. Nucl. Chem. **5**, 264 (1958).

q_{trans} (charge transfer from transition metal to nitrogen using Bader's scheme)

Bader analysis program from W. Tang *et al.*, J. Phys.: Condens. Matter 21, 084204 (2009) E. Sanville *et al.*, J. Comp. Chem. 28, 899-908 (2007) G. Henkelman *et al.*, Comput. Mater. Sci. 36, 254-360 (2006)

H_{VA} vs P_C (Cauchy's pressure)

H_{VA} vs k (Pugh's ratio) x-axis inverted

H_{VA} vs v (Poisson's ratio)

k vs P_C

43

Nitrides with H_{VA} ≥ 15 GPa

Material	a (A)	C ₁₁	C ₁₂	C 44	B (GPa)	G (GPa)	ν	k	P _c (GPa)	H _{VA} (GPa)
diamond	3.548	1079.8	131.4	577.2	447.5	533.5	0.07	1.19	-445.80	95.80
SiC	4.345	396.5	128.5	249.2	217.8	194.3	0.16	0.89	-120.70	33.70
M ₄ N-Mn ₄ N	3.653	769.2	127.6	143.8	341.4	199.5	0.26	0.58	-16.20	21.23
M ₄ N-Tc ₄ N	3.971	670.3	184.1	174.3	346.1	199.2	0.26	0.58	9.81	20.83
M ₄ N-Re ₄ N	3.993	772.4	221.1	217.0	404.8	238.8	0.25	0.59	4.06	24.37
rs-ScN	4.503	434.7	97.7	160.9	210.0	163.9	0.19	0.78	-63.27	25.67
rs-TiN	4.221	657.7	121.0	165.4	299.9	200.9	0.23	0.67	-44.40	24.93
rs-VN	4.095	685.8	172.8	121.5	343.8	164.7	0.29	0.48	51.32	14.78
rs-YN	4.890	319.0	84.0	127.0	162.3	123.1	0.20	0.76	-43.00	20.28
rs-ZrN	4.580	563.0	101.0	122.0	255.0	158.0	0.24	0.62	-21.00	19.23
rs-HfN	4.436	704.9	111.8	131.0	309.5	182.9	0.25	0.59	-19.20	20.22
cc-VN	2.521	969.5	33.6	160.3	345.6	250.5	0.21	0.72	-126.72	31.85
cc-TaN	2.731	1006.0	33.0	107.0	357.3	207.2	0.26	0.58	-74.00	21.60
cc-ReN	2.679	900.0	122.0	128.0	381.3	203.7	0.27	0.53	-6.00	19.45
NbO-CrN	3.802	724.9	123.2	146.9	323.8	196.6	0.25	0.61	-23.72	21.94
NbO-MnN	3.744	683.9	156.9	131.4	332.6	174.3	0.28	0.52	25.55	17.04
NbO-MoN	4.096	763.6	115.3	139.6	331.4	197.1	0.25	0.59	-24.28	21.47
NbO-TcN	4.030	686.0	169.6	131.6	341.7	173.0	0.28	0.51	37.94	16.30
NbO-WN	4.092	857.9	123.1	172.5	368.1	234.7	0.24	0.64	-49.36	26.30
NbO-ReN	4.041	761.0	200.9	149.5	387.6	192.7	0.29	0.50	51.37	17.24
pyrite-PtN ₂	4.792	845.0	101.0	160.0	349.0	226.0	0.23	0.65	-59.00	26.06

Database

Cubic forms of 3d, 4d and 5d transition metal nitrides in M:N ratios from 4:1 to 1:1 to 1:3. Dark green regions have completed *ab initio* results!

Structures	Formula	Stoichiometry	3d	4d	5d
M ₄ N	M ₄ N	4:1			
Anti-ReO3	M ₃ N	3:1			
Zincblende	MN	1:1			
Rocksalt	MN	1:1			
Cesium chloride	MN	1:1			
NbO	MN	1:1			
Spinel	M_3N_4	0.75:1			
Fluorite	MN_2	0.5:1			
Pyrite	MN_2	0.5:1			
Skutterudite	MN ₃	0.33:1			

45

Summary

- Computed single crystal V, C₁₁, C₁₂, C₄₄, LDOS and band structures
- Multi-crystal average of *B*, *G*, *E*, *v*, *k*, H_V , θ_D , T_m .
- Showed correlations of hardness and ductility
- Importance of spread out bands and bonding between M-p orbitals and N-d orbitals
- Inverse correlation of DOS at E_F and C_{44} or stability

Future

- Create Web database of 10 cubic binary nitride phases
- Some search ability will exist
- Hexagonal structures
- Ternaries

Hexagonal structures

- Apart from the cubic phases, there are also **experimental** studies of hexagonal structures.
 - AIN, I. W. Kim *et al.*, Appl. Phys. Lett. **78**, 892, (2001)
 - IrN₂, A. F. Young *et al.*, Phys. Rev. Lett. **96**, 155501, (2006)
 - ReN₂, F. Kawamura *et al.*, Appl. Phys. Lett. **100**, 251910, (2012)
 - Re₃N, A. Friedrich *et al.*, Phys. Rev. B **82**, 224106, (2010)

Ternary systems

- TM-TM-N:
 - Ti-V-N, Ti-Nb-N, Ti-Mo-N, Ti-W-N, Ti-Ta-N, V-W-N, V-Mo-N, V-Ta-N, D. G. Sangiovanni *et al.*, Acta Mater. **59**, 2121, (2011).
- TM-non-TM-N:
 - Ti-Al-N, P. H. Mayrhofer *et al.*, Appl. Phys. Lett. **83**, 2049, (2003).

Thank you!

$$B = (C_{11} + 2C_{12})/3$$

 $G, k \text{ and } H_{VA}$

 $G \text{ (Shear modulus)} \\ G_v = [(C_{11} - C_{12}) + 3C_{44}]/5 \\ G_R = [5(C_{11} - C_{12})C_{44}]/ \\ (4C_{44} + 3C_{11} - 3C_{12})$

$$G = G_{VRH} = (G_v + G_R)/2$$

k (Pugh's ratio)
 $k = G/B$

 $H_{VA} = 0.92 \ k^{1.137} \ G^{0.708}$

θ_D (Debye temperature) vs $f(H_{VA})$

As transition metal goes from left to right in the 4d row, more states shift below E_{F} , peaks becoming sharper.

As transition metal goes from top to bottom in the group 4 column, almost nothing evident changes.

Correlation of C_{44} (indicating H_V and stability) with TDOS

Bader analysis

χ (electronegativity) q_{trans} (charge transfer from transition metal to nitrogen using Bader's scheme)

W. Tang *et al.*, J. Phys.: Condens.
Matter 21, 084204 (2009)
E. Sanville *et al.*, J. Comp. Chem. 28, 899-908 (2007)
G. Henkelman *et al.*, Comput. Mater.
Sci. 36, 254-360 (2006)

Hexagonal structures Structure - wurtzite (MN)

http://en.wikipedia.org/wiki/File:Wurtzite-unit-cell-3Dballs.png

Structure – WC (MN)

http://www.lscarbide.com/About%20tungsten%20carbide.html

Structure – NiAs (MN)

- Vienna Ab initio Simulation Package (VASP)
- Ultra-soft Vanderbilt pseudo potentials (US-PP)
- Local-density approximation (LDA) and general gradient approximation (GGA) were used and mean values used
- kinetic energy cutoff value: 450 eV
- The electronic self-consistent loops converge below 10⁻⁴ eV/atom
- 12 × 12 × 12 Monkhorst-Pack mesh, and denser mesh for DOS
- Murnaghan equation of state used for equilibrium lattice constant
- Three independent strains applied and a set of three equations solved for elastic constants

Structure – spinel (M₃N₄)

Structure – fluorite (MN₂)

Structure – pyrite (MN₂)

Structure – skutterudite (MN₃)

Structure – M_4N

C!

Structure – anti-ReO3 (M₃N)

67

Structure - zincblende (MN)

Structure - rocksalt (MN)

Structure - cesium chloride (MN)

Structure - NbO (MN)

Structure - fluorite (MN₂)

Structure - pyrite (MN₂)

Structure - M₄N

Structure - anti-ReO₃ (M₃N)

LDOS of M_4N

Value of ab initio method

- Powerful predictive tool to calculate properties of materials
- Fully first principles ==>
 - (1) no fitting parameters, use only fundamental constants (e, h, m_e , c) as input
 - (2) Fully quantum mechanical for electrons
- Thousands of materials properties calculated to date
- Used by biochemists, drug designers, geologists, materials scientists, and even astrophysicists!
- Evolved into different varieties for ease of applications
- Awarded chemistry Nobel Prize to W. Kohn and H. Pople 1998

Thank you!