Optoelectronic & Mechanical Properties of Cu₂CdGe(S_xSe_{1-x})₄ via First Principles

(http://astro1.panet.utoledo.edu/~khare/index.html)

V.T. Barone*, B.B. Dumre*, B.R. Tuttle**, R.J. Ellingson*, S.V. Khare*

*Department of Physics and Astronomy, and Wright Center for Photovoltaics Innovation and Commercialization, University of Toledo **Department of Physics, Penn State Behrend MS&T Conference - October 19, 2021

Grants: ARFL FA9453-19-C-1002, NSF 1629239

Background: Cu₂-Zn-Sn-S Semiconductors

- Currently Si, CdTe, GaAs, Cu(In, Ga)Se₂ dominate PV market
- Perovskites: Use Pb, which is toxic; unstable
- Replacements motivated by:
 - In, Ga rare elements expensive
 - Cd toxic
- Most successful replacement class: $Cu_2ZnSn(S_{0.25}Se_{0.75})_4$; power conversion efficiency of 12.6%.

 Long-standing problems: bulk defects → band tailing, short carrier lifetimes → limit open circuit voltage

Background: Cu₂CdGeSe₄ & Cu₂CdGeS₄

- Previous work^[1,2,3]: Cu₂CdGeSe₄ is²⁵ promising for PV applications.
- Can be made better through alloying
- Li et al, 2020: First study into Cu₂CdGe(S_xSe_{1-x})₄ alloy
 - Experimental study
 - Mostly orthorhombic system
 - Created solar cell devices
- No other studies on intermediate *x* exist

M. Kauk-Kuusik, X. Li, M. Pilvet, K. Timmo, M. Grossberg, T. Raadik, M. Danilson, V. Mikli, M. Altosaar, J. Krustok, and J. Raudoja, Thin Solid Films 666, 15 (2018)
 X. Li, M. Pilvet, K. Timmo, M. Grossberg, V. Mikli, and M. Kauk-Kuusik, Solar Energy 209, 646 (2020)
 M. Grossberg, T. Raadik, J. Krustok, M. Kauk-Kuusik, K. Timmo, R. Kaupmees, V. Mikli, and A. Mere, Thin Solid Films 666, 44 (2018)

Methods: Density Functional Theory

- DFT+: Vienna Ab Initio Simulation Package (VASP^[4])
- Charge analysis: Henkelman Group's^[5] Bader Charge Analysis code
- COHP: Local Orbital Basis Suite Towards Electronic-structure Reconstruction (LOBSTER^[6])
- Energy-strain method: Elastic properties^[7]

4: G. Kresse and J. Hafner, Phys. Rev. B 47, 558 (1993).

- 5: G. Henkelman, A. Arnaldsson, and H. Jónsson, Computational Materials Science 36, 354 (2006)
- 6: V. L. Deringer, A. L. Tchougréeff, and R. Dronskowski, J. Phys. Chem. A 115, 5461 (2011)
- 7: V. Adhikari, Z. T. Y. Liu, N. J. Szymanski, I. Khatri, D. Gall, P. Sarin, and S. V. Khare, Journal of Physics and Chemistry of Solids 120, 197 (2018)

Atomic Models: Cu₂CdGe(S_xSe_{1-x})₄

Lattice Parameters: Cu₂CdGe(S_xSe_{1-x})₄

Tetragonal (C) \rightarrow Orthorhombic (b) [2] 11 • Lattice Parameters: monotonic decrease with x 10 (Å) Lattice Parameter • Tetragonal: 9. • c/a = constant = 1.9 8 • Orthorhombic: • b/a = constant = 1.0• c/a = c/b = constant = 1.26 0.25 0.50 0.00 0.75 1.00 x = [S]/([S] + [Se])

--- Orthorhombic (*a*)

Tetragonal (*a*)

 \frown Orthorhombic (C)

2: X. Li, M. Pilvet, K. Timmo, M. Grossberg, V. Mikli, and M. Kauk-Kuusik, Solar Energy 209, 646 (2020)

Simulated XRD: Cu₂CdGe(S_xSe_{1-x})₄

2: X. Li, M. Pilvet, K. Timmo, M. Grossberg, V. Mikli, and M. Kauk-Kuusik, Solar Energy 209, 646 (2020)

Energetics: Cu₂CdGe(S_xSe_{1-x})₄

- Formation energies: monotonic decrease with *x*
- Tetragonal < Orthorhombic
- Compare with:
 - Cu₂ZnSnSe₄: -4.06 eV^[8]
 - •Cu₂ZnSnS₄: -4.84 eV^[9]

$$E_{\text{form}}(x) = E_{\text{CCG(Se,S)}}(x) - 2E_{\text{Cu}} + E_{\text{Cd}} + \dots$$
$$\dots E_{\text{Ge}} + 4[E_{\text{S}}x + E_{\text{Se}}(1-x)]$$

Tetragonal $- \times -$ Orthorhombic -5.50-5.75Formation Energy (eV) -6.00-6.25 -6.50-6.75-7.00-7.250.25 0.50 1.000.00 0.75 x = [S]/([S] + [Se])

8: T. A. Stolyarov, E. A. Brichkina, A. V. Baranov, and E. G. Osadchii, Inorganic Materials 755-757 (2019) 9: T. A. Stolyarov, E. G. Osadchii , A. V. Baranov, Geochemistry International, 109-111 (2019)

Elastic Moduli: Cu₂CdGe(S_xSe_{1-x})₄

10: S. Hasan, K. Baral, N. Li, and W.-Y. Ching, Sci Rep 11, 9921 (2021) **11:** T. V. Vu et. al., Journal of Electronic Materials 48, 705 (2019)

Atomic Models: Cu₂CdGe(S_xSe_{1-x})₄

Directional Young's Moduli: Cu₂CdGe(S_xSe_{1-x})₄

Tetragonal: Strongest in diagonal directions (GPa units)

Bader Charge Analysis

Tetragonal and Orthorhombic nearly identical charge transfers

Bader Charge Analysis

COHP: Cu₂CdGe(S_xSe_{1-x})₄

- Cu: majority of population
- Mostly antibonding states 2 eV below fermi level: small elastic strength
- Negative integrated COHP until 6 eV: structures are stable

Density of States: Cu₂CdGe(S_xSe_{1-x})₄

Band Structure

Cu₂CdGeSe₄

Effective Masses: Cu₂CdGe(S_xSe_{1-x})₄

High symmetry directions: $(\alpha - \gamma; x = 0.000 \rightarrow x = 1.000)$

	$m_{ m h}^*/m_0$			$m_{ m e}^*/m_0$		
System	а	b	С	а	b	С
Tetragonal	0.77 – 0.79	0.77 – 0.79	0.46 – 0.55	0.17 – 0.24	0.17 – 0.24	0.11 - 0.18
Orthorhombic	1.35 – 1.58	1.41 - 1.73	0.77 – 0.81	0.17 – 0.24	0.16 - 0.24	0.17 – 0.24

Average over all directions:

- Average hole masses ≫ high symmetry masses (exception: Orthorhombic system a and b directions)
- Hole mass lightest in c direction

Optical Response: Cu₂CdGe(S_xSe_{1-x})₄

- Features blue-shifted with increasing *x*
- Absorption comparable to common PV materials:
 - CdTe^[12]: 13 μm⁻¹ max
 - Si^[13]: 15 μ m⁻¹ max
- Mild reflectivity compared to:
 - CdTe^[12]: 0.18 min
 - Si^[13]: 0.33 min

12: B. B. Dumre, N. J. Szymanski, V. Adhikari, I. Khatri, D. Gall, and S. V. Khare, Solar Energy 194, 742 (2019)
13: <u>M. A. Green</u> and <u>Keevers, M. J</u>, Progress in Photovoltaics: Research and Applications, vol. 3, pp. 189 - 192, 1995.

Summary: Results, Future Work

- Computed elastic and optoelectronic properties of Cu₂CdGe(S_xSe_{1-x})₄
- Properties vs. *x*: linear
- Optoelectronic properties: both structures suitable for photovoltaic applications
- Elastic properties: tetragonal system slightly stronger than orthorhombic
 - Caveat: Creating tetragonal structure with high x may be difficult
- Methods for growing tetragonal structure could be further explored

Extra: DFT Parameters

- Structural Calculations:
 - GGA XC Functional
 - 550 eV PW cutoff
 - 0.001 eV/A force tolerance
 - 8×8×7 Γ-centered *k*-point mesh
 - σ = 0.04 eV gaussian-type smearing for partial occupancies
- Optoelectronic Calculations:
 - HSE06 XC Functional
 - 550 eV PW cutoff
 - 6×6×5 Γ-centered *k*-point mesh
 - Tetrahedron smearing for partial occupancies
 - Number of bands = $3 \times$ (the default)

Extra: Simulated XRD

- Relative integrated intensity^[14]: $I = \frac{p}{V^2} \left[\frac{1 + \cos^2(2\theta_B)}{\sin^2(\theta_B)\cos(\theta_B)} \right] |F_{hkl}|^2 \exp\left(-\frac{2B\sin^2(\theta_B)}{\lambda^2}\right)$
- Structure factor:

$$F_{\rm hkl} = \sum_{j=\rm atoms} f_j \exp(i2\pi(hx_j + ky_j + zl_j))$$

• Atomic scattering factor:

$$f_{j} \approx \sum_{k=1}^{4} a_{jk} \exp\left(-b_{jk} \left(\frac{2\left(\frac{2\pi}{\lambda}\right)}{4\pi} \sin(\theta_{\rm B})\right)^{2}\right) + c_{j}$$

Extra: Directional Young's Modulus (planes)

Extra: Directional Young's Modulus (planes)

Extra: Standard AM 1.5 Solar Spectrum

•Maximum between 1.8 – 2.8 eV (red lines)

