Phase stability and enhanced hardness in TiN-ScN and TiN-YN alloys: a first-principles investigation

Dr. Sanjay V. Khare

V. Adhikari^a, N.J. Szymanski^a, I. Khatri^a, D. Gall^b, S.V. Khare^a ^aDepartment of Physics and Astronomy, University of Toledo, Toledo, Ohio 43606, USA ^bDepartment of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA Invited Paper: Thin Solid Films 688, 137284 (2019), <u>https://doi.org/10.1016/j.tsf.2019.05.003</u>.

1

- Introduction
- Computational Methods
- Results
- Conclusion

Introduction

Transition Metal Nitrides (TMN) are widely used in hard coatings.

TiN is most widely used TMN for hard coatings: High thermal stability and hardness and low cost of synthesis.

Transition-metal nitrides: applications

Decorative coatings (TiN, ZrN)

Optical coatings (TiN, ZrN)

- Chemical corrosion/oxidation resistant
- Thermal resistant
- Aesthetically pleasing

- Can we obtain predictive physical understanding of stable, hard and tough materials for coatings from first-principles calculations?
 - Thermodynamically (multiple-phase stability)? Yes
 - Mechanically (single-phase stability)? Yes
- Can we identify trends of properties and possible correlations between them to restrict the parameter search space. Yes but only when they exist
- To what extent can we reduce time and effort to experimentally discover and synthesize new materials. To a good extent for well-defined small unit-cell crystal systems

Computational Methods

Computational Methods: The general procedure, T = 0 K

eliminate unfavorable ones

Results: Database generation, T = 0K

3:1

zinc blende

4:4

Several papers came out of this work.

3:3

Th₃P₄ 3:4

The Grand Scheme of Things: T > 0 K

- Density Functional Theory (DFT)
- Disorder modeling Special Quasi-random Structure (SQS)
- Temperature-composition phase diagram generation
 - Cluster expansion (CE)
 - Monte Carlo (MC) simulations

Computational Methods

Density Functional Theory (DFT)

- A method to obtain an approximate solution to the Schrodinger Wave Equation for many-body system
- Functional: a function of a function
- In DFT, E = E[ρ(r)], where ρ(r) = ground-state electron density.
- Describing an interacting system of N fermions with it's density ρ(x,y,z) and not with it's many-body wavefunction φ(x₁,y₁,z₁,....x_N,y_N,z_N).
- 3N degree of freedom is reduced to 3.
- The electron density is an observable

Interacting electrons + real potential

Non-interacting fictitious particles + effective potential

Disorder modeling – Special Quasi-random Structure (SQS)

- A special quasi-random structure (SQS) is a supercell that matches, or is very close to the correlations of a random state.
- SQS generation with the mcsqs [1] program in The Alloy Theoretic Automated Toolkit (ATAT) [2].
- Inputs are maximum diameter of the pair/triplet/quadruplet clusters to match the supercell size. The more clusters included, the larger the supercell is needed to perfectly match the random state.

Computational Methods: SQS for T very high

- The more clusters included, the larger the supercell is needed to perfectly match the random state.
- Usually a small cluster set and small supercell (<50 atoms) is still fine.
- Treating spin-up and spin-down as two different electronic states, SQS can be used to model magnetic disorder with an Ising model.

Figure adapted from http://www.brown.edu/Departments/Engineering/Labs/avdw/atat/atattalk.pdf

Computational Methods W

Cluster Expansion

- The cluster expansion formalism [1-4] describes an effective representation of the crystalline material system's energy, through a cluster set and their coefficients. Typically, the cluster set need to remain as small as a few pairs and triplets.
- This compact representation is the key to fast ground state search and statistical sampling of microscopic states.
- It is realized in the open source implementation of The Alloy Theoretic Automated Toolkit (ATAT).

[1] van de Walle, A., Asta, M. & Ceder, G. Calphad-Computer Coupling Phase Diagrams Thermochem. 26, 539–553 (2002).
 [2] van de Walle, A. Calphad-Computer Coupling Phase Diagrams Thermochem. 33, 266–278 (2009).
 [3] van de Walle, A. & Asta, M. Model. Simul. Mater. Sci. Eng. 10, 521–538 (2002).
 [4] van de Walle, A. & Ceder, G. J. Phase Equilibria 23, 348–359 (2002).

Adapted from http://www.brown.edu/Departments/Engineering/Labs/avdw/atat/atattalk.pdf

Cluster Expansion

$$E^{(n)}(\sigma) = \sum_{\alpha} J_{\alpha} \sigma_{\alpha}^{(n)}$$
$$\sigma_{\alpha}^{(n)} = \prod_{i \in \alpha} \sigma_{i}^{(n)}$$

- α is a cluster of a set of substitutional sites (*i*) of the parent lattice, and each substitutional site is assigned a configuration variable σ_i .
- The sum is taken over all the clusters of the parent lattice
- Coefficients J_{α} are called effective cluster interactions (ECIs).

Adapted from http://www.brown.edu/Departments/Engineering/Labs/avdw/atat/atattalk.pdf

• The optimal cluster set and ECIs is selected by minimizing the cross-validation (CV) score,

$$CV = \frac{1}{n} \sum_{i=1}^{n} (E_i - \hat{E}_{(i)})^2$$
,

where E_i is the first-principles calculated energy of structure *i*, and $E_{(i)}$ is the "leave-one-out" (without structure *i*) least-squares fitted energy to prevent over-fitting.

Adapted from http://www.brown.edu/Dep artments/Engineering/Lab s/avdw/atat/atattalk.pdf

Phase Diagrams: Purely Theoretical

 It calls for an efficient way of generation and energy prediction of tens of thousands of structures consisting of tens of thousands of atoms, beyond the brute force first-principles calculation of each structure. The cluster expansion formalism offers such a solution.

A. van de Walle and M. Asta, Model. Simul. Mater. Sci. Eng. 10, 521 (2002).

Phase Diagrams: Purely Theoretical and Predictive

- *T-x* phase diagrams provide the road maps for synthesis of a particular phase or a mixture at a given set of external conditions.
- Common examples are solids with vacancies, interstitials and substitutions.

A. van de Walle and M. Asta, *Model. Simul. Mater. Sci. Eng.* **10**, 521 (2002). http://resource.npl.co.uk/mtdata/phdiagrams/png/alti. png

Materials of Interest

Periodic Table of Elements

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	
1	1 ¹ H Hydrogen 1.00794	Atomic # Symbol Name Atomic Mass	С	Solid				Metals			Nonmeta	als						2 ² He Helium 4.002802	К
2	3 ² Li Lithium 6.941	4 22 Be Beryllium 9.012182	Hg H	Liquid Gas		Alkali me	Alkaline earth me	Lanthanoids	Transition metals	Poor me	Other nonmetal	Noble ga	5 23 B Boron 10.811	6 2 C Carbon 12.0107	7 25 N Nitrogen 14.0087	8 26 O Oxygen 15.9994	9 ² F Fluorine 18.9984032	10 ² Ne Neon 20.1797	ĸ
3	11 28 Na Sodium 22.98976928	12 2 Mg Magnesium 24.3050	Rf	Unknow	'n	tals	, tals	Actinoids	L .	tals	Ø	ses	13 28 3 Aluminium 26.9815386	14 28 Silicon 28.0855	15 2 P Phosphorus 30.973762	16 ² S Sulfur 32.065	17 28 CI Chlorine 35.453	18 28 Ar Argon 39.948	K L M
4	19 28 K 1 Potassium 39.0983	20 28 Ca Calcium 40.078	21 28 29 2 Scandium 44.955912	22 28 Ti ¹⁰ ² ¹⁰ ² ²	23 28 V 11 Vanadium 50.9415	24 24 13 Cr Chromium 51.9961	25 Mn Manganese 54.938045	² ² ² ² ² ² ² ⁴ ¹⁴ ² ² ⁴ ² ⁴ ² ⁶ ² ⁶ ² ² ⁶ ² ² ⁶ ² ⁶ ² ⁶ ⁵ ⁶ ⁶ ⁵ ⁶ ⁶ ⁶ ⁶ ⁶ ⁷ ⁶ ⁶ ⁶ ⁶ ⁶ ⁷ ⁶ ⁶ ⁷ ⁶ ⁶ ⁷ ⁶ ⁶ ⁷ ⁷ ⁷ ⁷ ⁷ ⁷ ⁷ ⁷ ⁷ ⁷	27 28 Co 2 Cobalt 15 2 Cobalt 15,22	28 28 Ni 16 Nickel 58.6934	29 28 Cu 18 Copper 63.546	30 28 Zn 2 Zinc 65.38	31 28 88 18 18 33 33 33 33 33 33 33 33 33 33 33 33 33	32 2 Gemanium 72.84	33 ² As ¹⁸ ¹⁸ ⁴ ^{74.92160}	34 28 Se 18 Selenium 78.96	35 28 Br ¹⁸ Bromine 79.904	36 ² Kr ¹⁸ ¹⁸ ⁸ ⁸ ⁸ ⁸	K L M N
5	37 2 8 Rb 18 Rubidium 85.4878	38 28 Sr 28 Strontium 87.62	39 ² Y ¹⁸ ¹⁸ ⁹ ² ² ¹⁸ ⁹	40 28 Zr 10 2/ 2/ 2/ 2/ 2/ 2/ 2/ 2/ 2/ 2/ 2/ 2/ 2/	41 28 Nb 12 Niobium 92.90838	42 18 Mo Molybdenum 95.98	43 Tc Technetium (97.9072)	² ⁸ ⁴ ¹⁸ ¹⁸ ¹⁸ ¹⁸ ¹⁸ ¹⁸ ¹⁸ ¹⁸	45 ² Rh ¹⁸ 16 1 Rhodium 102.90550	46 28 Pd 18 Palladium 108.42	47 28 Ag 18 Silver 107.8682	48 28 Cd 18 Cadmium 112.411	49 28 In 18 Indium 114.818	50 28 Sn 18 18 18 4 Tin 118.710	51 28 Sb 18 18 18 18 18 18 18 18 18 18	52 28 Te 127.80	53 28 18 18 18 7 Iodine 128.90447	54 28 Xe 18 Xenon 131.293	K L M N O
6	55 2 Cs 18 Caesium 1 132.9054519	56 2 8 Ba 18 Barium 137.327	57–71	72 28 Hf 18 Hafnium 2 178.49	73 28 Ta 32 Tantalum 180.94788	74 28 W 183.84	75 Re Rhenium 188.207	² 76 0 0 0 1 0 1 1 1 1 1 1 1 1	77 2 8 18 32 15 ridium 2 192.217	78 2 Pt 18 Platinum 1 195.084	79 2 8 Au 32 18 Gold 1 196.966569	80 28 Hg 18 Mercury 200.59	81 28 TI 18 Thallium 204.3833	82 2 Pb 32 Lead 4 207.2	83 28 Bi 18 Bismuth 208.98040	84 2 Polonium (208.9824)	85 2 At 32 Astatine 7 (209.9871)	86 2 Rn 32 Radon (222.0176)	KLMNOP
7	87 2 Fr 18 Francium 1 (223)	88 2 Ra 32 Radium 2 (226)	89–103	104 28 Rf 18 Rutherfordium 22 (261) 2	105 28 Db 322 Dubnium 211 (262)	106 Sg Seaborgium (288)	107 Bh ¹ Bohrium (284)	² ⁸ ⁸ ² ² ³ ² ¹ ¹⁰⁸ ¹⁸ ¹⁸ ¹⁸ ¹⁸ ²³² ¹⁴ ¹⁴ ¹⁴ ¹⁴ ¹⁴ ¹⁶ ¹⁶ ¹⁸ ¹⁸ ¹⁸ ¹⁸ ¹⁸ ¹⁸ ¹⁸ ¹⁸	109 2 Mt 32 Meitnerium 2 288)	110 2 DS 32 Damstadium 17 (271) 1	111 28 Rg 18 Roentgenium 18 (272) 18	112 Uub Ununbium (285) 2 2 2 2 2 2 2 2 2 2 2 2 2	113 Uut Ununtrium (284) ² ⁸ ¹⁸ ²³ ²³ ¹⁸ ³⁸	$\begin{array}{c} 114 & \begin{smallmatrix} 2 \\ 8 \\ \textbf{Uuq} \\ Unuquadium \\ (289) \end{smallmatrix} \overset{12}{} \overset{2}{} \overset{2}$	115 Uup Ununpentum (288) ² ⁸ ¹⁸ ² ² ⁸ ² ⁸ ² ⁸ ² ⁸ ⁸ ² ⁸ ⁸ ² ⁸ ⁸ ⁸ ⁸ ⁸ ⁸ ⁸ ⁸	116 Uuh Ununhexium (292)	117 Uus ^{Ununseptum}	118 Uuo Ununoctium (294) 28 27 18 29 20 18 20 20 20 20 20 20 20 20 20 20	N UOZZIN
																			1

For elements with no stable isotopes, the mass number of the isotope with the longest half-life is in parentheses.

Introduction

- Improved properties achieved by alloying TiN with other transition metals, such as Zr, Hf, V, Nb, Ta, Mo, W.
- Alloying with these elements increases Valence Electron Concentration (VEC) and hence enhances ductility and toughness coupled with decreased hardness.
- Jhi and Ihm [1, 2] showed that hardness can be increased by decreasing the VEC when N is replaced with C in the TiC_xN_{1-x} system.
- Holleck [3] indicated that the hardness of carbonitrides is maximized at a VEC = 8.4 electrons/f.u.
- TiN-AIN alloys have shown enhanced hardness but have low maximum operating temperature and phase decomposition [4-6].

• We propose alloying TiN with Sc and Y to enhance hardness by lowering VEC.

[1] S.H. Jhi, S.G. Louie, M.L. Cohen, J. Ihm, Phys. Rev. Lett. 86 (2001) 3348–3351, <u>http://dx.doi.org/10.1103/PhysRevLett.86.3348</u>.
[2] S.H. Jhi, J. Ihm, S.G. Louie, M.L. Cohen, Nature 399 (1999) 132–134, http:// dx.doi.org/10.1038/20148.
[3] H. Holleck, Material selection for hard coatings, J. Vac. Sci. Technol. A Vacuum, Surfaces, Film 4 (1986) 2661, <u>http://dx.doi.org/10.1116/1.573700</u>.
[4] Bivas Saha, Samantha K. Lawrence, Jeremy L. Schroeder, Jens Birch, David F. Bahr, and Timothy D. Sands,
[5] Sit Kerdsongpanya, Björn Alling, and Per Eklund, J. Appl. Phys. 114, 073512 (2013); <u>https://doi.org/10.1063/1.4818415</u>
[6] Per Eklund, Sit Kerdsongpanya and Bjo⁻rn Alling, Journal of Materials Chemistry C, 4(18) · February 2016 DOI: 10.1039/c5tc03891j

Results: Properties of End Members

- Lattice constants, Hardness (H_{\vee}) agree values from experiments.
- End members have high hardness: TiN (23.4), ScN (25.1), and YN (20.6) in GPa.
- Volumes/f.u.: TiN (19.2), ScN (23.11) and YN (29.53) in Å³
- Volumes linked directly to the ionic radii of corresponding transition metals.
- [(Ti⁴⁺ (0.61 Å), Sc³⁺ (0.75 Å) and Y³⁺ (0.9 Å)*]
- High C_{44} (shear-resistant) means high Vickers hardness (H_{V}).
- Small volume

Higher hardness.

Results: Properties of End Members

End members	a (Å)	V/f. u. (Å ³)	C ₁₁ (GPa)	C ₁₂ (GPa)	C ₄₄ (GPa)	B (GPa)	G (GPa)	k	ν	E (GPa)	H _v (GPa)
TiN	4.25 4.245 ^a 4.21 ^e	19.19 19.1 ^b	582.2	122.6	158.9	275.8 318 ^{b,h} 303 ⁱ 267 ^j 290 ^k 280 ^l	184.2	0.67	0.23	452.1 590°	23.4 20.2 ^f 21 ^g
ScN	4.52 4.501 ^d 4.52 ^e	23.11	389.5	104.2	166.8	199.3 182 ± 40^{d}	156.7	0.79	0.19	372.5 388 ± 20^{d}	25.1 24.4 ± 1.3 ^d
YN	4.91	29.53	318.5	76.8	122.6	157.4	121.9	0.77	0.19	290.7	20.6
Intermetallics	Lattice Type	V∕ N (Å ³)	7 11 (GPa)	7 (GPa)	€ 44 (GPa)	B (GPa)	G (GPa)	k	ν	E (GPa)	Hv (GPa)
TiScN ₂	Rhombohedral	20.57	483.4	135.4	186.5	251.4	181.4	0.72	0.21	438.7	25.2
TiSc ₈ N ₉	Hexagonal	22.14	440.7	112.5	164.7	221.9	164.5	0.74	0.2	395.6	24.3
TiSc ₉ N ₁₀	Triclinic	22.21	444	104.3	168.6	217.5	169.1	0.78	0.19	402.8	26.1
Ti ₃ Sc ₂ N ₅	Monoclinic	20.51	488.6	125.1	190.5	246.3	186.9	0.76	0.2	447.6	27.3

• Lattice constants, Hardness (H_{V}) agree values from experiments.

- End members have good hardness TiN: 23.4., ScN: 25.1, and YN: 20.6 in GPa.
- High C_{44} (shear-resistant) means high Vickers hardness (H_{V}).

Properties of End members: TiN, ScN and

High hardness is attributed to:

YN

- High occupation of bonding e_q orbitals
- Favors M d N p hybridization at low energies

(Occupied e_{a} : strongly resistant to shearing and compression)

• Low occupation of antibonding t_{2q} state (Occupied t_{2a} favor shearing due to enhanced second-nearest neighbor metal interactions) TiN is metallic while ScN and YN are very small band gap semiconductors (≈0.9 eV) due to strongly localized 3d orbitals.

Results: Lattice Similarity and Mismatch

- Lattice Mismatch: Differences in Size, Ionic radius, electronegativity
- Ionic radii: [Ti⁴⁺ (0.61 Å), Sc³⁺ (0.75 Å) and Y³⁺ (0.9 Å)] [1]
- Electronegativity: Ti (1.32), Sc (1.20), and Y (1.11) [2]
- Large diff in electronegativities & Ionic radii
 Greater charge transfer
 - Substantial volume change

Positive strain energy and structural distortion.

• Charge transferred per atom ΔZ_{Y} , = (1.2) (1- c_{Y}) ($\Delta \phi$) [3]

[1] R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Crystallogr. A 32 (1976) 751–767

[2] A.L. Allred, E.G. Rochow, J. Lnorg. Nucl. Chem. 5 (1958) 264–268, <u>https://doi.org/10.1016/0022-1902(58)80003-2</u>
 [3] A. R. Miedema, Journal of Less-Common Metals, 32 (1973) 117-136 (<u>https://doi.org/10.1016/0022-5088(73)90078-</u>

Results: Energy landscapes

Ti_{1-x}Y_xN System

- Strongly endothermic mixing: Upward bowing in ∆E_f (reaching as high as 500 meV/atom)
- Attributed to large lattice mismatch between TiN and YN, causing structural distortions and positive strain energy
- End Members are the only stable ground states in Ti_{1-x}Y_xN solid solution.

Results: Phase diagrams

Ti_{1-x}Y_xN: Miscibility gap far above the room temp & $(T_c) = 7225$ K.

- Alloying is recommended only at low or high concentrations, where configurational entropy dominates.
- In such cases, Y can diffuse into grain boundaries and enhances oxidation resistance and mechanical properties.
 Provides opportunities to engineer hard coatings with segregated concentration variations as reported by Lewis et al. [1] and Choi et al. [2].

[1] D.B. Lewis, L.A. Donohue, M. Lembke, W.D. Munz, R. Kuzel, V. Valvoda, C.J. Blomfield, The influence of the yttrium content on the structure and properties of Ti1-x-y-zAlxCryYzN PVD hard coatings, Surf. Coat. Technol. 114 (1999), 187.

[2] W.S. Choi, S.K. Hwang, C.M. Lee, Microstructure and chemical state of Ti1-xYxN film deposited by reactive magnetron sputtering, J. Vac. Sci. Technol. A 18 (2000) 2914, https://doi.org/10.1116/1.1319680.

Results: Energy landscapes

Ti_{1-x}Sc_xN System

- Small differences in ionic radii and electronegativity alloying only minor changes in charge transfer and volumes.
- Exothermic mixing of TiN and ScN: downward bowing in $\Delta E_{\rm f}$
- Effect of chemical bonding controlled by changes in valency to lower the energy of the system.
- Decrease in ΔE_{f} at intermediate concentrations.
- Four novel ground states lie on the convex hull: TiScN₂, TiSc₈N₉, TiSc₉N₁₀, and Ti₃Sc₂N₅
- Thermodynamically Stable: Formation energies are -17.968, -16.832, -15.264 and -17.987 meV respectively.

Results: Phase diagrams

Ti_{1-x}Sc_xN

- Upper consolute temperature T_c: 660 K, above which a complete miscibility occurs.
- 5 major intermetallic phases representing stability of heterogeneous mixture

5 major intermetallic phases representing stability of heterogeneous mixture in **Ti_{1-x}Sc_xN**

660 K: complete miscibility achieved for all Sc concentration

Region I: TiN + Ti₃Sc₂N₅ (0 – 50% Sc, 0 K – 500K)

Region II: TiN + TiScN₂ (0 – 50% Sc, 500 K – 660K)

Region III: $Ti_3Sc_2N_5$ + $TiScN_2$ (40 – 50% Sc, Moderately low temp up to 300K)

Region IV: $TiScN_2 + TiSc_8N_9$ (50 – 90% Sc, 225 K)

Region V: TiS_9cN_{10} + ScN (90 – 100% Sc, miscibility at 65 K)

Results: Phase diagrams

 Ti₃Sc₂N₅ Covers a significant portion in Phase diagram showing strong stability

- Region I: TiN + Ti₃Sc₂N₅ (0 50% Sc, 0 K 500K)
- Region II: TiN + TiScN₂ (500 K 660K)
- Region III: Ti₃Sc₂N₅ + TiScN₂ Moderately low temp up to 300K
- Region IV: TiScN₂ + TiSc₈N₉ (225 K)
- Region V: TiSc₉N₁₀ + ScN (miscibility at 65 K)
- Previous work of Kerdsongpanya *et al.*, where Sc_{1-x}Ti_xN changes from ordered to disordered solid solution at x = 0.5 at 1073 K (first principles) [1]
- Gall *et al.* Synthesized Ti_{1-x}Sc_xN epitaxial layers at 750 °C by reactive magnetron sputtering [2]

[2] D. Gall, M. Stoehr, and J. E. Greene, PHYSICAL REVIEW B, VOLUME 64, 174302 (2001), DOI: 10.1103/PhysRevB.64.174302

^[1] Sit Kerdsongpanya, Björn Alling, and Per Eklund, J. Appl. Phys. 114, 073512 (2013); https://doi.org/10.1063/1.4818415]

Properties of TiN-ScN intermediate phases

- Predicted novel intermetallics: $TiScN_2$, $TiSc_8N_9$, $TiSc_9N_{10}$, $Ti_3Sc_2N_5$
- Thermodynamically stable due to low formation energy, mechanically stable
- Crystallize in rhombohedral, hexagonal, triclinic, and monoclinic symmetries
- Preserve the rocksalt-type lattice ordering of parent lattice.
- High hardness: 24.3 to 27.3 Gpa
- $Ti_3Sc_2N_5$ is the hardest (27.3 GPa)
- $Ti_3Sc_2N_5$ stable through a wide range of Sc concentration (from 0 to 50% and up to 500 K)

TiScN₂

Results

New ground states preserve the layered rocksalt-type lattice of parent end members.

Hardest $Ti_3Sc_2N_5$ (27.3 Gpa) Exceeds the hardness of end members.

Highest H_V at Valence Electron Concentration (VEC) = 8.6

Figure: Computed Conventional Unit Cell of novel intermetallics. Blue, red and green spheres represent Ti, Sc and N atoms respectively.

Structure of TiN-ScN intermetallic phases

Predicted Ground States	Lattice - Type	Space Group and Number	Lattice Parameter
TiScN ₂	Rhombohedral	R3m (166)	a = b = c = 5.35 Å $\alpha = \beta = \gamma = 33.32^{\circ}$
TiSc ₈ N ₉	Hexagonal	P31m (162)	a = b = 5.46 Å, c = 7.72 Å $\alpha = \beta = 90^{\circ}, \gamma = 120^{\circ}$
TiSc ₉ N ₁₀	Triclinic	Pī (2)	a = 5.46 Å, b = 6.31 Å, c = 7.06 Å, α = 102.91°, β = 97.39° γ=106.83°
Ti₃Sc₂N₅	Monoclinic	C2/m (12)	a = b = 3.07 Å, c = 12.69 Å α = 90.00°, β = 83.02°, γ = 60.00°

Although deviated from cubic symmetry due to mixing enthalpy, new ground states preserve the layered rocksalt-type lattice ordering and octahedral ligand of parent end members.

TiN-ScN intermediate phases

High hardness of $Ti_3Sc_2N_5$: PDOS and COHP curve

- Strong d-p hybridization for -7 eV to -2 eV
- COHP curve: Complete occupation of the M-N bonding states
- Greater covalent character.
- Decreased occupation of metal t_{2g} orbitals, owing to the VEC of Ti₃Sc₂N₅ (8.6) being less than TiN (9).
- Lowest volume and highest density among the intermetallics contribute further to the hardness.

Effects of cation disorder

- SQSs: Represented by Cyan triangles in the energy landscapes.
- SQSs of Ti_{1-x}Y_xN: Upward bowing in formation energies.
- High Tc: large and unfavorable difference between the $\Delta E_{\rm f}$ of the SQSs at intermediate concentration to those of end members.
- SQSs of Ti_{1-x}Sc_xN: Not much difference in ∆E_f of SQSs and ground states (upto 30 to 10 meV from intermediate to high SC concentration)
 - This resulted to lower T_c from 65 K to 660 K.

Effects of cation disorder

- Cation disordering causes atomic displacements within local octahedral environment.
- In Ti_{1-x}Y_xN, distortions are large with variations in bond angles by up to 20 degrees.
- In Ti_{1-x}Sc_xN, only minor variation in bond angle as high as 8 degrees.
- Lattice mismatch between Ti and Y and similarity between Ti and Sc plays important roles.

Mechanical properties of SQSs

- C₁₁ and C₁₂ decrease with Sc and Y concentration due to volume expansion.
- High C_{44} means high H_{V} .
- Significant enhancement in the hardness in $Ti_{1-x}Sc_xN$ but not in $Ti_{1-x}Y_xN$.
- High H_V of 27 GPa at x = 0.625 in In Ti_{1-x}Sc_xN. (VEC = 8.4)
- Agrees well with the work by Holleck [1]: Maximized hardness of titanium carbo-nitrides at VEC = 8.4
- Ordered phase $Ti_3Sc_2N_5$, $H_V = 27.3$ GPa at VEC = 8.6.

[1] Holleck, Material selection for hard coatings, J. Vac. Sci. Technol. A Vacuum, Surfaces, Film 4 (1986) 2661, http://dx.doi.org/10.1116/1.573700.

Maximum hardness also extends to the case of random solid solution.

At x = 0.625 atomic Sc concentration, H_V = 27 GPa, VEC = 8.4.

Attributed to the M-N bonding states due to increased occupancy of metal e_g states.

Conclusion

- Investigated the phase stability of two quasi-binary ceramic systems, $Ti_{1-x}Sc_xN$ and $Ti_{1-x}Y_xN$ ($0 \le x \le 1$) using DFT, CE, and MC simulations.
- Exothermic mixing in Ti_{1-x}Sc_xN yielded 4 novel stable intermetallic: TiScN₂, TiSc₈N₉, TiSc₉N₁₀, and Ti₃Sc₂N₅.
- Ti_{1-x}Y_xN shows strong endothermic mixing due to the large lattice mismatch between Ti and Y, hence solubility is achieved only at very high temp (>7220 K).
- End members TiN, ScN and YN exhibit H_V of 24.2, 25.1, and 20.6 GPa respectively.
- $Ti_3Sc_2N_5$ achieves the highest hardness of 27.3 Gpa at VEC = 8.6.
- Random solid solution of Ti_{1-x}Sc_xN exhibits hardness of 27 GPa at x =0.625 and VEC = 8.4

Conclusion

- Ti_{1-x}Sc_xN alloys exhibit enhanced hardness and stability due to strong *d-p* hybridization of metal-nitrogen orbitals and minimal volume expansion attributed to similarity in cation properties of Ti and Sc.
- Ti_{1-x}Y_xN alloys only useful for hardness enhancement by diffusing through grain boundaries in TiN.
- The Ti_{1-x}Sc_xN alloys make them promising candidates for improved hard coating applications.
- We recommend mechanical properties tuning by controlled VEC for structural and functional alloys.

Thank you!

Tian's Equation for calculating *H_V*(Vicker's Hardness)

 $H_V = 0.92k^{1.137}G^{0.708}$ Y. Tian *et al.*, Int. J. Refract. Met. Hard Mater. **33**, 93 (2012).

Concentration (x), elastic constants (C_{11} , C_{12} , C_{44}), Bulk modulus (B), Shear modulus (G), Pugh's ratio (k), Poisson's ratio (v), Young's modulus (E) and Vickers hardness (H_V) of the SQS of Ti_{1-x}Y_xN.

SQSs	Concentration (x)	C_{11} (GPa)	C_{12} (GPa)	C ₄₄ (GPa)	B (GPa)	G (GPa)	k	v	E (GPa)	H _V (GPa)
	0	563.2	113.1	158.6	263.1	182.5	0.69	0.22	444.7	24.2
	0.125	517.3	136.5	161.1	263.5	172.2	0.65	0.23	424.2	21.7
	0.25	497.6	129.9	159.5	252.4	168.8	0.67	0.23	414.2	22
	0.375	473.7	123.7	163.3	240.4	167.9	0.7	0.22	408.6	23
Ti _{1x} Sc _x N	0.5	472.2	110	170.4	230.7	174.6	0.76	0.2	418.3	25.9
	0.625	460.6	104.3	172.5	223.1	174.7	0.78	0.19	415.7	27
	0.75	439.5	104.6	168.2	216.2	167.9	0.78	0.19	400.2	26
	0.875	419.3	103.8	168.8	209	164.3	0.79	0.19	390.6	25.9
	1	389.5	104.2	166.8	199.3	156.7	0.79	0.19	372.5	25.1
	0	563.2	113.1	158.6	263.1	182.5	0.69	0.22	444.7	24.2
	0.125	477.2	124.6	142.5	242.1	155.2	0.64	0.24	383.5	19.7
	0.25	433.4	103	133.7	213.1	145.5	0.68	0.22	355.6	20.3
	0.375	295.7	107.7	121.6	170.3	109.7	0.64	0.23	270.9	15.5
Ti _{1-x} Y _x N	0.5	272.5	77	121.4	142.2	111.3	0.78	0.19	264.8	19.6
	0.625	278.5	79.3	123.7	145.7	113.4	0.78	0.19	270.2	19.7
	0.75	293.5	83.1	126	153.2	117.2	0.77	0.2	280.2	19.8
	0.875	279.7	75.8	117.9	143.8	111.2	0.77	0.19	265.3	19.3
	1	318.5	76.8	122.6	157.4	121.9	0.77	0.19	290.7	20.6

Numbers of structures calculated with DFT, numbers of clusters in pairs, triplets and quadruplets, and cross-validation (CV) score of $Ti_{1-x}Sc_xN$ and $Ti_{1-x}Y_xN$.

Alloys	Num. of structures	Num. of clusters (pair + trip + quad)	CV Score (meV)
Ti _{1-x} Sc _x N	83	15+2+3	4.04
Ti _{1-x} Y _x N	91	16+12+16	19.3

(IpCOHP) for different bonding states (Metal: Metal and Metal: Nitrogen) for the three end members and four predicted novel ground states.

Compound	M-N –IpCOHP	M-M -IpCOHP
TiN	1.415	0.137
ScN	1.428	0.012
YN	2.420	0.009
TiScN	1.408	0.043
Ti₃Sc₂N₅	1.721	0.078
TiSc ₈ N ₉	1.255	-0.008
TiSc ₉ N ₁₀	1.228	-0.009

We performed ab initio DFT computations using the Vienna Abinitio Simulation Package (VASP) with the projector-augmented wave method (PAW) and Purdew–Burke– Ernzerhoff (PBE) generalized gradient approximation (GGA). We selected the potentials of Ti_sv, Zr_sv, Hf_pv and N, where "_sv" denotes that the semi-core s and p electrons are also included, while "_pv" specifies the semi-core p electrons. The plane wave energy cutoff was chosen to be 520 eV to ensure correct cell volume and shape relaxations. The k-point meshes were created with k-points per reciprocal atom (KPPRA) of 4000. Methfessel-Paxton order 1 smearing was used with a sigma value as small as 0.1 eV. The convergence criterion was set to 10⁻⁵ eV in energy during the electronic iterations. For structural optimization, the cell volume, shape and atomic positions were allowed to relax until stress was minimized and forces on any atom were below 0.02 eV/Å.

Calculation Parameters

Phase diagrams were generated for $Ti_{1-x}Zr_{x}N$, $Ti_{1-x}Hf_{x}N$ and $Zr_{1-x}Hf_{x}N$ using the Alloy Theoretic Automated Toolkit (ATAT). Included in ATAT, the MIT Ab-initio Phase Stability (maps) code was used to generate the energy landscapes and CEs. The Easy Monte Carlo Code (emc2 and phb) was used to perform MC simulations to obtain the phase diagrams. With well-converged CEs, a box of $12 \times 12 \times 12$ 2-atom unit cells (1728 exchangeable sites) was chosen in the semi-grand canonical (SGC) ensemble simulations, in which chemical potential and temperature (T) can be given as external conditions. Chemical potential is defined as $\mu_i = \left(\frac{\partial G}{\partial n_i}\right)_{T,n_{i\neq i}}$, where G is the Gibbs free energy, n_i is the number of atoms of species i in the simulation cell. In a binary system $A_{1-x}B_x$, $\mu = \mu_A - \mu_B$ is used as the input. For each μ and T point, sufficient MC passes were used to make sure the composition (x) reached a precision of 0.01. In a SGC ensemble the composition jumps from one boundary to another, skipping the two-phase region in response to the change in μ . This jumping prevents the determination of spinodal curves in this ensemble.

Published work: Z.T.Y. Liu, B.P. Burton, S. V Khare, and D. Gall, J. Phys. Condens. Matter 29, 35401 (2017).

Vickers Hardness

Brittleness/Ductility

ductile

http://oregonstate.edu/instruct/engr322/Homework/AllHomework/S09/ENGR322HW7.html http://en.wikibooks.org/wiki/Advanced_Structural_Analysis/Part_I_-_Theory/General_Properties_of_Materials

- There are two ways to determine the elastic constants.
 - Energy-strain
 - Stress-strain
- Here we employed the energy-strain method, which requires fitting the relation to a 2nd order polynomial. The strain tensor has the general form below.
- There are three independent elastic constants, C_{11} , C_{12} and C_{44} for the cubic crystallographic system. Therefore, we applied three sets of strains to the unit cell.

$$\varepsilon_{ij} = \begin{pmatrix} e_1 & \frac{e_6}{2} & \frac{e_5}{2} \\ \frac{e_6}{2} & e_2 & \frac{e_4}{2} \\ \frac{e_5}{2} & \frac{e_4}{2} & e_3 \end{pmatrix}$$

Strain	Non-zero Strain Elements	$\Delta E/V_0$
1	$e_1 = e_2 = e_3 = \delta$	$3/2 (C_{11}+2C_{12})\delta^2$
2	$e_1 = \delta, e_2 = -\delta, e_3 = \delta^2 / (1 - \delta^2)$	$(C_{11}-C_{12})\delta^2$
3	$e_6 = \delta, e_3 = \delta^2 / (4 - \delta^2)$	$1/2 C_{44} \delta^2$

Equation for Calculating Vickers Hardness (H_V)

Figure adapted from Tian et al.Y. Tian, B. Xu, and Z. Zhao, Int. J. Refract. Met. Hard Mater. 33, 93 (2012).X. Q. Chen, H. Y. Niu, D. Z. Li and Y. Y. Li, *Intermetallics* 19, 1275 (2011).

- $H_V = 0.92k^{1.137}G^{0.708}$ k = G/B
- *k* Pugh's ratio *G* - shear modulus

Data points (40+ compounds):

Covalent: C, Si, BN... Ionic: NaCl, KBr... Metallic glasses

Anti-Correlation

Difference in *B* and *G*

- $B = (C_{11} + 2C_{12})/3$
- $G_v = [(C_{11} C_{12}) + 3C_{44}]/5$
- $G_{R} = [5(C_{11} C_{12})C_{44}] / [4C_{44} + 3(C_{11} C_{12})]$
- $G = G_{VRH} = (G_v + G_R)/2$

k = G/B

Difference in **B** and **G**

- Bulk modulus (*B*) only measures the resistance to isotropic hydrostatic pressure, while shear modulus (*G*) measures the resistance to anisotropic shear strain.
- TiN (G: 187.2 GPa, B: 318.3 GPa, H_V : 23 GPa) β -SiC (G: 191.4 GPa, B: 224.7 GPa, H_V : 34 GPa)

Gao FM, He JL, Wu ED, Lu SM, Yu LD, Li DC, et al. Phys Rev Lett 2003;91: 015502. Gou HY, Hou L, Zhang JW, Gao FM. Appl Phys Lett 2008;92:241901.

Formulation for *H*_V (Vickers Hardness)

X. Q. Chen et al., Intermetallics 19, 1275 (2011)

Crystal	H _{Exp} (GPa)	H _{Tian} (GPa)	H _{Simunek} (GPa)	H _{Xue} (GPa)	H _{Chen} (GPa)
С	96 ^a	93.6	95.4 ^b	90 ^e	94.6 ^f
Si	12 ^a	13.6	11.3 ^b	14 ^e	11.2 ^f
Ge	8.8 ^b	11.7	9.7 ^b	11.4 ^e	10.4 ^f
SiC	31 ^b	30.3	31.1 ^b	27.8 ^e	33.8 ^f
BN	63 ^a	64.5	63.2 ^b	47.7 ^e	65.3 ^f
BP	33 ^a	31.2	26 ^b	24.9 ^e	29.3 ^f
BAs	19 ^b	26	19.9 ^b	21.1 ^e	-
AIN	18 ^a	21.7	17.6 ^b	14.5 ^e	16.8 ^f
AlP	9.4 ^a	9.6	7.9 ^b	7.4 ^e	7.2 ^f
AlAs	5.0 ^a	8.5	6.8 ^b	6.3 ^e	6.6 ^f
AlSb	4.0 ^a	4	4.9 ^b	4.9 ^e	4.4 ^f
GaN	15.1 ^a	18.1	18.5 ^b	13.5 ^e	13.9 ^f
GaP	9.5 ^a	8.9	8.7 ^b	8 ^e	9.9 ^f
GaAs	7.5 ^a	8	7.4 ^b	7.1 ^e	7.8 ^f
GaSb	4.5 ^a	6	5.6 ^b	4.5 ^e	5.8 ^f
InN	9 ^a	10.4	8.2 ^b	7.4 ^e	7.4 ^f
InP	5.4 ^a	6	5.1 ^b	3.9 ^e	3.7 ^f
InAs	3.8 ^a	3.8	5.7 ^b	4.5 ^e	3.3 ^f
InSb	2.2 ^a	4.3	3.6 ^b	2.2 ^e	2.4 ^f
ZnS	1.8 ^b	6.8	2.7 ^b	2.4 ^e	2.4 ^f
ZnSe	1.4 ^b	5.5	2.6 ^b	1.8 ^e	2.7 ^f
ZnTe	1 ^b	4.1	2.3 ^b	0.9 ^e	2.1 ^f
TiC	32 ^c	34	18.8 ^b	23.9 ^e	27 ^f
TiN	20.6 ^c	21.6	18.7 ^b	23.8 ^h	23.3 ^f
ZrC	25 ^c	21	10.7 ^g	15.7 ^h	27.5 ^f

Crystal	H_{Exp} (GPa)	H_{Tian} (GPa)	H _{Simunek} (GPa)	H _{Xue} (GPa)	H_{Chen} (GPa)
ZrN	15.8 ^c	16.7	10.8 ^g	15.9 ^h	-
HfC	26.1 ^c	26.8	10.9 ^g	15.6 ^h	-
HfN	16.3 ^c	18	10.6 ^g	15.2 ^h	19.2 ^f
VC	27.2 ^c	23	25.2 ^g	17.5 ^h	26.2 ^f
VN	15.2°	14.9	26.5 ^g	16.5 ^h	-
NbC	17.6 ^c	16.1	18.3 ^b	12.8 ^h	15.4 ^f
NbN	13.7 ^c	13.6	19.5 ^b	12 ^h	14.7 ^f
TaC	24.5 ^c	26	19.9 ^g	14.7 ^h	-
TaN	22 ^c	20	21.2 ^g	14.3 ^h	-
CrN	11 ^c	11	36.6 ^g	19.2 ^h	-
WC	30 ^c	31	21.5 ^b	20.6 ^e	31.3 ^f
Re ₂ C	17.5 ^j	1 9.7 ^j	11.5 ^g	16.2 ^h	26.4 ⁱ
Al ₂ O ₃	20 ^c	18.8	13.5 ^g	18.4 ^h	20.3 ⁱ
MgO	3.9 ^d	4.5	4.4 ^g	5.4 ^h	24.8 ⁱ
LiF	1 ^d	0.8	2.2 ^g	-	8.5 ⁱ
NaF	0.6 ^d	0.85	1 ^g	-	5.7 ⁱ
NaCl	0.2 ^d	0.4	0.4 ^b	_	2.4 ⁱ
KC1	0.13 ^d	0.18	0.2 ^b	-	2.3 ⁱ
KBr	0.1 ^d	0.23	0.2 ^g	-	0.1 ⁱ

- ^a Reference [34].
- ^b Reference [37].
- ^c Reference [32].
- ^d Reference [60].
- ^e Reference [58].
- ^f Reference [30][.]
- ^g Calculated by authors using method [36][.]
- ^h Caculated using [35][.]
- ⁱ Calculated with [30][.]
- ^j Referenece [52][.]

 $k \, vs \, P_C$

Crystal Field Splitting

October 14-18, 2018 Columbus, Ohio, USA

