

First-Principles Phase Diagram Calculations for the Rocksalt-Structure Quasibinary Systems TiN-ZrN, TiN-HfN and ZrN-HfN

Z. T. Y. Liu (Terence Liu)¹, B. P. Burton², S. V. Khare¹, D. Gall³

 Department of Physics and Astronomy, University of Toledo, Toledo, OH 43606
 Materials Measurement Laboratory, Metallurgy Division, National Institute of Standards and Technology (NIST), Gaithersburg, MD 20899
 Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180,

Department of Physics and Astronomy University of Toledo

Some Driving Questions from MGI

Transition Metal Nitrides (M_xN_y)

- Can we obtain predictive physical understanding of stable, hard and tough materials for coatings from first-principles calculations?
 - Thermodynamically (multiple-phase stability)?
 - Mechanically (single-phase stability)?
- Can we identify trends of properties and possible correlations between them to restrict the parameter search space?
- How much can we reduce the time and expense for discovering new materials with computational work?
- Can we construct T-x phase diagrams from purely *ab initio* techniques?

Outline

- Transition Metal Nitrides, M_xN_y
- Computational Toolset
 - Density Functional Theory
 - Tools Built on Top of it
- Results 1: Single Phase Properties
- Cluster Expansion Formalism
- Results 2: Solid Solutions (TiN-HfN, TiN-ZrN, HfN-ZrN)

Transition Metal Nitrides (TMNs)

Transition-metal nitrides: applications

Hard wear-resistant coatings (TiN, ZrN, CrN, TaN)

Decorative coatings (TiN, ZrN)

• Wear resistant

- Chemical corrosion and oxidation resistant
- Thermally resistant
- Aesthetically pleasing

Excellent coating materials for multiple purposes. Huge market demand.

Materials Genome Initiative

Computationally achievable

on a large scale

Coatings by Design

Knowledge Base I: Intrinsic Properties of Single Crystal Nitrides

properties of binary nitrides

anisotropy of intrinsic properties

properties of solid solutions: ternary, quaternary nitrides

effect of off-stoichiometry effect of uniform stress Knowledge Base II: Microstructure Effects on Physical Properties

grain size and shape

grain boundaries

on case by case basis

congruent interface between two nitrides

random interface between dissimilar nitrides

microstructural anisotropy

2. Coating Synthesis: development of deposition technique/parameters to create desired composition and microstructure 3d

4d

5d

1 H 1.00794	transition metal nitrides												He 4.002602				
3 Li 6.941	4 Be 9.012182		5 7 8 9 1 B C N O F N 10.811 12.0107 14.00674 15.9994 18.9984032 20.1											10 Ne 20.1797			
11 Na 22.989770	12 Mg 24.3050		13 14 15 16 17 1 AI Si P S CI A 26.581538 28.0855 30.973761 32.066 35.4527 39											18 Ar ^{39.948}			
19 K 39.0983	20 Ca 40.078	21 Sc 44.955910	22 Ti ^{47.867}	23 V 50.9415	24 Cr 51.9961	25 Mn ^{54.938049}	26 Fe 55.845	27 Co 58.933200	28 Ni ^{58.6534}	29 Cu _{63.545}	30 Zn 65.39	31 Ga 69.723	32 Ge 72.61	33 As 74.92160	34 Se _{78.96}	35 Br ^{79.504}	36 Kr ^{83.80}
37 Rb 85.4678	38 Sr 87.62	39 Y 88.90585	40 Zr 91.224	41 Nb 92.90638	42 Mo _{95.94}	43 Tc (98)	44 Ru 101.07	45 Rh 102.90550	46 Pd 106.42	47 Ag 196.56655	48 Cd 112.411	49 In 114.818	50 Sn 118.710	51 Sb 121.760	52 Te 127.60	53 126.90447	54 Xe 131.29
55 Cs 132.90545	56 Ba 137.327	57 La 138.9055	72 Hf ^{178.49}	73 Ta 180.94.79	74 W 183.84	75 Re 186.207	76 Os 190.23	77 Ir 192.217	78 Pt 195.078	79 Au 196.56655	80 Hg 200.59	81 TI 204.3833	82 Pb 207.2	83 Bi 208.58038	84 Po (209)	85 At (210)	86 Rn (222)
87 Fr (223)	88 Ra (226)	89 Ac (227)	104 Rf (261)	105 Db (262)	106 Sg (263)	107 Bh (262)	108 Hs (265)	109 Mt (266)	110 (269)	(272)	112 (277)		114 (289) (287)		116 (289)		118 (293)
			58	59 Dr	60 Nd	61 Pm	62 Sm	63 Fu	64 Gd	65 Th	66 Dv	67 Ho	68 Fr	69 Tm	70 Yh	71	
			140.116 90 Th 232.0381	140.50765 91 Pa 231.035888	144.24 92 U 238.0289	(145) 93 Np (237)	94 Pu (244)	151.964 95 Am (243)	157.25 96 Cm (247)	158.92534 97 Bk (247)	98 Cf (251)	164.93032 99 Es (252)	167.26 100 Fm (257)	168.93421 101 Md (258)	173.04 102 No (259)	174.967 103 Lr (262)	

Published Work

Z. T. Y. Liu, B.P. Burton, S. V Khare, and D. Gall, *J. Phys. Condens. Matter* **29**, 35401 (2017).

Z. T. Y. Liu, D. Gall, and S. V. Khare, *Phys. Rev. B* 90, 134102 (2014).

- Z. T. Y. Liu, X. Zhou, D. Gall, and S. V. Khare, Comput. Mater. Sci. 84, 365 (2014).
- Z. T. Y. Liu, X. Zhou, S. V. Khare, and D. Gall, J. Phys.-Condens. Matter 26, 025404 (2014).

Materials Genome Initiative

Computed Structures of Transition Metal Nitrides

The general procedure

- Transition Metal Nitrides
- Computational Toolset
 - Density Functional Theory
 - Tools Built on Top of it
- Results 1: Single Phase Properties
- Cluster Expansion Formalism
- Results 2: Solid Solutions
- Non-Dissertation Results

Density Functional Theory (DFT)

• The primary feature of DFT is the mapping of a system of N interacting electrons in a given potential $V(\mathbf{r})$ to a system of non-interacting electrons acting in an effective potential $V_{eff}(\mathbf{r})$.

Interacting electrons + real potential, V(r)

Non-interacting fictitious particles + effective potential, $V_{eff}(\mathbf{r})$

 $\psi | n_0(\vec{r})]$ 3 variable

3N variable

 $\psi(\vec{r}_1,\vec{r}_2,...,\vec{r}_N)$

Figure adapted from http://www.physics.ohio-state.edu/~aulbur/dft.html

Figure adapted from M. C. Payne *et al.*, *Reviews of Modern Physics*, **64**, 1045, 1992.

Pseudopotentials

- Representation of a pseudopotential V_{pseudo} and pseudo-wavefunction Ψ_{pseudo} .
- Beyond the cutoff radius r_{cutoff}, the pseudopotential and pseudo-wavefunction exactly reproduce the all electron potential and wavefunction.
- Within r_{cutoff}, the 'softer' pseudopotential removes the rapid oscillations of the real, all electron wavefunction as seen by the smooth pseudowavefunction.

Plane-wave Basis

Now we can express the wavefunction as

$$\psi_i(\mathbf{r}) = \sum_{\mathbf{G}} C_{i,\mathbf{k}+\mathbf{G}} e^{i(\mathbf{k}+\mathbf{G})\cdot\mathbf{r}}$$

- However, a complete expansion with an infinite number of plane-waves is not computationally feasible so we must truncate the expansion
- Since the coefficients of the expansion in equation above decrease rapidly with increasing kinetic energy, the cut off energy for the plane-wave basis set is chosen based on the kinetic energy of the plane-wave.

$$\frac{\hbar^2 |\boldsymbol{k} + \boldsymbol{G}|^2}{2m} \le E_{cut}$$

Total Energy, Band Gap, Elastic Constants, Mechanical Properties, Vibrational Free Energy,

. . .

Outline

- Transition Metal Nitrides
- Computational Toolset
 - Density Functional Theory
 - Tools Built on Top of it
- Results 1: Single Phase Properties
- Cluster Expansion Formalism
- Results 2: Solid Solutions
- Non-Dissertation Results

Energy Convex Hull

● B1 (rs) ● py ■ B2 (cc) ■ fl ▲ B3 (zb) \times MP's cubic ♥ NbO ● M₃N $\stackrel{}{\rightarrow}$ MP's cubic ● M₄N $\stackrel{}{\rightarrow}$ MP's non-cubic ↓ MP's non-cubic ↓ MP's non-cubic

- This describes the energy landscape.
- The values are formation energy per atom, relative to the ground states of the elemental phases at the two ends, denoted by 0.
- The convex vertices are thermodynamically stable members.
- Close to the boundary lines are metastable phases. Metastable phases can still be synthesized through kinetic pathways, e.g. diamond (ΔE_f = 2.4 kJ/mol) vs graphite (0 kJ/mol)

$$\Delta E_{\rm f}(M_x N_y)/\text{atom} = \frac{1}{x+y} E(M_x N_y) - \frac{x}{x+y} E(M) - \frac{y}{2(x+y)} E(N_2)$$

 Hollow markers are mechanically unstable phases. Criteria for cubic system: C₄₄ > 0, C₁₁ > C₁₂, C₁₁ + 2C₁₂ > 0

Energy Convex Hull (Group 3 ~ 7)

From early to late transition metals, nitrides are increasingly more difficult to form.

Energy Convex Hull (Group 8 ~ 12)

From early to late transition metals, nitrides are increasingly more difficult to form.

Density of States (DOS) and Elastic Constant C_{44}

Total DOS of pyrite-structure 3d transition metal pernitrides MN₂.

Elastic constant C_{44} and Total DOS at E_F of pyrite-structure 3d, 4d transition metal pernitrides $MN_{2.}$

- Left shift and narrowing to accommodate more electrons.
- *E*_F (Fermi energy) can land on peaks, valleys or plateaus.
- Total DOS at $E_{\rm F}$ indicates metallicity.
- C_{44} indicates stability and positively correlates with H_{V} .

Z. T. Y. Liu, D. Gall, and S. V. Khare, Phys. Rev. B 90, 134102 (2014).

Density of States (DOS) and Elastic Constant C_{44}

Z. T. Y. Liu, X. Zhou, D. Gall, and S. V. Khare, *Comput. Mater. Sci.* 84, 365 (2014).
Z. T. Y. Liu, X. Zhou, S. V. Khare, and D. Gall, *J. Phys.-Condens. Matter* 26, 025404 (2014).

Difference in *B* and *G* Total pressure vs. shear stress

 $B = (C_{11} + 2C_{12})/3$ $G_{v} = [(C_{11} - C_{12}) + 3C_{44}]/5$ $G_{R} = [5(C_{11} - C_{12})C_{44}]/[4C_{44} + 3(C_{11} - C_{12})]$ $G = G_{VRH} = (G_{v} + G_{R})/2$ k = G/B

Difference in *B* and *G* An example

Bulk modulus (B) only measures the resistance to isotropic hydrostatic pressure, while shear modulus (G) measures the resistance to anisotropic shear strain.

TiN (G: 187.2 GPa, B: 318.3 GPa, H_v: 23 GPa)

 β -SiC (*G*: 191.4 GPa, *B*: 224.7 GPa, *H_V*: 34 GPa)

Tian's alternative for calculating *H_V*(Vicker's Hardness)

Y. Tian *et al.*, Int. J. Refract. Met. Hard Mater.
33, 93 (2012); X. Q. Chen, H. Y. Niu, D. Z. Li and
Y. Y. Li, *Intermetallics* 19, 1275 (2011).

 $B = (C_{11} + 2C_{12})/3$

$$G_{v} = [(C_{11} - C_{12}) + 3C_{44}]/5$$

$$G_{R} = [5(C_{11} - C_{12})C_{44}]/(4C_{44} + 3C_{11} - 3C_{12})$$

$$G = G_{VRH} = (G_{v} + G_{R})/2$$

k = G/B

Data points (40+ compounds): Covalent: C, Si, BN... Ionic: NaCl, KBr... Metallic glasses

Crystal	H_{Exp} (GPa)	H_{Tian} (GPa)	H _{Simunek} (GPa)	H_{Xue} (GPa)	H_{Chen} (GPa)
C	96ª	93.6	95.4 ^b	90 ^e	94.6 ^f
Si	12 ^a	13.6	11.3 ^b	14 ^e	11 .2 ^f
Ge	8.8 ^b	11.7	9.7 ^b	11.4 ^e	10.4 ^f
SiC	31 ^b	30.3	31.1 ^b	27.8 ^e	33.8 ^f
BN	63 ^a	64.5	63.2 ^b	47.7 ^e	65.3 ^f
BP	33 ^a	31.2	26 ^b	24.9 ^e	29.3 ^f
BAs	19 ^b	26	19.9 ^b	21.1 ^e	-
AlN	18 ^a	21.7	17.6 ^b	14.5 ^e	16.8 ^f
AlP	9.4 ^a	9.6	7.9 ^b	7.4 ^e	7.2 ^f
AlAs	5.0 ^a	8.5	6.8 ^b	6.3 ^e	6.6 ^f
AlSb	4.0 ^a	4	4.9 ^b	4.9 ^e	4.4 ^f
GaN	15.1 ^a	18.1	18.5 ^b	13.5 ^e	13.9 ^f
GaP	9.5 ^a	8.9	8.7 ^b	8 ^e	9.9 ^f
GaAs	7.5 ^a	8	7.4 ^b	7.1 ^e	7.8 ^f
GaSb	4.5 ^a	6	5.6 ^b	4.5 ^e	5.8 ^f
InN	9 ^a	10.4	8.2 ^b	7.4 ^e	7.4 ^f
InP	5.4 ^a	6	5.1 ^b	3.9 ^e	3.7 ^f
InAs	3.8 ^a	3.8	5.7 ^b	4.5 ^e	3.3 ^f
InSb	2.2 ^a	4.3	3.6 ^b	2.2 ^e	2.4 ^f
ZnS	1.8 ^b	6.8	2.7 ^b	2.4 ^e	2.4 ^f
ZnSe	1.4 ^b	5.5	2.6 ^b	1.8 ^e	2.7 ^f
ZnTe	1 ^b	4.1	2.3 ^b	0.9 ^e	2.1 ^f
TiC	32 ^c	34	18.8 ^b	23.9 ^e	27 ^f
TiN	20.6 ^c	21.6	18.7 ^b	23.8 ^h	23.3 ^f
ZrC	25 ^c	21	10.7 ^g	15.7 ^h	27.5 ^f

Y. Tian et al., Int. J. Refract. Met. Hard Mater. 33, 93 (2012).

Crystal	H_{Exp} (GPa)	H_{Tian} (GPa)	H _{Simunek} (GPa)	H_{Xue} (GPa)	H_{Chen} (GPa)
ZrN	15.8 ^c	16.7	10.8 ^g	15.9 ^h	-
HfC	26.1 ^c	26.8	10.9 ^g	15.6 ^h	-
HfN	16.3 ^c	18	10.6 ^g	15.2 ^h	19.2 ^f
VC	27.2 ^c	23	25.2 ^g	17.5 ^h	26.2 ^f
VN	15.2 ^c	14.9	26.5 ^g	16.5 ^h	-
NbC	17.6 ^c	16.1	18.3 ^b	12.8 ^h	15.4 ^f
NbN	13.7 ^c	13.6	19.5 ^b	12 ^h	14.7 ^f
TaC	24.5 ^c	26	19.9 ^g	14.7 ^h	-
TaN	22 ^c	20	21.2 ^g	14.3 ^h	-
CrN	11 ^c	11	36.6 ^g	19.2 ^h	-
WC	30 ^c	31	21.5 ^b	20.6 ^e	31.3 ^f
Re ₂ C	17.5 ^j	19.7 ^j	11.5 ^g	16.2 ^h	26.4 ⁱ
Al_2O_3	20 ^c	18.8	13.5 ^g	18.4 ^h	20.3 ⁱ
MgO	3.9 ^d	4.5	4.4 ^g	5.4 ^h	24.8 ⁱ
LiF	1 ^d	0.8	2.2 ^g	-	8.5 ⁱ
NaF	0.6 ^d	0.85	1 ^g	-	5.7 ⁱ
NaCl	0.2 ^d	0.4	0.4 ^b	-	2.4 ⁱ
KC1	0.13 ^d	0.18	0.2 ^b	-	2.3 ⁱ
KBr	0.1 ^d	0.23	0.2 ^g	-	0.1 ⁱ

^a Reference [34].

^b Reference [37].

- ^c Reference [32].
- ^d Reference [60].
- ^e Reference [58].
- ^f Reference [30][.]
- ^g Calculated by authors using method [36][.]
- ^h Caculated using [35][.]
- ⁱ Calculated with [30][.]
- ^j Referenece [52][.]

Anti-Correlation H_v and TDOS at Fermi Energy E_F

$H_{\rm V}$ vs k (Pugh's ratio, G/B) x-axis inverted

- Z. T. Y. Liu, X. Zhou, S. V. Khare, and D. Gall, J. Phys.-Condens. Matter 26, 025404 (2014).
- Z. T. Y. Liu, X. Zhou, D. Gall, and S. V. Khare, Comput. Mater. Sci. 84, 365 (2014).
- S. K. R. Patil, N. S. Mangale, S. V. Khare, and S. Marsillac, Thin Solid Films 517, 824 (2008).
- W. Chen and J. Z. Jiang, J. Alloys Compd. 499, 243 (2010).
- E. J. Zhao, J. P. Wang, J. Meng, and Z. J. Wu, Comput. Mater. Sci. 47, 1064 (2010).
- E. J. Zhao and Z. J. Wu, J. Solid State Chem. 181, 2814 (2008).

 H_{VA} vs P_C (Cauchy's pressure)

Data partly from

W. Chen *et al.*, J. Alloys Compd. **499**, 243 (2010).
E. J. Zhao *et al.*, Comput. Mater. Sci. **47**, 1064 (2010).
E. J. Zhao *et al.*, J. Solid State Chem. **181**, 2814 (2008).

 H_{VA} vs v (Poisson's ratio)

Conclusions for Binary Cubic Phases

- Thermodynamically, energy convex hull draws the energy landscape, and shows a number of insights on the stability of each structural prototypes of TMNs.
- Mechanically, in the cubic structures studied, the anti-correlation between shear-related mechanical properties like H_V and TDOS at E_F is observed for zincblende-, rocksalt-, cesium-chloride-, NbO- and pyrite-structure TMNs in a transition metal period. Structures of other crystallographic systems need to be further studied.
- Hard phases: rocksalt-structure ScN (24.9 GPa), TiN (24 GPa), cesium-chloride-structure VN (29.6 GPa), NbO-structure CrN (21.6 GPa), MoN (21.9 GPa), WN (26.7 GPa), and pyrite-structure MnN₂ (19.9 GPa), PtN₂ (23.5 GPa).
- Several tough phases identified

Published Work

Z. T. Y. Liu, B.P. Burton, S. V Khare, and D. Gall, J. Phys. Condens. Matter 29, 35401 (2017).

- Z. T. Y. Liu, D. Gall, and S. V. Khare, *Phys. Rev. B* 90, 134102 (2014).
- Z. T. Y. Liu, X. Zhou, D. Gall, and S. V. Khare, *Comput. Mater. Sci.* 84, 365 (2014).
- Z. T. Y. Liu, X. Zhou, S. V. Khare, and D. Gall, J. Phys.-Condens. Matter 26, 025404 (2014).

astro1.panet.utoledo.edu/ceramicsdb

Columns to Display + (a) **Cell Parameters** b α β a С 7 **Mechanical Properties** P_C Elastic Constants H_V B G k ν a(Å)Query Fields + Logic between fields is AND, while within a field it is OR. Elements B(GPa) N X Ti X Returned compounds will have elements only within the chosen ones, however in any combination. Space Group Structure G (GPa) rocksalt × pyrite × 194: P6_3/mmc × Potential Approximation Potential Type PBE × USPP × k Code or Experimental **Data Gatherer** VASP × Z.T.Y.Liu Reference J.A. Burt Z, T, Y, Liu, X, Zhou, S, V, Khare and D, G Name 🛆 Xiuquan Zhou Z. T. Y. Liu **Mechanical Stability** J. A. Burt Include Yes Include No Mechanical stability according to criteria satisfied by elastic constants.

Community-Based Ceramics Database

astro1.panet.utoledo.edu/ceramicsdb

Draw Figure

First select rows (by checkbox in the table) Selected rows (by ID) 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20

Now select a column

 $a \quad B \quad G \quad \nu \quad H_V$

bilbao crystallographic server www.cryst.ehu.es

۲	ID =	Structure -	Space Group	Formula	a(Å) ⇒	Elastic Constants (GPa)	B (GPa) =	G (GPa)	ν =	H_V (GPa) =	Potential Approx.	Potential Type 🗢	Code Package	Reference 👄
۲	1	zinc blende	216: F-43m Cubic	ScN	4.84	C11 = 186.9, C12 = 140.9, C44 = 73.8	156.2	46.3	0.37	3.5	LDA	USPP	VASP	Z. T. Y. Liu, X. Zhou, S. V. Khare and D. Gall, Journal of P
	2	zinc blende	216: F-43m Cubic	TiN	4.529	C11 = 322.2, C12 = 176.4, C44 = 103.1	225.0	89.7	0.32	7.8	LDA	USPP	VASP	Z. T. Y. Liu, X. Zhou, S. V. Khare and D. Gall, Journal of Pr
۲	3	zinc blende	216: F-43m Cubic	VN	4.368	C11 = 346.8, C12 = 229.4, C44 = 43.2	268.5	48.9	0.41	2.1	LDA	USPP	VASP	Z. T. Y. Liu, X. Zhou, S. V. Khare and D. Gall, Journal of P
	4	zinc blende	216: F-43m Cubic	CrN	4.262	C11 = 361.7, C12 = 258.7, C44 = -77.9	4.55	-	-	- 111	LDA	USPP	VASP	Z. T. Y. Liu, X. Zhou, S. V. Khare and D. Gall, Journal of P
	5	zinc blende	216: F-43m Cubic	MnN	4.188	C11 = 372.7, C12 = 279.7, C44 = 24.0	310.7	31.4	0.45	0.8	LDA	USPP	VASP	Z. T. Y. Liu, X. Zhou, S. V. Khare and D. Gall, Journal of P
۲	6	zinc blende	216: F-43m Cubic	FeN	4.16	C11 = 379.2, C12 = 282.8, C44 = 114.2	314.9	80.8	0.38	4.4	LDA	USPP	VASP	Z. T. Y. Liu, X. Zhou, S. V. Khare and D. Gall, Journal of P
۲	7	zinc blende	216: F-43m Cubic	CoN	4.177	C11 = 347.4, C12 = 266.0, C44 = 71.2	293.1	56.9	0.41	2.5	LDA	USPP	VASP	Z. T. Y. Liu, X. Zhou, S. V. Khare and D. Gall, Journal of P
۲	8	zinc blende	216: F-43m Cubic	NiN	4.241	C11 = 278.1, C12 = 246.2, C44 = 49.9	256.8	31.6	0.44	1.0	LDA	USPP	VASP	Z. T. Y. Liu, X. Zhou, S. V. Khare and D. Gall, Journal of Pr
۲	9	zinc blende	216: F-43m Cubic	CuN	4.344	C11 = 222.4, C12 = 199.9, C44 = 41.1	207.4	24.5	0.44	0.8	LDA	USPP	VASP	Z.T.Y.Liu, X. Zhou, S.V. Khare and D. Gall, Journal of P
۲	10	zinc blende	216: F-43m Cubic	ZnN	4.472	C11 = 178.0, C12 = 159.4, C44 = 47.4	165.6	25.1	0.43	1.1	LDA	USPP	VASP	Z. T. Y. Liu, X. Zhou, S. V. Khare and D. Gall, Journal of P
	11	rocksalt	225: Fm-3m Cubic	ScN	4.463	C11 = 470.1, C12 = 99.4, C44 = 164.3	223.0	172.4	0.19	26.3	LDA	USPP	VASP	Z. T. Y. Liu, X. Zhou, S. V. Khare and D. Gall, Journal of P
۲	12	rocksalt	225: Fm-3m Cubic	TiN	4.184	C11 = 712.3, C12 = 123.2, C44 = 171.1	319.6	213.0	0.23	25.8	LDA	USPP	VASP	Z. T. Y. Liu, X. Zhou, S. V. Khare and D. Gall, Journal of Pr
۲	13	rocksalt	225: Fm-3m Cubic	VN	4.057	C11 = 751.1, C12 = 178.9, C44 = 126.6	369.6	176.7	0.29	15.5	LDA	USPP	VASP	Z. T. Y. Liu, X. Zhou, S. V. Khare and D. Gall, Journal of P
۲	14	rocksalt	225: Fm-3m Cubic	CrN	3.987	C11 = 702.8, C12 = 227.1, C44 = 9.3	385.7	57.9	0.43	1.9	LDA	USPP	VASP	Z. T. Y. Liu, X. Zhou, S. V. Khare and D. Gall, Journal of P
	15	rocksalt	225: Fm-3m Cubic	MnN	3.945	C11=682.1, C12=241.6, C44=-13.3	-	-	-	-	LDA	USPP	VASP	Z. T. Y. Liu, X. Zhou, S. V. Khare and D. G.

dx.doi.org/10.1088/0953-8984/26/2/025404

Outline

- Transition Metal Nitrides
- Computational Toolset
 - Density Functional Theory
 - Tools Built on Top of it
- Results 1: Single Phase Properties
- Cluster Expansion Formalism
- Results 2: Solid Solutions
- Non-Dissertation Results

The Grand Scheme of Things

Phase Diagrams

- *T-x* phase diagrams provide the road maps for synthesis of a particular phase or a mixture at a given set of external conditions.
- Common examples are solids with vacancies, interstitials and substitutions.

A. van de Walle and M. Asta, *Model. Simul. Mater. Sci. Eng.* **10**, 521 (2002).

http://resource.npl.co.uk/mtdata/phdiagrams/png/alti.png
Phase Diagrams

 It calls for an efficient way of generation and energy prediction of tens of thousands of structures consisting of tens of thousands of atoms, beyond the brute force first-principles calculation of each structure. The cluster expansion formalism offers such a solution.

A. van de Walle and M. Asta, *Model. Simul. Mater. Sci. Eng.* **10**, 521 (2002).

Adapted from http://www.brown.edu/Departments/Engineering/Labs/avdw/atat/atattalk.pdf

Cluster Expansion

$$E^{(n)}(\sigma) = \sum_{\alpha} J_{\alpha} \sigma_{\alpha}^{(n)}$$
$$\sigma_{\alpha}^{(n)} = \prod_{i \in \alpha} \sigma_{i}^{(n)}$$

- α is a cluster of a set of substitutional sites (*i*) of the parent lattice, and each substitutional site is assigned a configuration variable σ_i.
- The sum is taken over all the clusters of the parent lattice
- Coefficients J_α are called effective cluster interactions (ECIs).

Adapted from http://www.brown.edu/Departments/Engineering/Labs/avdw/atat/atattalk.pdf

 The optimal cluster set and ECIs is selected by minimizing the crossvalidation (CV) score,

$$CV = \frac{1}{n} \sum_{i=1}^{n} (E_i - \hat{E}_{(i)})^2,$$

where E_i is the first-principles calculated energy of structure *i*, and $E_{(i)}$ is the "leave-one-out" (without structure *i*) least-squares fitted energy to prevent over-fitting.

Adapted from http://www.brown.edu/Departments/Engineering/Labs/avdw/atat/atattalk.pdf

- The cluster expansion formalism [1-4] describes an effective representation of the crystalline material system's energy, through a cluster set and their coefficients. Typically, the cluster set need to remain as small as a few pairs and triplets. This compact representation is the key to fast ground state search and statistical sampling of microscopic states.
- It is realized in the open source implementation The Alloy Theoretic Automated Toolkit (ATAT).

van de Walle, A., Asta, M. & Ceder, G. Calphad-Computer Coupling Phase Diagrams Thermochem. 26, 539–553 (2002).
 van de Walle, A. Calphad-Computer Coupling Phase Diagrams Thermochem. 33, 266–278 (2009).
 van de Walle, A. & Asta, M. Model. Simul. Mater. Sci. Eng. 10, 521–538 (2002).
 van de Walle, A. & Ceder, G. J. Phase Equilibria 23, 348–359 (2002).

- A special quasi-random structure (SQS) is a supercell that matches, or very close to the correlations of a random state.
- Inputs are maximum diameter of the pair/triplet/quadruplet clusters to match, and the supercell size.

[1] A. van de Walle *et al.*, Calphad-Computer Coupling of Phase Diagrams and Thermochemistry **42**, 13 (2013).
[2] A. van de Walle *et al.*, Calphad-Computer Coupling of Phase Diagrams and Thermochemistry **26**, 539 (2002).
Figure adapted from http://www.brown.edu/Departments/Engineering/Labs/avdw/atat/atattalk.pdf

- The more clusters included, the larger the supercell is needed to perfectly match the random state.
- Usually a small cluster set and small supercell (<50 atoms) is still fine.
- Treating spin-up and spin-down as two different electronic states, SQS can be used to model magnetic disorder with an Ising model.

Outline

- Driving Questions
- Transition Metal Nitrides
- Computational Toolset
 - Density Functional Theory
 - Tools Built on Top of it
- Results 1: Single Phase Properties
- Cluster Expansion Formalism
- Results 2: Solid Solutions
- Answers to Driving Questions

TiN-ZrN, TiN-HfN and ZrN-HfN

1 H 1.00794																	4002602
3 Li 6.941	4 Be 9.012182											5 B 10.811	C	7 N 14.00674	8 O 15.9994	9 F 18.9984032	10 Ne 20.1797
11 Na 22.989770	12 Mg ^{24.3050}										_	13 Al 26.581538	14 Si 28.0855	15 P 30.973761	16 S 32.066	17 Cl 35.4527	18 Ar ^{39.948}
19 K 39.0983	20 Ca 40.078	21 Sc 44.955910	22 Ti ^{47.867}	23 V 50.9415	24 Cr 51.9961	25 Mn ^{54.938049}	26 Fe 55.845	27 Co 58.933200	28 Ni ^{58.6534}	29 Cu 63.545	30 Zn 65.39	31 Ga 69.723	32 Ge 72.61	33 As 74.92160	34 Se ^{78.96}	35 Br ^{79.504}	36 Kr 83.80
37 Rb 85.4678	38 Sr 87.62	39 Y 88.90585	40 Zr 91.224	41 Nb 92.90638	42 Mo _{95.94}	43 Tc (98)	44 Ru 101.07	45 Rh 102.90550	46 Pd 106.42	47 Ag 196.56655	48 Cd 112.411	49 In 114.818	50 Sn 118.710	51 Sb 121.760	52 Te 127.60	53 126.90447	54 Xe 131.29
55 Cs 132.90545	56 Ba 137.327	57 La 138.9055	72 Hf 178.49	73 Ta 180.94.79	74 W 183.84	75 Re 186.207	76 Os 190.23	77 Ir 192.217	78 Pt 195.078	79 Au 196.56655	80 Hg 200.59	81 TI 204.3833	82 Pb 207.2	83 Bi 208.58038	84 Po (209)	85 At (210)	86 Rn (222)
87 Fr (223)	88 Ra (226)	89 Ac (227)	104 Rf (261)	105 Db (262)	106 Sg (263)	107 Bh (262)	108 Hs (265)	109 Mt (266)	(269)	(272)	(277)		114 (289) (287)		(289)		(293)
			50	50	60	61	62	62	64	45	66	67	69	60	70	71	

	Ce	59 Pr	⁶⁰ Nd	⁶¹ Pm	62 Sm	Eu	64 Gd	⁶⁵ Tb	66 Dy	67 Ho	68 Er	Tm	⁷⁰ Yb	⁷¹ Lu
L	140.116	140.50765	144.24	(145)	150.36	151.964	157.25	158.92534	162.50	164.93032	167.26	168.93421	173.04	174.967
ſ	90	91	92	93	94	95	96	97	98	99	100	101	102	103
I	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
l	232.0381	231.035888	238.0289	(237)	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(262)

- Can they be mixed? Do their solid solutions phase separate, at what temperature?
- How to model their solid solutions?

Formation Energy Landscapes

Formation energy landscapes of (a) $Ti_{1-x}Zr_xN$, (b) $Ti_{1-x}Hf_xN$. Energy values are per formula unit, i.e. per exchangeable site. **Black** markers and convex hull lines indicate ground states, **blue** markers indicate the structures calculated with DFT and used to obtain the cluster expansion (CE), and **green** crosses indicate a 16-exchangeable-site ground-state analysis. Among the markers, hollow circles indicate DFT values, and crosses indicate CE-fitted values. **Red** curves indicate CE-fitted values of the random solid solution configurations, while purple squares and lines indicate DFT values and polynomial fit of the SQS's.

Formation Energy Landscapes

	Num. of structures	Num. of clusters (pair + trip + quad)	CV score (meV)
Ti _{1-x} Zr _x N	45	15 + 7	5.2
Ti _{1-x} Hf _x N	74	16 + 7	3.8
Zr _{1-x} Hf _x N	95	32 + 23 + 3	2.6

Formation energy landscapes of (c) Zr_{1-x}Hf_xN. Energy values are per formula unit, i.e. per exchangeable site. **Black** markers and convex hull lines indicate ground states, **blue** markers indicate the structures calculated with DFT and used to obtain the cluster expansion (CE), and **green** crosses indicate a 16-exchangeable-site ground-state analysis. Among the markers, hollow circles indicate DFT values, and crosses indicate CE-fitted values. **Red** curves indicate CE-fitted values of the random solid solution configurations, while purple squares and lines indicate DFT values and polynomial fit of the SQS's.

Thermodynamic Functions, Prefactors and Diffusion Coefficients

 The main quantity for our purposes here is the vibrational contribution to the free energy, which is given by the standard definition

$$F = U - TS_{\rm c}$$

- where U is internal energy, S is entropy and T is temperature
- Both U and S have contributions from atomic configurations and vibrations $F = F^{conf} + F^{vib}$
- For each atomic configuration of the system there is a specific vibrational contribution which can be further written as

$$F^{\rm vib} = U^{\rm vib} - TS^{\rm vib}$$

Calculated Phase Diagrams

Composition x

Calculated phase diagrams of (a) $Ti_{1-x}Zr_xN$, (b) $Ti_{1-x}Hf_xN$. Small crosses are raw data points, and curves are interpolations and extrapolations. **Blue** "+" and **red** " \star " curves correspond to results without and with the vibrational contribution.

	Ti	Zr	Hf
<i>r</i> of <i>M</i> ⁴+ (Å)	0.61	0.72	0.71
V of nitride (Å ³)	19.2	24.3	23.4
B of nitride (GPa)	259	240	247

Z. T. Y. Liu, B. P. Burton, S. V. Khare, and D. Gall, *J. Phys. Condens. Matter* **29**, 35401 (2017). L. Pauling, *The Nature of the Chemical Bond and the Structure of Molecules and Crystals: An Introduction to Modern Structural Chemistry* (Cornell University Press, 1960).

Calculated Phase Diagrams

Calculated phase diagrams of (c) $Zr_{1-x}Hf_xN$. Small crosses are raw data points, and curves are interpolations and extrapolations. In (c), the dotted curve indicates the estimated consolute boundary, as demonstrated by the inset (d). In (d), curves indicate compositions with respect to chemical potentials at various temperatures in a semi-grand-canonical ensemble. The abrupt changes disappear above 200 K, marking the consolute boundary.

^a Holleck, H., J. Vac. Sci. Technol. A-Vacuum Surfaces Film. 4, 2661–2669 (1986).

^b Hoerling, A. *et al.*, *Thin Solid Films* **516**, 6421–6431 (2008).

^c Kieffer, R. & Ettmayer, P., Angew. Chemie Int. Ed. English 9, 926–936 (1970).

Calculated Phase Diagrams: Ti_{1-x}Zr_xC

Calculated phase diagrams of (a) $Ti_{1-x}Zr_xC$. Small crosses are raw data points, and curves are interpolations and extrapolations. **Blue** "+" and **red** "x" curves correspond to results without and with the vibrational contribution.

Z. T. Y. Liu, B. P. Burton, S. V. Khare, and D. Gall, *J. Phys. Cond. Matt.* 29, 35401 (2017); Kieffer, R. & Ettmayer, P. Principles and Latest Developments in the Field of Metallic and Nonmetallic Hard Materials. Angew. Chemie Int. Ed. English 9, 926–936 (1970).

Monte Carlo Simulation Cells

12 x 12 x 12 sites

Blue and green balls are Ti and Zr atoms. N atoms are omitted from the display for clarity. Increasing tendency towards separation is clearly visible with lowering temperature.

Projected Density of States

- Fermi energy (*E*_F) is in the middle of a slope, indicating metallic behavior.
- Overlap between the transition metal d-states and nitrogen p-states, especially below *E*_F, indicates strong bonding.
- Ti in TiN has a higher peak between 0-2 eV in the conduction band than Zr and Hf in their respective nitrides.
- This difference persists in their solid solutions Ti_{0.5}Zr_{0.5}N,Ti_{0.5}Hf_{0.5}N and Zr_{0.5}Hf_{0.5}N.

Projected density of states of TiN, ZrN, HfN and three solid solutions with composition $A_{0.5}B_{0.5}N$ where A and B are transition metals. The Fermi energy is set to 0.

Volume deviations from linearity of $Ti_{1-x}Zr_xN$, $Ti_{1-x}Hf_xN$ and $Zr_{1-x}Hf_xN$. Curves indicate CE-fitted values of the random solid solution configurations.

Volume Change and Exchange-Relaxation Energies

Volume change and exchange-relaxation energies of $Ti_{1-x}Zr_xN$, $Ti_{1-x}Hf_xN$ and $Zr_{1-x}Hf_xN$. Values are per formula unit, i.e. per exchangeable site. Curves indicate CE-fitted values of the random solid solution configurations.

- $\Delta E_{\rm vc}$ meansures energies during volume change.
- $\Delta E_{\rm xc-rlx}$ measures the energies during chemical exchange and cell shape and ionic relaxation.
- A large part of the ΔE_{vc} is canceled out by ΔE_{xc-rlx} .
- ΔE_{vc} of Ti_{1-x}Hf_xN is only ³/₄ of that of Ti_{1-x}Zr_xN, despite the almost identical cation radii of Ti and Zr. ΔE_{xc-rlx} are similar in magnitude.
- $\Delta E_{\rm vc}$ is the main reason for the difference in magnitude of $\Delta E_{\rm f}$ and the consolute temperatures.

TiN 4.25 19.2 -19.63 259 4.241 ^a 19.1 ^a 318 ^b ZrN 4.60 24.3 -20.38 240 4.578 ^a 24.0 ^a 285 ^c		م (Å)	\ <i>//</i> f (Å3)			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		a (A)	WI.u. (A°)	<i>E</i> /1.u. (ev)	B (GPa)	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	TiN	4.25	19.2	-19.63	259	
ZrN 4.60 24.3 -20.38 240 4.578 ^a 24.0 ^a 285 ^c		4.241 ^a	19.1 ^a		318 ^b	
4.578 ^a 24.0 ^a 285 ^c	ZrN	4.60	24.3	-20.38	240	
		4.578 ^a	24.0 ^a		285°	
HfN 4.54 23.4 -21.76 247	HfN	4.54	23.4	-21.76	247	
4.525 ^a 23.2 ^a 276 ^c		4.525 ^a	23.2 ^a		276 ^c	

Volume Change and Exchange-Relaxation Energies

Volume change and exchange-relaxation energies of $Ti_{1-x}Zr_xN$, $Ti_{1-x}Hf_xN$ and $Zr_{1-x}Hf_xN$. Values are per formula unit, i.e. per exchangeable site. Curves indicate CE-fitted values of the random solid solution configurations.

- $\Delta E_{\rm vc}$ meansures energies during volume change.
- Δ*E*_{xc-rlx} measures the energies during chemical exchange and cell shape and ionic relaxation.
- In $Ti_{1-x}Zr_xN$ and $Ti_{1-x}Hf_xN$ the ΔE_{vc} curves exhibit asymmetry, both with maxima on the smaller cation TiN-side. It takes more energy to insert a larger ion into a smallervolume crystal, than vice versa.
- The ΔE_{xc-rlx} curve maximum for Ti_{1-x}Hf_xN is less close to the TiN-side than Ti_{1-x}Zr_xN, resulting in more asymmetry of the final ΔE_f curve for Ti_{1-x}Hf_xN than Ti_{1-x}Zr_xN.
- $\Delta E_{\rm xc-rlx}$ is responsible for the asymmetry.

Phase Separation Discussion

- Experimental endeavors, including cathodic arc plasma deposited [1] and dc reactive magnetron sputtered [2] Ti_{1-x}Zr_xN samples remained single-phase without decomposition after anealing at 600-1200 °C for hours. Only a slight broadening of an X-ray powder diffraction (XRD) peak was observed after a sample, with x = 0.53, was annealed at 1200 °C [1]. This observation is consisitent with the initial stage of spinodal decomposition. Apparently, the experimental anealing temperature range 600-1200 °C is not sufficient in undercooling, or atomic mobility is too low for Ti_{1-x}Zr_xN to phase segregate.
- In addition, the bond dissociation energies for Ti-C (423 ± 30 kJ/mol) and Zr-C (495.8 ± 38.6 kJ/mol) are smaller than the corresponding Ti-N (476 ± 33 kJ/mol) and Zr-N (565 ± 25 kJ/mol)⁹⁰, so movement of transition metals in nitrides is probably slower than in carbides.

Hoerling, A. *et al.*, *Thin Solid Films* **516**, 6421–6431 (2008).
 Abadias, G., Ivashchenko, V. I., Belliard, L. & Djemia, P. Structure, *Acta Mater.* **60**, 5601–5614 (2012).

Elastic Constants

Elastic constants C_{11} , C_{12} , C_{44} , bulk moduli (*B*), shear moduli (*G*) and Vickers hardness (H_V) of the SQS's of Ti_{1-x}Zr_xN, Ti_{1-x}Hf_xN and Zr_{1-x}Hf_xN

Published work: Z.T.Y. Liu, B.P. Burton, S. V Khare, and D. Gall, *J. Phys. Condens. Matter* **29**, 35401 (2017).

Answers to the Driving Questions from MGI

Transition Metal Nitrides (M_xN_y)

- Can we obtain predictive physical understanding of stable, hard and tough materials for coatings from first-principles calculations? Yes
- Thermodynamically (multiple-phase stability)?
- Mechanically (single-phase stability)?
- Can we identify trends of properties and possible correlations between them to restrict the parameter search space? Yes, to some degree
- How much can we reduce the time and expense for discovering new materials with computational work? Yes, significantly
- Can we construct T-x phase diagrams from purely *ab initio* techniques? Yes, but not easy for complex crystals

Thank You!

CaCO₃-ZnCO₃, CdCO₃-ZnCO₃, CaCO₃-CdCO₃ and MgCO₃-ZnCO₃

Z. T. Y. Liu, B. P. Burton, S. V. Khare, and P. Sarin, Chem. Geol. 443, 137 (2016).

Thermal Equation of State of Silicon Carbide

: (b)

Y. Wang, Z. T. Y. Liu, S. V. Khare, S. A. Collins, J. Zhang, L. Wang, and Y. Zhao, Appl. Phys. Lett. 108, 61906 (2016).

ZnCr₂Se₄ and CdCr₂Se₄

I. Efthimiopoulos, Z. T. Y. Liu, S. V. Khare, P. Sarin, V. Tsurkan, A. Loidl, D. Popov, and Y. Wang, *Phys. Rev. B*, 93, 174103 (2016).
I. Efthimiopoulos, Z. T. Y. Liu, M. Kucway, S. V. Khare, P. Sarin, V. Tsurkan, A. Loidl, and Y. Wang, *Phys. Rev. B* 94, 174106 (2016).
I. Efthimiopoulos, Z. T. Y. Liu, S. V. Khare, P. Sarin, T. Lochbiler, V. Tsurkan, A. Loidl, D. Popov, and Y. Wang, *Phys. Rev. B* 94, 174106 (2016).
I. Efthimiopoulos, Z. T. Y. Liu, S. V. Khare, P. Sarin, T. Lochbiler, V. Tsurkan, A. Loidl, D. Popov, and Y. Wang, *Phys. Rev. B* 92, 64108 (2015).

pydass_vasp (or, badass wasp)

Convenient Python modules and wrapping script executables.

Example: plotting band structure

pydass_vasp.electronic_structure.get_bs(plot=True, ylim=[-4,6])


```
{'data': {'columns': ['k_points',
             'band_1', 'band_2', 'band_3', 'band_4', 'band_5', 'band_6', 'band_7', 'band_8',
             'band_9', 'band_10', 'band_11', 'band_12', 'band_13', 'band_14', 'band_15', 'band_16',
             'band_17', 'band_18', 'band_19', 'band_20', 'band_21', 'band_22', 'band_23', 'band_24',
             'band_25', 'band_26', 'band_27', 'band_28', 'band_29', 'band_30', 'band_31', 'band_32'],
         'data': array(
           [[ 0.
                        , -20.342219 , -16.616756 , ..., 5.849101 ,
               5.855091 , 6.074841 ],
            [ 0.04558028, -20.342181 , -16.616823 , ..., 5.811826 ,
               5.815311 , 6.060851 ],
            [ 0.09116057, -20.34223 , -16.617067 , ..., 5.730248 ,
               5.734556 , 5.80481 ],
            ...,
            [ 2.49869989, -20.343194 , -16.628521 , ..., 5.172637 ,
               5.204402 , 5.711173 ],
            [ 2.53591604, -20.343228 , -16.6286 , ..., 5.219897 ,
               5.226956 , 5.730676 ],
            [ 2.57313218, -20.34319 , -16.628622 , ..., 5.234177 ,
               5.234205 , 5.726715 ]])},
 'reciprocal_point_locations': array([ 0.
                                              , 0.8660254 , 1.3660254 , 1.8660254 , 2.57313218]),
 'reciprocal_point_labels': ['R', 'G', 'X', 'M', 'G'],
 'ax': <matplotlib.axes._subplots.AxesSubplot at 0x108b95110>}
```

figure output

data output

https://github.com/terencezl/pydass_vasp https://github.com/terencezl/ScriptsForVASP

pydass_vasp (or, badass wasp)

Example: plotting total density of states with spin polarization pydass_vasp.electronic_structure.get_tdos(plot=True, xlim=[-15, 15], ylim_upper=40)

https://github.com/terencezl/pydass_vasp https://github.com/terencezl/ScriptsForVASP

{'ax_spin_combined': <matplotlib.< th=""><th>axes</th><th>_subplots.AxesSubplot at 0x1</th><th>.08b95110>,</th></matplotlib.<>	axes	_subplots.AxesSubplot at 0x1	.08b95110>,
'ax_spin_overlapping': <matplot1< td=""><td>ib.a</td><td>essubplots.AxesSubplot at</td><td>0x10b0f5fd0>,</td></matplot1<>	ib.a	essubplots.AxesSubplot at	0x10b0f5fd0>,
'data_spin_down': {'columns': ['	Ε',	tot_down', 'tot_integrated_d	lown'],
'data': array([[-22.63140452,	0.	, 0.],	
[-22.60640452,	0.	, 0.],	
[-22.58040452,	0.	, 0.],	
,			
[15.05159548,	0.	, 56.],	
[15.07659548,	0.	, 56.],	
[15.10159548,	0.	, 56.]])},	
'data_spin_up': {'columns': ['E'	, 't	t_up', 'tot_integrated_up'],	
'data': array([[-22.63140452,	0.	, 0.],	
[-22.60640452,	0.	, 0.],	
[-22.58040452,	0.	, 0.],	
,			
[15.05159548,	0.	, 56.],	
[15.07659548,	0.	, 56.],	
[15.10159548,	0.	, 56.]])}}	

figure output

Example: fitting & plotting the equation of state

pydass_vasp.fitting.eos_fit(V, E, plot=True)

Signature: pv.fitting.eos_fit(V, Y, eos='birch_murnaghan', B0_prime=None, plot=False, on_figs=None) Docstring: Fit the volume and total energy, or pressure to the Birch-Murnaghan equation of state. Note: bulk modulus B0 will be returned in the unit of GPa. Parameters V: array volume (Angstrom^3) Y: array total energy (eV), or pressure (GPa) if eos has '_p' eos: string chosen from ['birch_murnaghan', 'vinet']. Default to 'birch_murnaghan' B0_prime: float Keep B0_prime fixed to a given value or not. Default to None plot: bool whether to plot the data, default to False. on_figs: list/int the current figure numbers to plot to, default to new figures Returns _____ a dict, containing 'params': fitting parameters

'r_squared': value for evaluating error

'fitted_data': a dict that has 2D array of fitted data

easily to Pandas DataFrame by pd.DataFrame(**returned_dict['fitted_data'])

pyvasp-workflow

A simple yet flexible programmatic workflow of describing, submitting and analyzing VASP jobs.

Example: fitting	J & plotting the equation of state UT/run_relax.py INPUT/run_relax-spinel.yaml
Output:	
stdout	Working directory: /tmppanfshome/psarin/terencezl/CdCr2Se4/spinel/single_points/321.338
vasnrun xml	distrk: each k-point on 4 cores, 4 groups distr: one band on 4 cores, 1 groups
	using from now: INCAR vasp.5.3.3 18Dez12 (build Oct 15 2013 21:29:38) complex
UUTCAR	BOSCAD found tune information on BOSCAD. Cd Cr. So
DOSCAR	POSCAR found type information on Poscar cu ci se POSCAR found : 3 types and 14 ions
PROCAR	SCALAPALK WIII DE USED LDA part: xc-table for Pade appr. of Perdew
ETGENVAL	POSCAR, INCAR and KPOINTS ok, starting setup WARNING: small aliasing (wrap around) errors must be expected
CONTCAR	FFT: planning WAVECAR not read
CUNTCAR	entering main loop N E dE d'eps ncg rms rms(c)
XDATCAR	DAV: 1 0.920037757382E+03 0.92004E+03 -0.49985E+04 2984 0.110E+03 DAV: 2 0.879159688530E+01 -0.91125E+03 -0.86483E+03 2712 0.333E+02
OSZICAR	DAV: 3 -0.760675799379E+02 -0.84859E+02 -0.82173E+02 3056 0.990E+01 DAV: 4 -0.785305371842E+02 -0.24630E+01 -0.24450E+01 2976 0.155E+01
PCDAT	DAV: 5 -0.785818351583E+02 -0.51298E-01 -0.51269E-01 3329 0.222E+00 0.288E+01 DAV: 6 -0.917251139107E+02 -0.13143E+02 -0.11403E+02 2893 0.519E+01 0.517E+01
FCDAT	DAV: 7 -0.738587310148E+02 0.17866E+02 -0.74822E+01 2918 0.565E+01 0.174E+01 DAV: 8 -0.755871488879E+02 -0.17284E+01 -0.99887E+00 2790 0.868E+00 0.767E+00
IBZKPT	DAV: 9 -0.752980986066E+02 0.28905E+00 -0.13399E+00 2884 0.529E+00 0.225E+00 DAV: 10 -0.753137482954E+02 -0.15650E-01 -0.28875E-01 2878 0.187E+00 0.834E-01
CHG	DAV: 11 -0.753171309590E+02 -0.33827E-02 -0.12503E-02 2830 0.469E-01 0.415E-01 DAV: 12 -0.753181817101E+02 -0.10508E-02 -0.24324E-03 2879 0.163E-01 0.195E-01
WAVECAD	DAV: 13 -0.753187152859E+02 -0.53358E-03 -0.69474E-04 2758 0.949E-02 0.806E-02 DAV: 14 -0.753188291361E+02 -0.11385E-03 -0.10337E-04 2939 0.405E-02 0.413E-02
MAVECAR	DAV: 15 -0.753188735101E+02 -0.44374E-04 -0.74093E-05 2514 0.258E-02 0.164E-02 DAV: 16 -0.753188809408E+02 -0.74307E-05 -0.93285E-06 1695 0.107E-02
CHGCAR	1 F=75318881E+02 E0=75318881E+02 d E =753189E+02 mag= 12.0000 curvature: 0.00 expect dE= 0.000E+00 dE for cont linesearch 0.000E+00
POTCAR	<pre>trial: gam= 0.00000 g(F)= 0.203E-04 g(S)= 0.963E-16 ort = 0.000E+00 (trialstep = 0.100E+01) search vector abs, value= 0.203E-04</pre>
POSCAR	bond charge predicted N E dE d eps ncg rms rms(c)
KDOINTC	DAV: 1 -0.7531889888807E+02 -0.25371E-04 -0.33602E-04 2356 0.421E-02 0.913E-03 DAV: 2 -0.753189009312E+02 -0.20504E-05 -0.19619E-05 2048 0.132E-02
KPUINIS	2 F=75318901E+02 E0=75318901E+02 d E =199904E-04 mag= 12.0000 trial-energy change: -0.000020 1 .order -0.000017 -0.000020 -0.000014
INCAR	<pre>step: 3.1592(harm= 3.1592) dis= 0.00070 next Energy= -75.318913 (dE=-0.321E-04) reached required accuracy - stopping structural energy minimisation</pre>
run relax-spinel	
	real 0:38.12

pot_type: PAW_PBE incar: ENCUT: 360 PREC: Normal ISPIN: 2 ISMEAR: 0 SIGMA: 0.05 EDIFF: 1e-05 NSW: 40 IBRION: 2 ISIF: 4 POTIM: 0.2 EDIFFG: -0.01 KPAR: 4 NPAR: 1 LCHARG: False LWAVE: False LREAL: A LORBIT: 10 kpoints: density: 1000 force_gamma: true poscar: template: POSCAR-spinel repl_elems: {'Cr': 'Cr_pv'} volume: 0

run_dir: spinel/single_points

Fan Page

Stargaz	ers				
All 4	You know 0				
2	Jianxing Tiamen Follow	Н	keke Joined on Feb 8, 2015 Follow	STREAK L:	keeeto Joined on Feb 25, 2013 Follow
	jtsun Joined on Apr 15, 2013 Follow				
4	Asif Iqbal ③ Grenoble Follow	Ξ	keke Joined on Feb 8, 2015 Follow	L^p	addbook Joined on Mar 23, 2013 Follow
ō	Marco Santia Joined on Jan 13, 2017 Follow		indi-ras Joined on Jan 6, 2017 Follow	8	nicheal Joined on Apr 27, 2016 Follow

ATAT-tools

--> print-as-df.py -h usage: print-as-df.py [-h] [-c [columns [columns ...]]] [--sortby SORTBY] [--special SPECIAL] [-T from to] [--mu from to] [-x from to] [--reflect] [-p] [-s savefig_name] [-t T] [--trans] [--var VAR] [--thres THRES] [--min_dist MIN_DIST] [--thres_abs THRES_ABS] [--bd_tol BD_TOL] [--return_single] filetype filename [filename ...]

Print the output of a file generated by a program in ATAT.

positional arguments:

filetype	supports outputs of emc2 and phb. Also can be gs
	(gs.out), fit (fit.out), predstr (predstr.out), and
	the mmaps counterparts mgs, mfit, mpredstr
filename	the actual file name, can be 1 or more.

optional arguments:

-h,help	show this help message and exit
-c [columns [columns]]
	the columns of the dataframe
sortby SORTBY	the column name to sort
special SPECIAL	<pre>generated by mmaps? emc2 canonical mode? emc2 innerT?</pre>

М	a (Å)	<i>C</i> ₁₁ (GPa)	<i>C</i> ₁₂ (GPa)	<i>C</i> ₄₄ (GPa)	Mechanical Stability	E _{coh} (eV/atom)
Sc	4.543	399.3	95.9	157.6	S	6.5
	4.516 ^a	390 ^a	105 ^a	166 ^a		
	4.516 ^b	354.06 ^b	100.20 ^b	170.00 ^b		
	4.44 ^c					
Ti	4.258	603	118.7	159.6	S	7.01
	4.253 ^a	560 ^a	135 ^a	163 ^a		
	4.250 ^b	534.67 ^b	117.70 ^b	175.42 ^b		
	4.241 ^c	625 ^d	165 ^d	163 ^d		
		507 ^e	96 ^e	163 ^e		
V	4.133	620.5	166.8	116.5	S	6.08
	4.127 ^a	660 ^a	174 ^a	118 ^a		
	4.119 ^b	628.70 ^b	144.63 ^b	147.41 ^b		
	4.139°	533 ^d	135 ^d	133 ^d		
Cr	4.064	569.2	209	4.6	S	4.58
	4.063 ^b	502.77 ^b	214.23 ^b	4.05 ^b		

^a D. Holec, M. Friák, J. Neugebauer, and P. H. Mayrhofer, Phys. Rev. B 85, 64101 (2012). (GGA)

^b M. G. Brik and C. G. Ma, Comput. Mater. Sci. **51**, 380 (2012). (GGA)

^c Powder Diffraction Files: 03-065-0565 (TiN), 00-035-0753 (ZrN), 00-033-0592 (HfN), (International Center for Diffraction Data) PDF-2 (Expt.)

^d J. O. Kim, J. D. Achenbach, P. B. Mirkarimi, M. Shinn, and S. A. Barnett, J. Appl. Phys. **72**, 1805 (1992). (Expt.) ^e W. J. Meng and G. L. Eesley, Thin Solid Films **271**, 108 (1995). (Expt.)

	a (Å)	x	C ₁₁	C_{12}	C_{44}	B (GPa)
	4 0	0.440				
PtN ₂ This work	4.877	0.416	661.9	69.3	128.8	266.9
PtN ₂ LAPW-GGA ^a	4.862	0.415	668	78	133	272
PtN ₂ PP-PW91 ^b	4.877	0.417	713	90	136	298
PtN ₂ PP-PBE ^c	4.848	0.415	696	83	136	288
PtN ₂ PAW-PW91 ^d	4.875					278
PtN ₂ , Exp. ^e	4.804					372

^a R. Yu, Q. Zhan, and X. F. Zhang, Appl. Phys. Lett. 88, 51913 (2006).

^b H. Gou, L. Hou, J. Zhang, G. Sun, L. Gao, and F. Gao, Appl. Phys. Lett. 89, 141910 (2006).

^c A. F. Young, J. A. Montoya, C. Sanloup, M. Lazzeri, E. Gregoryanz, and S. Scandolo, Phys. Rev. B **73**, 153102 (2006).

^d J. C. Crowhurst, A. F. Goncharov, B. Sadigh, C. L. Evans, P. G. Morrall, J. L. Ferreira, and A. J. Nelson, Science **311**, 1275 (2006).

^e E. Gregoryanz, C. Sanloup, M. Somayazulu, J. Badro, G. Fiquet, H. K. Mao, and R. J. Hemley, Nat. Mater. **3**, 294 (2004).

We performed *ab initio* DFT computations using the Vienna Abinitio Simulation Package (VASP) with the projector-augmented wave method (PAW) and Purdew–Burke–Ernzerhoff (PBE) generalized gradient approximation (GGA). We selected the potentials of Ti_sv, Zr_sv, Hf_pv and N, where "_sv" denotes that the semi-core s and p electrons are also included, while "_pv" specifies the semi-core p electrons. The plane wave energy cutoff was chosen to be 520 eV to ensure correct cell volume and shape relaxations. The k-point meshes were created with k-points per reciprocal atom (KPPRA) of 4000. Methfessel-Paxton order 1 smearing was used with a sigma value as small as 0.1 eV. The convergence criterion was set to 10⁻⁵ eV in energy during the electronic iterations. For structural optimization, the cell volume, shape and atomic positions were allowed to relax until stress was minimized and forces on any atom were below 0.02 eV/Å.
Phase diagrams were generated for $Ti_{1-x}Zr_xN$, $Ti_{1-x}Hf_xN$ and $Zr_{1-x}Hf_xN$ using the Alloy Theoretic Automated Toolkit (ATAT). Included in ATAT, the MIT Abinitio Phase Stability (maps) code was used to generate the energy landscapes and CEs. The Easy Monte Carlo Code (emc2 and phb) was used to perform MC simulations to obtain the phase diagrams. With wellconverged CEs, a box of $12 \times 12 \times 12$ 2-atom unit cells (1728) exchangeable sites) was chosen in the semi-grand canonical (SGC) ensemble simulations, in which chemical potential and temperature (T) can be given as external conditions. Chemical potential is defined as $\mu_i =$ $\left(\frac{\partial G}{\partial n_i}\right)_{T,n_{i\neq i}}$, where G is the Gibbs free energy, n_i is the number of atoms of species i in the simulation cell. In a binary system $A_{1-x}B_x$, $\mu = \mu_A - \mu_B$ is used as the input. For each μ and T point, sufficient MC passes were used to make sure the composition (x) reached a precision of 0.01. In a SGC ensemble the composition jumps from one boundary to another, skipping the two-phase region in response to the change in μ . This jumping prevents the determination of spinodal curves in this ensemble.

Published work: Z.T.Y. Liu, B.P. Burton, S. V Khare, and D. Gall, J. Phys. Condens. Matter 29, 35401 (2017).

Vickers Hardness

Brittleness/Ductility

ductile

http://oregonstate.edu/instruct/engr322/Homework/AllHomework/S09/ENGR322HW7.html http://en.wikibooks.org/wiki/Advanced_Structural_Analysis/Part_I_-_Theory/General_Properties_of_Materials

- There are two ways to determine the elastic constants.
 - Energy-strain
 - Stress-strain
- Here we employed the energy-strain method, which requires fitting the relation to a 2nd order polynomial. The strain tensor has the general form below.
- There are three independent elastic constants, C₁₁, C₁₂ and C₄₄ for the cubic crystallographic system. Therefore, we applied three sets of strains to the unit cell.

$$\varepsilon_{ij} = \begin{pmatrix} e_1 & \frac{e_6}{2} & \frac{e_5}{2} \\ \frac{e_6}{2} & e_2 & \frac{e_4}{2} \\ \frac{e_5}{2} & \frac{e_4}{2} & e_3 \end{pmatrix}$$

Strain	Non-zero Strain Elements	ΔE/V ₀
1	$e_1 = e_2 = e_3 = \delta$	$3/2 (C_{11}+2C_{12})\delta^2$
2	$e_1 = \delta, e_2 = -\delta, e_3 = \delta^2 / (1 - \delta^2)$	$(C_{11}-C_{12})\delta^2$
3	$e_6 = \delta, e_3 = \delta^2 / (4 - \delta^2)$	$1/2 C_{44} \delta^2$

Equation for Calculating Vickers Hardness (H_V)

$$H_V = 0.92k^{1.137}G^{0.708}$$

 $k = G/B$

k - Pugh's ratio *G* - shear modulus

Data points (40+ compounds):

Covalent: C, Si, BN... Ionic: NaCl, KBr... Metallic glasses

Figure adapted from Tian et al. Y. Tian, B. Xu, and Z. Zhao, Int. J. Refract. Met. Hard Mater. 33, 93 (2012). X. Q. Chen, H. Y. Niu, D. Z. Li and Y. Y. Li, *Intermetallics* 19, 1275 (2011).

Anti-Correlation

Difference in *B* and *G*

 $B = (C_{11} + 2C_{12})/3$ $G_v = [(C_{11} - C_{12}) + 3C_{44}]/5$ $G_R = [5(C_{11} - C_{12})C_{44}]/[4C_{44} + 3(C_{11} - C_{12})]$ $G = G_{VRH} = (G_v + G_R)/2$ k = G/B

Difference in *B* and *G*

Bulk modulus (B) only measures the resistance to isotropic hydrostatic pressure, while shear modulus (G) measures the resistance to anisotropic shear strain.

TiN (G: 187.2 GPa, B: 318.3 GPa, H_v: 23 GPa)

 β -SiC (G: 191.4 GPa, B: 224.7 GPa, H_V : 34 GPa)

Formulation for *H*_V (Vickers Hardness)

X. Q. Chen et al., Intermetallics 19, 1275 (2011)

Crystal	H_{Exp} (GPa)	H _{Tian} (GPa)	H _{Simunek} (GPa)	H _{Xue} (GPa)	H _{Chen} (GPa)
С	96 ^a	93.6	95.4 ^b	90 ^e	94.6 ^f
Si	12 ^a	13.6	11.3 ^b	14 ^e	11.2 ^f
Ge	8.8 ^b	11.7	9.7 ^b	11.4 ^e	10.4 ^f
SiC	31 ^b	30.3	31.1 ^b	27.8 ^e	33.8 ^f
BN	63 ^a	64.5	63.2 ^b	47.7 ^e	65.3 ^f
BP	33 ^a	31.2	26 ^b	24.9 ^e	29.3 ^f
BAs	19 ^b	26	19.9 ^b	21.1 ^e	-
AlN	18 ^a	21.7	17.6 ^b	14.5 ^e	16.8 ^f
AlP	9.4 ^a	9.6	7.9 ^b	7.4 ^e	7.2 ^f
AlAs	5.0 ^a	8.5	6.8 ^b	6.3 ^e	6.6 ^f
AlSb	4.0 ^a	4	4.9 ^b	4.9 ^e	4.4 ^f
GaN	15.1 ^a	18.1	18.5 ^b	13.5 ^e	13.9 ^f
GaP	9.5 ^a	8.9	8.7 ^b	8 ^e	9.9 ^f
GaAs	7.5 ^a	8	7.4 ^b	7.1 ^e	7.8 ^f
GaSb	4.5 ^a	6	5.6 ^b	4.5 ^e	5.8 ^f
InN	9 ^a	10.4	8.2 ^b	7.4 ^e	7.4 ^f
InP	5.4 ^a	6	5.1 ^b	3.9 ^e	3.7 ^f
InAs	3.8 ^a	3.8	5.7 ^b	4.5 ^e	3.3 ^f
InSb	2.2 ^a	4.3	3.6 ^b	2.2 ^e	2.4 ^f
ZnS	1.8 ^b	6.8	2.7 ^b	2.4 ^e	2.4 ^f
ZnSe	1.4 ^b	5.5	2.6 ^b	1.8 ^e	2.7 ^f
ZnTe	1 ^b	4.1	2.3 ^b	0.9 ^e	2.1 ^f
TiC	32 ^c	34	18.8 ^b	23.9 ^e	27 ^f
TiN	20.6 ^c	21.6	18.7 ^b	23.8 ^h	23.3 ^f
ZrC	25°	21	10.7 ^g	15.7 ^h	27.5 ^f

Y. Tian *et al.*, Int. J. Refract. Met. Hard Mater. **33**, 93 (2012).

Crystal	H_{Exp} (GPa)	H _{Tian} (GPa)	H _{Simunek} (GPa)	H _{Xue} (GPa)	H _{Chen} (GPa)
ZrN	15.8 ^c	16.7	10.8 ^g	15.9 ^h	-
HfC	26.1 ^c	26.8	10.9 ^g	15.6 ^h	-
HfN	16.3 ^c	18	10.6 ^g	15.2 ^h	19.2 ^f
VC	27.2 ^c	23	25.2 ^g	17.5 ^h	26.2 ^f
VN	15.2 ^c	14.9	26.5 ^g	16.5 ^h	-
NbC	17.6 ^c	16.1	18.3 ^b	1 2.8 ^h	15.4 ^f
NbN	13.7 ^c	13.6	19.5 ^b	12 ^h	14.7 ^f
TaC	24.5 ^c	26	19.9 ^g	14.7 ^h	-
TaN	22 ^c	20	21.2 ^g	14.3 ^h	-
CrN	11 ^c	11	36.6 ^g	1 9.2 ^h	-
WC	30 ^c	31	21.5 ^b	20.6 ^e	31.3 ^f
Re ₂ C	17.5 ^j	19.7 ^j	11.5 ^g	1 6.2 ^h	26.4 ⁱ
Al_2O_3	20 ^c	18.8	13.5 ^g	1 8.4 ^h	20.3 ⁱ
MgO	3.9 ^d	4.5	4.4 ^g	5.4 ^h	24.8 ⁱ
LiF	1 ^d	0.8	2.2 ^g	-	8.5 ⁱ
NaF	0.6 ^d	0.85	1 ^g	-	5.7 ⁱ
NaCl	0.2 ^d	0.4	0.4 ^b	-	2.4 ⁱ
KC1	0.13 ^d	0.18	0.2 ^b	-	2.3 ⁱ
KBr	0.1 ^d	0.23	0.2 ^g	-	0.1 ⁱ

^a Reference [34].

^b Reference [37].

^c Reference [32].

^d Reference [60].

^e Reference [58].

^f Reference [30][.]

^g Calculated by authors using method [36][.]

^h Caculated using [35][.]

ⁱ Calculated with [30][.]

^j Referenece [52][.]

 $k vs P_C$

Chen's formulation for calculating *H_V*(Vicker's Hardness)

Equation for Calculating Vickers Hardness (H_V)

$$H_V = 0.92k^{1.137}G^{0.708}$$

 $k = G/B$

k - Pugh's ratio *G* - shear modulus

Data points (40+ compounds):

Covalent: C, Si, BN... Ionic: NaCl, KBr... Metallic glasses

Figure adapted from Tian et al. Y. Tian, B. Xu, and Z. Zhao, Int. J. Refract. Met. Hard Mater. 33, 93 (2012). X. Q. Chen, H. Y. Niu, D. Z. Li and Y. Y. Li, *Intermetallics* 19, 1275 (2011).

