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                                                                ABSTRACT 
 
We report an ab initio study of the mechanical stability of platinum nitride (PtN), in four 

different crystal structures,  the rock salt (rs-PtN), zinc blende (zb-PtN), cooperite and a 

face centered orthorhombic phase. Only the rs-PtN phase is found to be stable and has the 

highest bulk modulus B = 284 GPa. Its electronic density of states shows no band gap 

making it metallic. The zb-PtN phase does not stabilize or harden by the nitrogen 

vacancies investigated in this study. Therefore, the experimental observation of super 

hardness in PtN remains a puzzle.   

 
I. INTRODUCTION 

Metal and semi-conductor nitrides are an important class of materials having 

properties of fundamental interest as well as those used in a variety of applications.1,2,3,4 
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Despite the wide interest in making ever better nitrides for applications, the noble metal 

nitrides have evaded discovery till recently. Despite the wide interest in metal nitrides, 

noble metal nitrides have evaded discovery until the recent synthesis of gold 5 and 

platinum nitrides. In 2004 Gregoryanz et al.6 reported the synthesis of platinum nitride, 

PtN. This compound was formed using laser-heated diamond anvil-cell techniques at 

pressures greater than 45 GPa and temperatures exceeding 2000 K.  The compound was 

then recovered completely at room temperature and pressure and analyzed by electron 

microprobe techniques. Compositional profiles showed that the Pt to N ratio was close to 

1:1 with a little variation given by the formula x−1PtN  where x < 0.05. The synchrotron x-

ray diffraction experiment revealed PtN to be face-centered cubic but was unable to 

distinguish between zinc-blende (zb-PtN) and rocksalt (rs-PtN) structures due to a much 

stronger Pt signal caused by the large difference between masses of Pt and N. But PtN 

had a first – order Raman spectrum and hence rocksalt structure was ruled out.6 As the 

two first order bands obtained6 seemed to correspond to Raman active peaks of a zinc-

blende structure, the PtN synthesized was concluded to be of this form. The bulk modulus 

(B) of this zinc-blende PtN was determined to be 372 5±  GPa. This B is comparable to 

382 GPa of super hard cubic zinc-blende structure BN7.  Thus PtN with a zinc-blende 

structure is the first noble metal nitride experimentally identified to be a super hard 

material. However, theoretical calculations fail to confirm the high bulk modulus 

extracted from experiment. 

              Recent theoretical investigations have applied different density functional 

methods to calculate the lattice constants and bulk moduli of various forms of PtN.  

These studies conclude that the lattice constant of the zb-PtN is consistent with 
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experiments. However, these calculations draw contradictory conclusions about the high 

bulk modulus of PtN found in experiment. The bulk modulus reported in Ref. [8] concurs 

with the experimental value but the value reported by Ref. [9] contradicts both the 

experiment and Ref. [8], since it is smaller by a factor of one half. Another investigation, 

in Ref. [10] gives a variety of different values for B depending on the method used.  

These explorations motivated us to study theoretically different crystal structures 

of PtN as possible candidates for super-hardness. We restricted our study to compounds 

with 1:1 stoichiometric ratio of Pt:N (except for PtN2, cf. section VIII). Two of these, the 

zb- and rs- PtN phases were motivated by results of X ray measurements6. The zb-PtN 

was found to be mechanically unstable and transformed to a lower energy fco-PtN phase 

for strain type 1 given in Table I. Thus fco-PtN was studied as a potential phase for super 

hard PtN. PtS exists in cooperite phase and hence cooperite PtN (co-PtN) was also 

studied as a possible phase for super hard PtN. The main results of our investigations are 

as follows. The zb-PtN was found to have a lattice constant close to experiment; however, 

it was also found to be mechanically unstable and transformed to a lower energy fco-PtN. 

The bulk modulus of zb-PtN was found from two different methods to be almost half the 

experimentally derived value consistent with the value reported in Ref. [9]. Our bulk 

modulus results are therefore consistent with Ref. [9]. The higher values reported in Refs. 

[8] and [10] are higher by a factor of two due to  errors in calculation. Only the rs-PtN 

phase was found to be mechanically stable i.e. its elastic constants obey the conditions 

( ) ,0CC 1211 >− ( ) ,0C2C 1211 >+ ,0C11 > and .0C44 >  It has the highest bulk 

modulus (B = 284 GPa) greater than the value of 230 GPa for the zb-PtN phase. This 

lower value of B in the zb-PtN phase (compared to the experimental value of 372 GPa6 ) 
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and also its instability led us to investigate the effect of N vacancies on these properties. 

We found that for nitrogen vacancy concentrations of 3.7% and 12.5% that bracketed the 

value of the maximum 5% reported in experiment, the zb-PtN phase remained unstable 

and its B hardly changed. Our study indicates that further experimental investigation 

needs to be carried out to find the cause of the stability and high B of the zb-PtN.  

              The rest of the paper is organized as follows. Section II gives the details of the 

ab initio method used. Section III describes the structure of four different phases of PtN 

studied. Section IV illustrates the method of calculation of elastic constants. In section V 

we investigate the stability of the four phases. Section VI reports the band structure and 

density of states of rs-PtN. Section VII gives results involving introduction of N 

vacancies. Section VIII gives the results and discussion on bulk modulus calculated for 

different phases of PtN studied. 

 

II   AB INITIO METHOD 

We performed first-principles total energy calculations within the local density 

approximation (LDA) and also generalized gradient approximation (GGA) to the density 

functional theory11 (DFT) using the suit of codes VASP.12,13 ,14 ,15  Core electrons are 

implicitly treated by ultra soft Vanderbilt type pseudopotentials16  as supplied by G. 

Kresse and J. Hafner17. For each calculation, irreducible k-points are generated according 

to the Monkhorst-Pack scheme.18 Convergence is achieved with 408 k- points in the 

irreducible part of Brillouin zone for zb-PtN and rs-PtN structures and with 512 and 864 

k- points for cooperite and orthorhombic structures respectively. The single-particle wave 

functions have been expanded in a plane-wave basis using a 224 eV kinetic energy cutoff.  
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All atoms are allowed to relax until a force tolerance of 0.03 eV/Å is reached for each 

atom. Tests using a higher plane-wave cutoff and a larger k-point sampling indicate that a 

numerical convergence better than ±1.0 meV is achieved for relative energies.  

 

III. CRYSTAL STRUCTURE 

We investigated four different phases of PtN, the (i) zb-PtN structure (space 

group m34F ) 19 , (ii) rs-PtN structure (space group m3Fm )19, (iii) face-centered 

orthorhombic structure (fco) (space group Fddd )19  and (iv) cooperite (PtS) structure  

(space group mmc/4P 2 )19. The unit cells for the first three phases are shown Figs. 1, 2, 

and 3 respectively. They consist of three lattice constants of the conventional unit cell a, 

b, and c with lattice vectors =1a
2
1 (0, b, c), =2a

2
1  (a, 0, c) and =3a  

2
1  (a, b, 0). The 

basis consists of a Pt atom at (0, 0, 0) and an N atom at ( )321
1 aaa ++
α

. The first two 

phases have c = b = a, giving them a cubic symmetry. The first phase has α  = 4, while 

the second and third phases have α= 2. Fig. 4. shows the unit cell of co-PtN having 

lattice constants a and c. The lattice vectors are =1a  (a, 0, 0), =2a  (0, a, 0) and =3a  (0, 

0, c). Two Pt atoms at (0, 0, 0), ( )3212
1 aaa ++ and two N atoms at ⎟

⎠
⎞

⎜
⎝
⎛ + 32 4

1
2
1 aa , 

⎟
⎠
⎞

⎜
⎝
⎛ + 32 4

3
2
1 aa  make up the basis. 

The equilibrium lattice constants a, b, and c were varied independently (when 

they were different) to obtain the absolute minimum in total energy for each structure. All 

basis atoms were allowed to relax fully. Table V summarizes the equilibrium lattice 
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constants of the different PtN structures. The structure with the lowest total energy per 

formula unit of PtN was co-PtN. Hence the formation energies, ,E trf −− of the other phases 

are reported with respect to tetragonal structure in Table V. 

 

IV. ELASTIC CONSTANTS 

Elastic constants are the measure of the resistance of a crystal to an externally applied 

stress. For small strains Hooke’s law is valid and the crystal energy E is a quadratic 

function of strain.20 Thus, to obtain the total minimum energy for calculating the elastic 

constants to second order, a crystal is strained and all the internal parameters relaxed. 

Consider a symmetric 3×3 strain tensor ε  which has matrix elements ijε  (i, j = 1, 2, and 

3) defined by Eq. (1) 

                                             ( ) .eI1
2
1eI ji9ijiijij −−−+≡ε                                 (1)     

Such a strain transforms the three lattice vectors defining the unstrained Bravais lattice 

{ ka , k = 1, 2, and 3} to the strained vectors21 { ka′ , k = 1, 2, and 3} as given by Eq. (2)  

                                                      ( ) ,. kk aεIa +=′                                               (2) 

where I is defined by its elements, jifor0andjifor1Iij ≠== . Each lattice vector ka or 

ka′ is a 3×1 matrix. The change in total energy due to above strain (1) is  

           { }( ) ( ) { }( )3
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where 0V  is the volume of the unstrained lattice, 0E  is the total minimum energy at this 

unstrained volume of the crystal, P( 0V ) is the pressure of the unstrained lattice,  and V is 

the new volume of the lattice due to strain in Eq. (1). In Eq. (3), jiij CC =  due to crystal 
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symmetry.20 This reduces the elastic stiffness constants ,Cij  from 36 to 21 independent 

elastic constants in Eq. (3). Further crystal symmetry20 reduces the number to 9 ( 11C , 

12C , 13C , 23C , 22C , 33C , 44C , 55C , 66C ) for orthorhombic crystals, 6 ( 11C , 12C , 13C , 

33C , 44C , 66C ) for tetragonal crystals and 3 ( 11C , 12C , 44C ) for cubic crystals. A 

proper choice of the set of strains { 6....,2,1i,ei = }, in Eq. (3) leads to a parabolic 

relationship between 0V/E∆  ( 0EEE −≡∆ ) and the chosen strain. Such choices for the 

set { ie } and the corresponding form for E∆  are shown in Table I22 for cubic, Table II23 

for tetragonal and Table III24 for orthorhombic lattices. For each lattice structure of PtN 

studied, we strained the lattice by 0%, %,1± and %2±  to obtain the total minimum 

energies E(V) at these strains. These energies and strains were fit with the corresponding 

parabolic equations of 0V/E∆   as given in Tables I, II and III to yield the required 

second order elastic constants. While computing these energies all atoms are allowed to 

relax with the cell shape and volume fixed by the choice of strains { ie }. 

 

 V. MECHANICAL STABILITY 

The strain energy ⎟
⎠
⎞

⎜
⎝
⎛

jiij eeC
2
1  of a given crystal in Eq. (3) must always be positive for all 

possible values of the set { ie }; otherwise the crystal would be mechanically unstable. 

This means that the quadratic form ⎟
⎠
⎞

⎜
⎝
⎛

jiij eeC
2
1  must be positive definite for all real 

values of strains unless all the strains are zero. This imposes further restrictions on the 
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elastic constants ijC  depending on the crystal structure. These stability conditions can be 

found out by standard algebraic methods.25 

 

a. zb-PtN 

For cubic crystal structures such as those of zb-PtN or rs-PtN, the necessary conditions 

for mechanical stability are given by26  

          ( ) ( ) .0C,0C,0C2C,0CC 441112111211 >>>+>−                                           (4) 

The elastic constants are determined by applying the strains listed in Table I. 1211 CC −  is 

obtained by using the strain combination on the first row of Table I. Table IV shows the 

numerical values of our computation of all the elastic constants of zb-PtN. These values 

satisfy all the stability conditions of Eq. (4) except the condition that ( ) .0CC 1211 >−  

Thus we have concluded that the zb-PtN is mechanically unstable which contradicts the 

experimental data.6  

              We now turn our attention to the strain used on the second row of Table I which 

is an isotropic strain and it yields, 
3

C2CB 1211+≡ .We obtained a B value of 230 GPa, 

which is lower than the experimentally reported value of 372 GPa by 38%.6 The fit of 

these isotropically strained volumes and corresponding total minimum energies to 

Murnaghan equation of state27 yielded B = 231 GPa. Thus our theoretical calculations 

suggest that the experimentally observed structure is unstable and with a B that is far 

larger than the theoretically expected value. However, the experiment found that the 

precise stoichiometry for their PtN sample was given by x1PtN −  with .05.0x0 << To 

investigate the effect of N vacancies on the stability of zb-PtN and value of B, we did 
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further calculations which are described in section VII. Based on our results we conclude 

that N vacancies only soften the material and do not explain the large experimental value 

for B (372 GPa). 

                      These disagreements between our theoretically computed properties and the 

experimental results for zb-PtN motivated us to explore other possible structures of PtN 

which could potentially yield very large values of the elastic constants and hence super-

hardness. Since Pt has a large value of B = 298 GPa28 it would seem plausible to have 

such an expectation.6 The X-ray diffraction part of the experimental measurements could 

not distinguish6, 8 between the zb-PtN and rs-PtN structural types since they both had face 

centered cubic (fcc) symmetry. This is because of the much weaker signal of N atoms 

than that of Pt atoms due to a large difference in their atomic numbers. Also many other 

mono transition metal nitrides, such as CrN, NbN, VN, and ZrN exist in the NaCl phase. 

So we explored this phase next.  

 

 b. rs-PtN 

As rs-PtN is cubic, it has to satisfy all the conditions in Eq. (4) to be mechanically stable. 

These conditions are indeed satisfied as seen from the calculated elastic constants in 

Table IV, making it mechanically stable. The calculated B with the parabolic fit of strain 

2 in Table I was found to be 284 GPa. As zb-PtN is unstable and rs-PtN is stable and 

because of the fcc structure reported by the X ray analysis6, one would be tempted to 

conclude that PtN is a rock salt structure like many other monotransition metal nitrides. 

But the calculated lattice constant of rock salt PtN, 0.45036 nm (by GGA) and 0.44071 

nm (by LDA) varies substantially from 0.4801 nm measured experimentally.6 The value 
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of B we obtained was 284 GPa, still off from the experimental value of 372 GPa. It is 

thus not clear whether the observed PtN is in NaCl structure. We nonetheless, explored 

the electronic properties of this stable phase which are described in section VI. With an 

interest toward finding a super-hard form of PtN we explored two other structures of PtN 

having 1:1 stoichiometry. The first of these, the tetragonal (cooperite) structure was 

motivated by the existence in this form of PtO which could exist as a contaminant in the 

experimental sample.29 

 

c. co-PtN 

The stability criteria for a tetragonal crystal26 are:                                                                                  

       
( ) ( ) ( )

.0C,0C,0C,0C
,0C4C2CC2,0c2CC,0CC

66443311

131233111333111211

>>>>

>+++>−+>−
       (5) 

The elastic constants of tetragonal PtN are shown in Table IV. The calculated elastic 

constant 44C  is negative violating Eq. (5) and so is labeled unstable in Table IV. For the 

strain types 1, 2, 4, 5 and 6 in Table II the total minimum energy for strained lattice was 

less than that of the unstrained lattice indicating the transformation of the tetragonal 

structure to either monoclinic or triclinic structures. Hence, the elastic constants 

,C11 ,C12 ,C13 ,C66  and 33C  are labeled unstable in Table IV, making the tetragonal cell 

mechanically unstable. Thus the formation of stable PtN in cooperite phase is ruled out. 

The fourth structure we investigated was discovered by noticing that 1211 CC −  < 0 in 

Table IV for the zb-PtN. Under the strain corresponding to 1211 CC −  the ZnS structure 

transforms to a face centered orthorhombic (fco) structure. 

 



 11

d. fco-PtN 

The mechanical stability criteria for face centered orthorhombic24 PtN are: 

                 ( ) ( ) ,0C2C2C2CCC,0C2CC 231312332211233322 >+++++>−+  

                  .0C,0C,0C,0C,0C,0C 665544332211 >>>>>>                                     (6) 

The calculated elastic constants are shown in Table IV. All the elastic constants obey the 

mechanical stability criteria given in Eq. (6) except for 44C . Hence the possibility of PtN 

crystallizing in face centered orthorhombic phase is eliminated. For strain type 4 in Table 

III the fco PtN transforms to a triclinic phase, which we did not investigate. We now 

conclude that of the four forms of PtN we studied only the rs-PtN is mechanically stable. 

We describe its electronic structure next. 

 

VI. ELECTRONIC STRUCUTRE OF rs-PtN 

The band structure of this phase along a high symmetry direction is shown in Fig. 5. The 

calculated density of states (DOS) is shown in Figure 6. There is no band gap in the DOS 

at the fermi level (EF) and hence rs-PtN is metallic. The bands near the fermi level are 

mainly contributed by platinum d-orbitals while the lowest band is mainly the nitrogen s-

orbital. The electronic density of states is calculated using 408 irreducible k-points and a 

0.2 eV smearing of the energy levels to provide a smooth DOS plot.  The DOS between -

5 eV and +1 eV is dominated by the Pt metal states and compares well to the 

photoemission spectra of platinum30. Figure 7. shows the projected density of states 

(PDOS) of Pt and N atoms in s, p and d orbitals. As seen from PDOS, the d electrons of 

Pt contribute to the majority of the DOS near the Fermi level.  
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VII. NITROGEN VACANCIES 

The experimental specimen of x1PtN −  was sub-stoichiometric with .05.0x0 << This 

sub-stoichiometry may be the reason for both its stability and high value of B. To check 

for such a trend, we performed a calculation with a larger supercell31 to create Pt27N26  

(i.e. x = 0.0370) which is comparable to the experimental specimen. The equilibrium 

lattice constant for this sub stoichiometric zb-PtN was found to be 0.46019 nm and B was 

found to be 221 GPa. Thus the bulk modulus is reduced slightly at this nitrogen vacancy 

concentration. The other sub-stoichiometry computed was a supercell32 of Pt8N7 (i.e. x = 

0.125). The lattice constant and bulk modulus for this compound were 0.45556 nm and 

238 GPa respectively. Thus this composition hardly raises the value of B to the value 

reported in experiment. The strain type 1 of Table I for which the zb-PtN was unstable 

was applied to the above mentioned two super cells. These calculations showed that the 

stability criterion ( ) 0CC 1211 >−  was not satisfied for these sub-stoichiometric forms 

either. Values of x in our calculations for sub-stoichiometric cases range from 0 (no 

vacancies), 0.037 and 0.125. These values cover the experimental range for x from 0 to 

0.05 and beyond. It seems unlikely then that x1PtN − ( 05.0x0 << ), can be stabilized by 

the presence of vacancies alone. However, stabilizing and hardening effects due to other 

types of defects or impurities induced by the high pressure and high temperature 

production technique used in the experiment cannot be ruled out. 

 

VIII. BULK MODULUS RESULTS AND DISCUSSION 

Table V lists our values of B for zb-PtN and rs-PtN calculated using VASP with LDA 

and also the generalized gradient approximation, GGA. As a test of our method we also 
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calculated the bulk modulus of zinc blende structure of BN and rock salt OsN with LDA. 

Our B = 382 GPa for BN is in very good agreement with the experimental value of 382 

GPa7 and previous LDA value of 403 GPa.33  Also our calculated bulk modulus value of 

380 GPa for OsN is in good agreement with 372 GPa obtained by a previous ab initio 

calculation.34 However, our results using VASP with GGA for PtN differ significantly 

from those of Ref. [8]38 as seen in Table V. Our value of B = 192 GPa with GGA for zb-

PtN is about 48% smaller than their value of 371 GPa which is almost identical to the 

experimental value6. However, our value matches quite well with the value of 194 GPa 

found in Ref. [9]. Note that an all electron method WIEN2K35 was used in both Refs. [8] 

and [9], while our VASP method is based on pseudo-potentials. For a proper comparison 

we also computed these bulk moduli with WIEN2K. We used FLAPW calculations with 

LDA and GGA as done in Refs. [8] and [9] using WIEN2K. Non over lapping muffin-tin 

sphere radii of 0.0100 nm and 0.0085 nm were used for Pt and N atoms respectively. 

Using this method we obtained B = 178 GPa for zb-PtN as seen in Table V, which is in 

good agreement with our value of 192 GPa obtained using VASP. A similar situation 

arises for rs-PtN with GGA where our WIEN2K result is B = 233 GPa in agreement with 

VASP value of 226 GPa but different from 431 GPa of Ref. [8]38. The LDA and GGA 

bulk moduli for zb-PtN obtained in Ref. [9], which also uses WIEN2K are given in Table 

V. They are in good agreement with our present work. For zb-PtN, the shear modulus, 

2
CC

C 1211 −=′  = -17 GPa obtained in Ref. [9] is in good agreement with -15.5 GPa 

obtained by us.  

                R. Yu et al.9, have suggested that the experimental sample may contain excess 

N atoms, and hence may well be the PtN2 flourite phase in the m3Fm  space group. As a 
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check, we also calculated the bulk modulus and elastic constants of PtN2 using VASP. 

The bulk modulus was found to be 300 GPa. The computed elastic constants C11, C12  and 

C44 were 495 GPa, 193 GPa and 109 GPa respectively, satisfying the mechanical stability 

conditions for cubic lattices as given in Eq. (4). These values for fluorite PtN2 are in good 

agreement with those obtained in Ref. [9]. It is interesting to note that though the value 

for B clearly disagrees with the experimental value it is the only phase for which C44 is of 

extremely high value 495 GPa comparable to that of super hard BN36. It is also 

interesting to note that values for B in Ref. [8]38 are approximately 
2
1  of our values using 

WIEN2K and those of Ref. [9]. 
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 SUMMARY 

Using first principles calculations we have computed properties of PtN, a recently 

synthesized noble metal nitride6. Using our ab initio calculations the experimental zinc-

blende structure of PtN reported6  was found to be mechanically unstable and its bulk 

modulus was found to be 38% lower than in experiment. Upon introduction of N 

vacancies in this zb-PtN structure we found that it remained unstable and the bulk 

modulus did not change substantially. The role of other types of impurities or defects 

causing the stability and super-hardness cannot be ruled out. Further experimental 

investigation is needed to understand the underlying causes behind the stability and 

super-hardness, which are not explained by our ab initio calculations.  

To find super-hardness in other forms of PtN we also investigated its rock-salt, 

cooperite, and face centered orthorhombic phases. Of these only rs-PtN was found to be 

stable. X-ray diffraction measurements6 have identified this form as a possible structural 

candidate showing fcc symmetry. However, our calculated lattice constant 0.45036 nm 

differs from the experimental value of 0.48010 nm by 6.2%. We also find no evidence for 

super-hardness in this form. The electronic band structure and total density of states of 

this stable form were studied. This form shows no band gap and is metallic consistent 

with experimental observation. All our computations and those of others8,9,10 reveal that 

more experiments need to be performed to ascertain the true nature of the newly 

discovered PtN material. 
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                                                                          TABLES 
 
Strain                   Parameters (unlisted 0=ie )                                               0V/E∆  
 
   1                            ( ) 11, 2

321 −+=== −δδ eee                                    ( ) 2
1211 CC3 δ−  

   2                            δ=== 321 eee                                                     ( ) 2
1211 C2C

2
3

δ+  

   3                             ( ) 122
36 4, −

−== δδδ ee                                             2
44C

2
1

δ  

 

TABLE I. Three strain combinations in the strain tensor [Eq. (1)] for calculating the         

three elastic constants of cubic structures shown in Fig. 1 and Fig. 2. The three 

independent elastic constants ,C11 ,C12  and 44C  of zinc blende and rock salt PtN are 

calculated from the above strains. Symmetry dictates jiij CC =  and all unlisted .0Cij =   

The strain δ is varied in steps of 0.01 from δ = -0.02 to 0.02. E∆  [Eq. (3)] is the 

difference in energy between that of the strained lattice and the unstrained lattice. The 

equilibrium or unstrained lattice volume is 0V .  
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Strain                      Parameters (unlisted 0=ie )                                           0V/E∆  
 

   1                              δ=1e                                                                           2
11C

2
1

δ  

 

   2                              δ=3e                                                                           2
33C

2
1

δ  

 
   3                              δ24 =e                                                                        2

44C2 δ  
 

   4                       δδ −=== 321 ,2 eee                                 ( ) 2
33131211 CC2C4C5

2
1

δ+−−  

 
   5                       δδ 2, 321 =−== eee                               ( ) 2

33131211 C2C4CC δ+−+  
 
   6                      δδδ 2,2, 6321 =−=== eeee         ( ) 2

6633131211 C2C2C4CC δ++−+  
 
 

TABLE II. Six strain combinations in the strain tensor [Eq. (1)] for calculating the six 

elastic constants of the tetragonal structure shown in Fig. 3. The six independent elastic 

constants ,C11 ,C12 ,C13 ,C33 ,C44 and 66C of tetragonal PtN are calculated from the above 

strains. Symmetry dictates jiij CC =  and all unlisted .0Cij = The strain δ is varied in steps 

of 0.01 from δ = -0.02 to 0.02. E∆  [Eq. (3)] is the difference in energy between that of 

the strained lattice and the unstrained lattice. The equilibrium or unstrained lattice 

volume is 0V .  
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Strain                   Parameters (unlisted 0=ie )                                               0V/E∆  

   1                            δ=1e                                                                               2
11C

2
1

δ  

   2                            δ=2e                                                                               2
22C

2
1

δ  

   3                            δ=3e                                                                               2
33C

2
1

δ  

   4                            δ=4e                                                                               2
44C

2
1

δ  

   5                            δ=5e                                                                               2
55C

2
1

δ  

   6                            δ=6e                                                                               2
66C

2
1

δ  

   7                      δδ −=== 321 ,2 eee             ( ) 2
332322131211 CC2CC4C4C4

2
1

δ+++−−  

   8                   δδδ −==−= 321 ,2, eee     ( ) 2
332322131211 CC4C4C2C4C

2
1

δ+−++−       

   9                       δδ 2, 321 =−== eee        ( ) 2
332322131211 C4C4CC4C2C

2
1

δ+−+−+        

 

TABLE III. Nine strain combinations in the strain tensor [Eq. (1)] for calculating the nine 

elastic constants of the orthorhombic structure shown in Fig. 4. The nine independent 

elastic constants 11C , 12C , 13C , 23C , 22C , 33C , 44C , ,C55  and 66C of the orthorhombic 

PtN are calculated form the above strains. Symmetry dictates jiij CC =  and all unlisted 

.0Cij =  The strain δ is varied in steps of 0.01 from δ = -0.02 to 0.02. E∆  [Eq. (3)] is the 

difference in energy between that of the strained lattice and the unstrained lattice. The 

equilibrium or unstrained lattice volume is 0V .  
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     ijC  (in GPa)      Zinc blende        Rocksalt       Cooperite    Face centered orthorhombic  
       
      11C                          210                 355              unstable                   570 
     
      22C                         11C                  11C                  11C                        254 
 
      33C                         11C                  11C                unstable                  258 
 
      44C                          14                   36                unstable                unstable 
 
      55C                         44C                 44C                  44C                        98 
 
      66C                         44C                 44C               unstable                    98 
 
      12C                         241                 248                unstable                  240 
 
      13C                         12C                  12C                unstable                  240 
 
      23C                         12C                 12C                  13C                        194 
 
 

TABLE IV.  All the independent elastic constants (in GPa) of PtN in different forms 

calculated using LDA. Symmetry dictates jiij CC =  and all unlisted .0Cij =  An unstable 

elastic constant in the table represents the case when the applied strain to the unit cell 

leads to a linear combination of ijC ’s to be negative. Elastic constants represented by ijC  

instead of a numerical value imply that, that elastic constant is not an independent one, 

e.g., the value of elastic constant 22C  of rock salt is equal to that of  11C  already 

calculated to be 248 GPa. Notice that the condition ( ) 0CC 1211 >−  from Eq. (4) is not 

satisfied for zinc blende structure making it unstable. 
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Present work Ref. [9] Ref. [8] 

LDA GGA LDA GGA     GGA 

 

Lattice Structure 

VASP WIEN2K VASP WIEN2K WIEN2K WIEN2K WIEN2K 

zb-PtN 

Bulk modulus (GPa) 

Lattice constant (nm) 

           trf −−E  (eV) 

 

230 

0.4699 

0.42 

 

235 

0.4683 
 

 

192 

0.4794

 

178 

0.4781 

 

244 

0.4692 

 
 

194 

0.4780 

 

      371 

   0.4804 

rs-PtN 

Bulk modulus (GPa) 

Lattice constant (nm) 

trf −−E  (eV) 

 

284 

0.4407 

0.75 

 
 

298 
 

0.4397 

 

226 

0.4504

 

233 

0.4496 

 

- 

- 

 

- 

- 

 

431 

0.4518 

fco-PtN 

Bulk modulus (GPa) 

Lattice Constants nm) 

 

 
 
             trf −−E (eV) 
 

 

 

270 

a = 0.3972 

b = 0.3977 

c = 0.6022 

     0.17 
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co-PtN 

Bulk modulus (GPa) 

Lattice Constants (nm) 

 

 

trf −−E  (eV) 

 

      - 

a = 0.3323 

b = a 

c = 0.4579 

      0 

      

 

Table V. Bulk moduli (B) and lattice constants (a, b, c) of different phases of PtN 

obtained within the local density approximation (LDA) and the generalized gradient 

approximation (GGA). Two different ab initio methods were used in our work for zb-PtN 

and rs-PtN: (i) VASP 15,13,14,15, which uses a pseudopotential approach with plane wave 

basis and (ii) WIEN2K35, which is an all electron FLAPW technique. Values from Ref. [8] 

and [9] are also computed using WIEN2K. The comparison shows that the bulk moduli 

calculated in the present work (VASP and WIEN2K) are in good agreement with Ref. [9] 

but differ by approximately 50% from those in Ref. [8]38.  trfE −−  is the formation energy 

per PtN formula unit with respect to the tetragonal structure. Bulk modulus for tetragonal 

PtN is not reported as the involved elastic constants were found to be negative and 

unstable.                                              
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FIGURES 

 

                                           

 FIG. 1.  Zinc blende structure of PtN. Larger (smaller) atoms are Pt (N). Only nearest 

neighbor bonds are shown. The lattice constant, a is given in Table V. 
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FIG. 2.  Rock salt structure of PtN. Larger (smaller) atom is Pt (N). Only nearest 

neighbor bonds are shown. The N atoms at the center of each edge of the cube are not 

shown for clarity. The lattice constant, a is given in Table V. 
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FIG. 3. Face centered orthorhombic structure of PtN. Larger (smaller) atom is Pt (N). 

Only nearest neighbor bonds are shown. The N atoms at the center of each edge of the 

cube are not shown for clarity. The lattice constants a, b and c are given in Table V. 
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FIG. 4.  Tetragonal structure of PtN.  Larger (smaller) atom is Pt (N). Only nearest 

neighbor bonds are shown. The lattice constants a, c are given in Table V. 
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FIG. 5. Band structure of stable rocksalt structure of PtN along high symmetry points 

calculated using local density approximation (LDA) with Fermi energy level FE taken at 

0 eV as shown by the dotted line. The self consistent calculations were performed using 

ultra soft pseudopotentials with the theoretical lattice constant a given in Table V. The 

symmetry points considered in lattice coordinates are L ⎟
⎠
⎞

⎜
⎝
⎛

2
1,

2
1,

2
1 , X (0, 1, 0)37, 

K ⎟
⎠
⎞

⎜
⎝
⎛ 0,

4
3,

4
3  and Γ (0, 0, 0).  
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FIG. 6. Density of states (DOS) of stable rocksalt structure of PtN from local density 

approximation (LDA) calculations with FE , the Fermi energy level taken at 0 eV as 

shown by the dotted line. These calculations have been performed at the equilibrium 

theoretical lattice constant a given in Table V. 
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FIG. 7. s, p, and d projected density of states (PDOS) in the Pt and N spheres for stable 

rock salt  phase of PtN with EF, the Fermi energy level taken at 0 eV as shown by the 

dotted line.  

 

 

 

 


