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Semirigorous synchronous sublattice algorithm for parallel kinetic Monte Carlo simulations
of thin film growth
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The standard kinetic Monte Carlo algorithm is an extremely efficient method to carry out serial simulations
of dynamical processes such as thin film growth. However, in some cases it is necessary to study systems over
extended time and length scales, and therefore a parallel algorithm is desired. Here we describe an efficient,
semirigorous synchronous sublattice algorithm for parallel kinetic Monte Carlo simulations. The accuracy and
parallel efficiency are studied as a function of diffusion rate, processor size, and number of processors for a
variety of simple models of epitaxial growth. The effects of fluctuations on the parallel efficiency are also
studied. Since only local communications are required, linear scaling behavior is observed, e.g., the parallel
efficiency is independent of the number of processors for fixed processor size.
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[. INTRODUCTION be used simultaneously in order to carry out realistic compu-
tations over extended time and length scales.
Kinetic Monte Carlo(KMC) is an extremely efficient Recently there has been a great deal of work on the de-

method=® to carry out dynamical simulations of stochastic velopment of rigorous asynchronous parallel algorithms for
and/or thermally activated processes when the relevant actMetropolis Monte Carlo using domain decomposition. In
vated atomic-scale processes are known. KMC simulationparticular, because the attempt time in Metropolis Monte
have been successfully used to model a variety of dynamicaCarlo is independent of system configuration, an asynchro-
processes ranging from catalysis to thin film growth. Thenous “conservative” algorithm may be us&d? In such an
basic principle of kinetic Monte Carlo is that in order to algorithm, all processors whose next attempt time is less than
efficiently simulate a dynamical system with a variety of their neighbor’s next attempt times are allowed to proceed.
different rates or processes, at each step in the simulation oténfortunately such a “conservative” algorithm does not
picks the next process to occur with a probability propor-work for kinetic Monte Carlo since in KMC the event time
tional to the rate for that process. The time of the next eventlepends on the system configuration. In particular, since fast
is determined by the total overall rate for all processes t@vents may “propagate” across processors, the time for an
occur, and after each event the rates for all processes aevent already executed by a processor may change due to
updated as necessary. earlier events in nearby processors, thus leading to an incor-
In contrast to Metropolis Monte Carfojn which each rect evolution. As a result, the development of efficient par-
Monte Carlo step corresponds to a configuration-independetlel algorithms for kinetic Monte Carlo simulations remains
time interval and each event is selected randomly but onlya challenging problem.
accepted with a configuration-dependent probability, in ki- A hybrid version of the conservative asynchronous algo-
netic Monte Carlo both the selected event and the time interithm which may be applied to kinetic Monte Carlo has been
val between events are configuration-dependent while the ackeveloped by Lubachevskyn the context of Ising simula-
ceptance probability is fixedall attempts are acceptedn  tions and has been implemented by Korréssl13-1°1n this
the context of traditional equilibrium Monte Carlo simula- approach, fi-fold way” simulations are carried out in the
tions, this is sometimes referred to as tiéold way! Al- interior of each processor, while Metropolis simulations are
though KMC requires additional bookkeeping to keep trackcarried out at the boundary. At each step, either an interior
of the rates(probabilitieg for all possible events, the KMC move or a boundary move is selected with the appropriate
algorithm is typically significantly more efficient than the probability. While all ‘n-fold way” interior moves are imme-
Metropolis algorithm since no selected moves are rejectediately accepted, all Metropolis attempts must wait until the
In particular, for problems such as thin film growth in which neighboring processor’s next attempt time is later before be-
the possible rates or probabilities for events can vary by seving either accepted or rejected. However, because of the pos-
eral orders of magnitude, the kinetic Monte Carlo algorithmsibility of significant rejection of boundary events, the paral-
can be orders of magnitude more efficient than Metropolidel efficiency may be very low for problems with a wide
Monte Carlo. range of rates for different processes. For example, we have
The standard KMC algorithm is a serial algorithm sincerecently® used such a mapping to carry out parallel KMC
only one event can occur at each step. However, for somsimulations of a simple “fractal” model of submonolayer
problems one needs to simulate larger length and time scalegowth with a moderate value of the rafi F of the mono-
than can be simulated using a serial algorithm. For theseer hopping ratd® to the(per sit¢ deposition ratd-. How-
problems it would be desirable to develop efficient parallelever, due to the rejection of boundary events, an extremely
kinetic Monte Carlo algorithms so that many processors catow parallel efficiency was obtainéd.Furthermore, in order
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to use such an approach, in general one needs to know in - N
advance all the possible events and their rates and then to (@) A : 5| a : B | A : B
map them to Metropolis dynamics so that all events may be | N . P N
selected with the appropriate probabilities. While such a c' bl c bl cip
mapping may be carried out for the simplest models, for : : :
more complicated models it is likely to be prohibitive. AlB|AlB|iAlB

A more efficient algorithm, which is also rigorous, is the ~  |---- :h--- I i ----- - ---1: -----
synchronous relaxatiofSR) algorithm7:18 This algorithm cC:Di|C!DJ]iC'D
was originally used by Eickt all” to simulate large circuit- ; I ;
switched communication networks and more recently by Lu- A'!'Bl A" B A!B
bachevsky and Weis%in the context of Ising model simu- ~ f---- F-==F---- T it et
lations. In this approach, all processors remain synchronized Cib|CiD|C:iD
at the beginning and end of a time intervalwhile an itera- :
tive relaxation method is used to correct errors due to bound- L
ary events. This algorithm has the advantage of generality (b) : : :
(for example, it is not necessary to know the types and/or A'B A' B|iA" B ||N
rates of all possible events in advaphead flexibility since i | | ¢
the cycle lengthT can be dynamically tunédto optimize N

X

the parallel efficiency. However, due to fluctuatiomghich

Increase Iogarlthmlqalf)? with the number of processohs,) FIG. 1. Diagram showinda) square sublattice decomposition
as well as the requirement of global communications at thenine processoisand (b) strip sublattice decompositiithree pro-
end of each cycléthe global communications time also in- cessors Solid lines correspond to processor domains while dashed
creases logarithmically witN), the computational speedup |ines indicate sublattice decomposition. Dotted lineganand (b)

as a function ofN,, is sublinear for fixed processor size. In indicate a “ghost-region” surrounding the central processor.

addition, implementing such an algorithm is relatively com-
pleX. Therefore, there is a need for a somewhat Simpler and II. SYNCHRONOUS SUBLATTICE ALGORITHM
more efficient algorithm.

In order to address these problems, we have developed a
simpler synchronous sublattiq&L) algorithm for parallel
kinetic Monte Carlo which we describe in detail here. While

As in previous work on the “conservative” asynchronous
algorithm?19 in the synchronous sublattid&L) algorithm,

; . . i . . different parts of the system are assigned via spatial decom-
the SL algorithm is not rigorous, we find that using Certalr‘position to different processors. However, in order to avoid
r(_easonable assumptions on th.e cyple length and ProcesSSOenflicts between processors due to the synchronous nature
size, the results obtained are identical to those obtained Bf the algorithm, each processor's domain is further divided

serial simulations. Furthermore, because the SL algorithrﬂ]to different regions or sublatticésee Fig. 1 A complete
requires only local communications, the parallel efficiency is, '

. . . synchronous cycle corresponding to a time inteivad then
essenﬂal]y .|ndependen.t of th? number. of processors in th s follows. At the beginning of a cycle, each processor’s
large N, "”?'t: thusllegdlng to Ilne.ar ;pahng. As a result, the local time is initialized to zero. One of the sublattices is then
parallel efficiency is in ggneral S|gn|f|cantly greater than forrandomly selected so that all processors operate on the same
the synchronous relaxation algorithm. We note that an ap

; o i sublattice during that cycle. Each processor then simulta-
proximate approach SOmEWhat S|m|Iar_ to ours has Iore\”()L’S|Keously and independently carries out KMC events in the
been developed by Haidat al?® In this work, the use of

. o ; : ; .., selected sublattice until the time of the next event exceeds
ghost regions” to provide bqundary information along W'th the time intervalT (see Fig. 2 As in the usual serial KMC
the use of frequent synchronization to reduce the propagatlogaCh event is carried out with time incremént
of errors were also discussed. However, as noted in the|A _ . .

. o ’ ti=—In(r;)/R;, wherer; is a uniform random number be-
work,2% this approach has to be modified to study some of the (r)/R :

growth models considered here.

The organization of this paper is as follows. In Sec. II, we - Xy
describe the algorithm. In Sec. lll, we present results ob- T
tained using this algorithm for several different models of ;
thin film growth, including a comparison with serial results. 3
We also study the effects of fluctuations on the parallel effi-  _ _ _ _ _ t
ciency and present results for the measured and theoretical 2
parallel efficiency as a function of processor size and number = — — — — — t
of processors. The effects of finite processor size on the ac- o

curacy of the results obtained are also discussed and com-

pared with finite-size effects due to finite system size. Fi- F|G. 2. Diagram showing time evolution in the SL algorithm.
nally, in Sec. IV we summarize our results and discuss th@ashed lines correspond to selected events, while the dashed line
general applicability of the SL algorithm to parallel kinetic with an X corresponds to an event which is rejected since it exceeds
Monte Carlo simulations. the cycle time.
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tween 0 and 1 andR is the total KMC event rate. Each same processor si2gN,, there will be twice as many events
processor then communicates any necessary chébgesd-  per cycle in the strip geometry, thus further reducing the
ary eventgwith its neighboring processors, updates its evenbverhead due to communication time. Thus, we expect that
rates, and moves on to the next cycle using a new randomie overhead due to communication latency in the strip ge-
chosen sublattice. ometry will be approximately one-half of that for the square
Figure 1 shows two possible methods of spatial and subgeometry.
Iattic_e d_ecomposition which are app_ropriate for si_mu_lations We now consider the validity and efficiency of the syn-
of thin film growth—a square sublattice decompositiéfy.  chronous SL algorithm. If the time intenvlis not too large,
1(a)) and a strip sublattice decompositidfig. 1(b)). In the yhen the SL algorithm corresponds to allowing different sub-
square sublattice decomposition, the system is divided iNtQ tices to get slightly “out of synch” during each cycle. Over

squares, each of Wh',Ch IS as_3|g_ned o a d|ff(a_rent process%any cycles one expects such fluctuations to cancel out and
and each processor’s domain is further divided into four

square sublattices. At the beginning of each cycle, one of thg? thg parallgl evoluﬂon shoqld be identical t9 the corre-
four sublattices/A, B, C, or D) is randomly chosen. In the Sponding serial KMC simulation. Of course, in order to

strip-sublattice geometry, the system is divided into strips,maXimize the efficiency of the algorithriie., the average

each of which is assigned to a different processor, and eadfHMPer of events per processor per cyelad minimize the
processor’s domain is further divided into two strips or sub-cOmmunication time overhead, one would like to have the
lattices. At the beginning of each cycle, one of the two subJargest possible value af which does not “corrupt” the time
lattices(A or B) is randomly chosen. evolution. As we shall demonstrate below, by picking the
In order to avoid conflicts, the sublattice size must beCycle lengthT less than or equal to the average time for the
larger than the range of interactigtypically only a few fastest possible activated eveetg., monomer hopping in
lattice units in simulations of thin film growthin addition, ~ the simplest possible model of thin film growttwe do in-
in order for each processor to calculate its event rates, thdeed obtainexcept for very small processor sizes for which
configuration in neighboring processors must be known a§nite-size effects may occuresults which are identical to
far as the range of interaction. As a result, in addition tothose obtained in serial KMC except for very small sublattice
containing the configuration information for its own domain, Sizes. Thus, by using the general rule that the time intefval
each processor’s array also contains a “ghost region” whicRust be smaller than or equal to the inverse of the fastest
includes the relevant information about the neighboring proPossible event rate in the KMC table, we expect that the
cessor’s configuration beyond the processor’s boundary. Synchronous algorithm will provide accurate results for suf-
At the end of each Cyc|e, each processor exchanges infofLCllently Iarg_e sublattices. We note that the SynChrpnOUS sub-
mation with its neighboring processors in order to properlylattice algorithm can also be used in a “self-learning” KMC
update its corresponding boundary and ghost regions. FéRef. 23 in which the KMC rate tables are updated as the
example, if sublattice A is selected in the case of squareSimulation goes along. In this case, if a new “fastest-event
sublattice decomposition, then at the end of a cycle, possiblete” is discovered in the middle of a cycle, then one merely
boundary events must be communicated to the three proce&estarts the cycle from the beginning using a smaller cycle
sors north, west, and northwest of each processor. By using"e T
sequential north and west communications, one can elimi-
nate the northwest communication, and so only two commu- Il RESULTS
nications are needed at the end of each cycle. Similarly, if '
sublattice B is selected in the case of strip-sublattice decom- In order to test the performance and accuracy of our syn-
position, then at the end of a cycle, possible boundary eventshronous sublattice algorithm, we have used it to simulate
must be communicated to the processor to the east. three specific models of thin film growth. In particular, we
Since moves are only allowed in the selected sublatticéave studied three solid-on-soli809 growth models on a
during a cycle, several cycles are needed for the entire sysquare lattice: a “fractal” growth model, an edge-and-corner
tem time to progress by. Thus, in the squaréstrip) geom-  diffusion (EC) model, and a reversible model with one-bond
etry, it takes on average four cyclésvo cycles to increase detachmen(‘reversible modelj. In each of these three mod-
the overall system time by. During each cycle, the event els, the lattice configuration is represented by a two-
rates in the nonselected sublattices of a given processor adémensional array of heights and periodic boundary condi-
automatically updated as each event proceeds, just as in thiens are assumed. In the “fractal” modél, atoms
usual serial KMC. Sublattice selection can be carried outmonomergare deposited onto a square lattice witlr site
either by having one processor select the sublattice for thateposition ratd-, diffuse (hop) to nearest-neighbor sites with
cycle and then distribute it to all processors, or more effi-hopping rateD, and attach irreversibly to other monomers or
ciently by seeding all processors with the same random nuntlusters via a nearest-neighbor bofuditical island size of
ber generator so that they all independently select the sanfg. The key parameter is the ratld/F, which is typically
sublattice for each cycle. much larger than one in epitaxial growth. In this model, frac-
We note that due to the reduced communication in theal islands are formed in the submonolayer regime due to the
strip-sublattice decomposition compared to the squareabsence of island relaxation. The EC model is the same as
sublattice decomposition, the strip-sublattice decompositiothe fractal model except that island relaxation is allowed, i.e.,
is more efficient. In addition, since the sublattice in the stripatoms which have formed a single nearest-neighbor bond
geometry is twice as large as for the square geometry for theith an island may diffuse along the edge of the island with
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FIG. 3. Schematic diagram of island-relaxation mechanisms for
(a) edge-and-corner anih) reversible models.

serial

diffusion rateD.=r.D and around island corners with rate
D.=r.D (see Fig. 3 Finally, the reversible model is also 5
similar to the fractal model except that atoms with one bond 10 10_4' ! 103 ' 102 ! 101 — "1"00
(edge atomsmay hop along the step edge or away from the
step with rateD;=r;D, thus allowing both edge-diffusion
and single-bond detachment. For atoms hopping up or down
a step, an extra Ehrlich-Schwoebel barrier to interlayer
diffusior?® may also be included. In this model, the critical
island size (Ref. 24 can vary fromi=1 for small values of
r, to i=3 for sufficiently large values db/F andr,.2®

For the fractal and reversible models, the range of inter-
action corresponds to one nearest-neighlaitice) spacing,
while for the EC model it corresponds to the next-nearest-
neighbor distance. Thus, for these models the width of the
“ghost region” corresponds to one lattice spacing. We note
that at each step of the simulation, either a particle is depos-
ited within the appropriate sublattice, or a particle diffuses to
a nearest-neighbor or next-nearest-neighbor lattice site. In
order to avoid “double-counting,” only particles within a
processor’'s domain may diffuse, e.g., if a particle diffuses

from the boundary region of a processor into its ghost region fiG. 4. Comparison between serial and parallel results using

during a cycle, then that particle is no longer free to movesynchronous sublattice algorithm with strip decompositior N,)
during that cycle. In more general models, for which con-for fractal model withD/F=10CP.

certed moves involving several atoms may oc€ut; the

ghost region needs to be at least as large as the range SQ. All of these clusters have fast communications—the
interaction and/or the largest possible concerted move. II anium and AMD clusters have Myrinet and the Alphaserver

such a case, the processor and sublattice to which a CORfuster has Quadrics. In our simulations, the interprocessor

certed event belongs can be determined by considering tr}?ommunications were carried out using MPVessage-
location of the center of mass of the atoms involved in thep;qin g Interfage Unless explicitly noted, the results shown

concerted move. . . . here were obtained using the Itanium and AMD cluster at
In order to maximize both the serial and parallel effi-

ciency in our KMC simulations, we have used lists to keep
track of all possible events of each type and rate. For each

sublattice, a set of lists is maintained which contains all pos- B. Comparison with serial results
sible moves of each type. A binary tree is used to select
which type of move will be carried out, while the particular
move is then randomly chosen from the list of the selecte
type. After each move, the lists are updated.

Width

As a test of our algorithm, we first present some detailed
omparisons with serial results for different numbers of pro-
essors and system sizes for the strip geometry. Similar re-
sults were obtained using square decomposition but are not
shown here for brevity. Figure 4 shows a comparison of par-
allel and serial results for the fractal model with' F=10°

In order to test our algorithm we have carried out bothand a square system of size256. The parallel simulations
“serial emulations” as well as parallel simulations. Howeverwere carried out using strip sublattice decomposition with
since our main goal is to test the performance and scalingrocessor sizeN,=16, 32, and 64 witiN,=256 correspond-
behavior on parallel machines, we have primarily focused oring to N,=16, 8, and 4, respectively, whekg is the number
direct parallel simulations using the Itanium and AMD clus- of processors. In particular, Fig.(a& shows the substrate
ters at the Ohio Supercomputer Cent®SC as well as on  monomer densityN; and island densityaveraged over 500
the Alpha cluster at the Pittsburgh Supercomputer Centetung as a function of coverag@ in the first half-layer of

A. Computational details
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[ s — !
F@ ' ] pE= 1o (1)
i t,

Monomer « " .
Thus, the overall “performance factor” of the parallel simu-

lation (e.g., boost in events/s over a serial simulati
given by the parallel efficiency multiplied by the number of
processorsN,. We note that in calculating the parallel effi-
ciency using Eq(1), we used the single-processor sublattice
algorithm simulation time fot;; rather than the serial calcu-
107 o lation timet., obtained using the standard KMC algorithm.

E ] This is partly motivated by the fact that this makes it easier
to obtain an expression for the theoretical efficiency. How-
ever, we have found that the sublattice algorithm with a
single processor is actually somewhat more efficient than the
standard serial KMC algorithm, presumably due to memory
and cache effects. Accordingly, the parallel efficiencies cal-
culated using Eq(1) would actually be somewhat larger if
tser Were used foit;,. In particular, for smallD/F this can
lead to efficiencies larger than 1.

We note that there are two primary factors which deter-
mine the parallel efficiency. The first is the overhead due to
communications at the end of every cycle, when all proces-
sors exchange boundary information with their neighbors.
Since in our simulations the number of boundary events is
relatively small(i.e., the processor size is not too largee
primary cause of communications overhead is the latency
time for local communications which is independent of pro-
cessor domain size. The second important factor controlling
the efficiency is the existence of fluctuations in the number
of events in different processors. In particular, in any given
cycle one processor may have many events, while its nearest

cov [ML] neighbor may have fewer events. As a result, while the pro-
cessor with many events is calculating its events, its neigh-

FIG. 5. Comparison between serial and parallel results usindgporing processor with few events must id¥eait) until it has
synchronous sublattice algorithm with strip decomposition for thereceived the boundary information from the first processor
EC model withD/F=1CP, L=256, andD.=0.1D, D.=0. before moving to the next cycle.

To illustrate this effect more quantitatively, we consider
the effects of fluctuations on the parallel efficiency in the
case of the one-dimensional strip sublattice decomposition
shown in Fig. 1b). In this case, there are two sublattidés

Island

Densities

108 vl vt vl
10 103 102 10 10°

Width

growth, while Fig. 4b) shows the rms surface height
fluctuations or surface widtfaveraged over 100 rupas a

function of coverage in the first few layers of growth. o4 g ang during each cycle one of the sublattices is ran-

The inset of Fig. 4) also shows the monomer density joy selected. For example, if the B sublattice is selected,

as a function of coverage in the first five _Iayers of_grpwth. ASthen at the end of a cycle all processors will dnanblock-

can be seen, there is no difference within s'ta't|st|cal errofng) send of any boundary events in the B sublattice to the

betW-een the Se_l’la| and the para”el resul.ts. ASImllaI’ Companprocessor on their r|ght, followed by(b'ock”*]g) receive of

son is shown in Fig. 5 for the edge-diffusidBC) model  the corresponding boundary information from the processor

(D/F=10F,re=0.1r,=0) using strip sublattice decomposi- on their left. Thus, for example, if processor 1 has more

tion. As can be seen, there is again no difference between tr@vents than processor 2, and so takes longer to execute these

parallel and serial results. events before initiating its send to processor 2, then proces-
sor 2 must wait before moving to the next cycle, thus leading
to inefficiency. However, processor 2's execution is not af-

C. Parallel efficiency as a function ofD/F fected by processor 3 during the same cycle, since its send to

processor 3 is nonblocking.

We now consider the performance of the synchronous Denoting the communication overhead per cycletgs
sublattice algorithm, starting with the dependence of the parand taking into account the fluctuations of events between
allel efficiency on the monomer diffusion ra@/F for the ~ nearest-neighbor processors, we obtain the following expres-
fractal model for a fixed number of processdi=4). Here ~ sion for the average time per cycle:
we define _the parf;lllel efficien_cy PE as eq_ual to_the ratio of (ty (7)) = (tp(D) + teom* AD(tp(D)NG, ], (2)
the execution time;; for an ordinary serial simulation of one P
processor’'s domain to the parallel execution titnéaof N, where(tip(r» is the average time per cycle for a serial simu-

domains usind\, processors, i.e., lation of a single processor’s domaim, is the average num-
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ber of events per processor per cycd ) is the relevant l——r———rr———m d
fluctuation in the number of events in a given cyelaver- r e
- — o - <Alt)>/n a
aged over all processors, and the angular brackets denote ¢ L av -,
average over all cycles. The rafig,(7))/n,, in the last term L c-e-- <Afu>/n d
of Eq. (2) corresponds to the average calculation time to - L4
.. Ve

process an event. Therefore, the parallel efficieR&may i s
be written as " L7 e

g AT

t (7 t AP |1 = Slope = 1/3 »
NG {“ com <<>>} @ N
(t(7) () Ny g M

= 0.1} -
In the limit of negligible communication timecoml<t1p(r)> r »”
—0, this implies that the maximum possible parallel effi- - P s o
ciency is given by o 7 e ) Fractal model: Np =4

A(n) |2 ¥ N =256 N = 1024
PEmaX:|:1+u:| . (4) _',' x v
Ny b
We also note that,, ~ N,N, and since the fluctuations are el .
on averagemcorrelated one expeth( 7))~ \nav This im- 10 10 10 10 10
plies that the maximum possible parallel efficiency may be D/F
written as FIG. 6. Fluctuations as a function &f/F for the fractal model
1 with N,=4 and strip geometry witiN,=256, N,=1024.
PEM*= {1+ NN 1/2] , (5)
(NNy) each subsequent cycle, the s&fr) may be calculated in

where the constant is model-dependent. This result shows €ach processor in terms of the previous values56f-1)
clearly that the maximum theoretical efficiency approaches &ndn;(7—1) as follows:
in the limit of largen,, corresponding to largl,, Ny. _

There are two distinct ways in which the average fluctua- S(n=S(r=D+n(r=1) +Ai(1O(A(7), (8)
tion A(7) might be calculated. If we assume that at the beyhere
ginning of each cycle all processors are perfectly synchro-

nized, then for the strip geometry one may write Ai(7) = Suan(T= D) + Niyyn(7- D) = S(7- 1) - ni(7- 1)
(9)
Ag(n) = p.21 [Missn (1) = M(DIOMis 55 () ~ i(7), and whered(7) = +1(-1) if the A (B) sublattice is selected in

cycle 7. Then the average delay(7) due to fluctuations in a
(6) given cycler may be written

wheren;(7) is the number of events in processon cycle
7, ®(x)=0(1) if x is negative(positive), and 8(7) = +1(-1) if A(7) = 2 A(DOA(D). (10)
the A (B) sublattice is selected in cycle Since we are in- Npi=1

terested in the average over many cycles, this is equivalent to

the simpler form Figure 6 shows the measured fluctuatiéasr))/n,, and

(A7) ny, for the simple fractal model as a function®f F
1 for fixed processor sizél,=256, N,=1024, andN,=4 ob-
Ag(7) = NE Ini(7) = niza(7)], @) tained from simulations up t6=1 ML. As can be seen, for
P Np=4, the full fluctuation{A(7)) is approximately 30%
where the factor of 1/2 is due to the fact that only half thelarger than that obtained assuming that all processors are
time will the relative fluctuation in the relevant neighboring synchronized at the beginning of each cycle. For the simple
processor be positive, and thus lead to a delay. fractal model, one expects,, ~N;~ (D/F)~?3, which im-
However, due to fluctuations one must also take into acplies(A(7))/n,,~ (D/F)¥3. As can be seen in Flg 6, there is
count the existence of desynchronization at the beginning ofery good agreement with this form for the' F dependence.
a cycle. In order to take this into account, we may calculate Figure 7 shows the corresponding resukgmbols for
the sum or “starting timeJ(7) corresponding to the sum of the parallel efficiency as a function of the rabidF. Results
the total number of events in processand the sum of all are shown for parallel KMC simulations witN,=4 of a
delay events due to neighboring processors in a given presquare system with system size=1024 with both square
cessor at the start of cycler. At the start of the first cycle sublattice decompositiotN,=N,=512 and strip sublattice
(7=1) one hasS(1)=0 for all processors andn;(1) is the  decomposition(N,=256, Ny,=1024. Due to the decreased
number of events in processobm that cycle. At the start of communication overhead in the strip geomefty send/
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FIG. 7. (a) Events per cycle an¢b) parallel efficiency for the
fractal model withN,=4 (#=1 ML) as a function oD/F. Dashed
lines correspond to Eq3) while solid lines correspond to maxi-
mum theoretical efficiency given by E).

FIG. 8. (a) Events per cycle antb) parallel efficiency for the
edge-diffusion model wittN,=4 as a function ofD/F. Dashed
lines correspond to Eq3) while solid lines correspond to maxi-
mum theoretical efficiency given by E¢).

receive versus 2 send/receives per cyclee parallel effi-  D/F=1CP, then this implies a maximum possible parallel
ciency of the strip geometry simulations is significantly efficiency given byPE™®=0.40. This result shows that even
larger than for the square geometry. As can be seen, fdh the absence of delays due to interprocessor communica-
D/F=<10, the parallel efficiency for the strip geometry is tion, due to the existence of fluctuations, the parallel effi-
greater than 50%. However, with increasiDgF the parallel  ciency will decrease with increasirigy/F.
efficiency decreases significantly since the decrease in the Figure 8 shows similar results for the parallel efficiency
number of events per cycle,, [see Fig. 7a)] leads to an as a function ofD/F for the edge-diffusion model with
increase in the communications overheig/(t,(7)) as  D,=0.1D, D=0, N,=4, andg=1 ML. As can be seen, al-
well as in the relative fluctuation&\(7))/ny,. though the parallel efficiency for the edge-diffusion model
Also shown in Fig. 7(dashed linesis the parallel effi- still decreases with increasirig/F, it is significantly larger
ciency calculated using E(3) based on the measured valuesthan for the fractal model. In particular, due to the increased
of (A(7))/ng,, (t1,(7))/ Ny, and the measured interprocessornumber of events per cycle and the resulting reduced com-
communication timeg,m= 15 us per send/receive. As can be munication overhead, the parallel efficiency remains above
seen, there is good agreement between the measured apf@f0 for largeD/F. As an example, for the case of strip
calculated results. The maximum theoretical parallel efficiengeometry and>/F=10', the parallel efficiency is more than
cies calculated using E¢4) assuming negligible communi- three times that for the simple fractal model, while the num-
cation overhead are also shosolid line9. As can be seen, ber of events is approximately 10 times larger. As for the
the maximum theoretical efficiencies are significantly higherfractal model, the calculated parallel efficieridashed lines
than the measured efficiencies for laféF, although they is in good agreement with the measured values. Due to the
also decrease with increasim@/F due to the increase in increase in the number of events per cycle, and the resulting
fluctuations. For the simple fractal model with strip geom-decrease in the relative fluctuations, the maximum theoreti-
etry, our results for the maximum possible parallel efficiencycal efficienciegsolid lineg are also significantly higher than
may be well described by the expression for the fractal case.

PEfax=[1+0.2XD/F)*3(N,N,) 2. (11)

D. Parallel efficiency as a function of the number

This result may be used to estimate the maximum possible of processors for fixed processor size

efficiency for the fractal model for different processor
sizes and values dD/F. For example, ifN,=N,=64 and

Figure 9 shows the performan¢events/s for the simple
fractal model withD/F=1C as a function of the number of
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FIG. 9. Total computational speéevents/sas a function of the

number of processors for the fractal model watiF =10P. FIG. 10. Fluctuations for the fractal model wibvF=1C as a

function of N,. Solid line corresponds to a fit of the form
processordN, with fixed processor size, using both square(A(m)/n,,=0.3-0.28 N3
decomposition withN=512 and strip decomposition with
N,=256 and N,=1024 obtained from simulations up to puter Cente(PSQ for which the communication latency is
#=1 ML. Because of the large number of processors, thessomewhat larger than for the OSC cluster. As a result, the
simulations were carried out at the Pittsburgh Supercomputesarallel efficiencies are somewhat lower than would be ob-
Center. As can be seen in both cases there is a roughly linegiined with the OSC cluster. For comparison, OSC results for
speedup of the performance with increasing number of prothe fractal model with N,=N,=256 and with N,=256,
cessordN,,. For comparison, the equivalent singIe—processoNy:1024 are also shown up 19,=64 (filled symbols. As
(seria) computation speed for this model is approximatelycan pe seen, due to the decreased communication time, the

2.8x 10> events/s. However, due to the decreased commusgc resuits for the parallel efficiency are significantly larger
nication cost, the speed-up using the strip geometry is sig-

nificantly higher than for the square decomposition. 1

We now consider the dependence of the parallel efficiency ' ' '
on the number of processadxg in more detail for the case of
strip geometry. Figure 10 shows the measured fluctuations Edge (256 x 256)
(A(7))/ny, and(Ag(7))/ny, as a function oN, for the fractal 0.8 Ideal p.e. (edge) .
model for D/F=1CP. With increasingN,, the relative event < N, = 1k
fluctuation{Ag(7))/n,, remains constant. In contrast, the full o Ideal p.e. {fractal)
fluctuation (A(7))/n,, increases slowly with increasinly, 2 06 ‘_/Ii — N_ =256 |
but appears to saturate at a finite value for lage This is & J;‘jr oo
supported by the fit shown in Fig. 1Golid ling), which & ¢°°o o
agrees quite well with the simulation results and which has N f frackal (256 x 1l
the form(Ag(7))/n,,=0.30-0.28N,*°. Due to the saturation 3 0.4 | ™\ ractal 256 x 1k) |
of fluctuations, we expect that the parallel efficiency will § \ fractal (256 x 256): OSC
also saturate for largh,, - oo

Figure 11 shows our results for the measured parallel ef- - —0- -0 o ~03 50
ficiency (open and closed symbolas a function ofN, for 02 | f ° -
fixed processor size for the fractal and edge-diffusion mod- fractal (256 x 256)
els. As expected, the parallel efficiency is essentially con-
stant for largeN,, although there is a slight decrease due to o T Y
increased communication overhead fdt,>100. Also 10° 10! 102 10°

shown (dashed linesare the parallel efficiencies calculated N
from Eq. (3) using the measured fluctuations and communi-
cation times, as well as the maximum possible theoretical FiG. 11. Parallel efficiency(symbolg as a function of the
parallel efficienciegsolid lineg calculated using Eq4). AS number of processorsl, for fractal and edge-diffusion models
can be seen, there is relatively good agreement between thgth D/F=1C° and strip-sublattice decompositidiN,=256 with
calculated and measured parallel efficiencies. N,=256 and 1024 Dashed lines correspond to Hg) while solid

We note that the results for lardé, (open symbolswere  lines correspond to maximum theoretical efficiency calculated using
obtained using the Alpha cluster at the Pittsburgh Supercorig. (4).

p
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) o ) lations of the fractal mod€R00 rung and the edge-diffusion model
FIG. 12. Finite-size effects in parallel and serial simulations of (100 rung with D/F=10° andT=1/D (open symbols All simula-
the fractal model withD/F=1C°. Parallel simulationgaveraged tons are for system siZe=256 with processor sizd$,=8, 16, 32,

over 200 runs are for system siz& =256 with processor sizes g4 128, and 256 anM,=256. Horizontal dashed lines correspond
N,=8,16,32,64, and 128 and,=256. Serial simulationgaver- {5 error bars for serial simulations.

aged over 500 runsare for system sizél, X 256.
as well as much weaker than those due to finite-system size.

than the corresponding PSC results. Except for the PSC frac- We now consider these finite-size effects in somewhat
tal results withN,=N, =256, the parallel efficiencies are all more detail. While a variety of length scalésuch as the
larger than 50%. typical mound or feature size in multilayer growtimay oc-
cur in the models studied here, there is aiyaamicallength
scale corresponding to the “diffusion length, (e.g., the
typical distance a monomer may diffuse before being cap-

We now consider the effects of finite processor size on théured which plays a particularly important role. In particular,
accuracy of the results obtained using the synchronous sulhe diffusion length may be written in terms of the peak
lattice algorithm. For simplicity, we focus on the case of submonolayer island density, i.dD~N;§’2. Since in the
strip-sublattice decomposition. As we have already showrsynchronous sublattice algorithm, particles which diffuse
(see Figs. 4 and)5for sublattice sizes which are not too outside the active sublattice are no longer active during that
small, there is perfect agreement between the synchronowuycle, we conjecture that for sublattice sizé$,/2) which
sublattice results and the corresponding serial results. Howare smaller than the diffusion length, finite-size effects
ever, for very small processor sizes there exists a smathay occur. For the fractal model studied here, one has
“finite-siz€’ effect which leads to results which are slightly Ny~ (D/F)~*3 which implies I~ (D/F)¥¢, e.g., the
different from those obtained using the usual serial KMCdiffusion length increases slowly with increasimyF. As
algorithm. In particular, as shown in Fig. 12, there is essenshown in Fig. 13, by measuring the peak island density for
tially perfect agreement between the synchronous sublattice/F=10°, we obtainlp =11, which implies a critical proces-
results for the fractal model with system size=256, sor sizeN, given by N,=2 I5=22. This result is in good
D/F=1C, andN,=16-256 and the corresponding serial re-agreement with the observation of the onset of significant
sults. However, for the smallest processor $idg==8) there finite-size effects folN, < 16.
is approximately a 2% difference between the synchronous Also shown in Fig. 13 are similar results for the edge-
sublattice results for the peak island densityand the cor-  diffusion model withD/F=1C andr.=0.1. In this case, the
responding serial resultalthough there are no differences in diffusion length is slightly higher than for the fractal model.
the monomer densit,). In order to compare these effects However, again there are no finite-size effects N> 2l .
with those of finite system size, in Figs.(@&2and 12d) we  Similar results have also been obtained for the reversible
also show the corresponding serial results for systems of sizene-bond detachment model, as well as a reversible bond-
N,=8-256 and\N,=256. As can be seen, the finite-size ef- counting modelnot shown. In all cases, we find that there
fects which occur for small system size are much larger thamare no differences between the serial results and the parallel
those due to finite processor size. This indicates that the eKMC results as long a#l,>2ly. In contrast, forN, < 2lp,
fects of finite processor size are both qualitatively differentnoticeable but weak finite-size effects are observed.

E. Finite-size effects
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While these results are for a cycle lend@th 1/D given by 5 y T - T T T - T
the inverse of the fastest hopping rate, for a smaller cycle serial
length we expect that the critical processor sikgcorre- [ @ N =256
sponding to finite-size effects will be significantly reduced. 4 *
As shown in Fig. 13(filled symbolg for the fractal model - O N, =128 l

with cycle lengthT=1/(6D), the critical processor sizd, is | ¢ N =64
significantly smaller than the diffusion length. However,
for such a reduced cycle length, the parallel efficiency isalso 3 |
significantly reduced due to communication overhead ande
fluctuations. T
As a further test of both the parallel efficiency and finite- =
size effects in the SL algorithm, we have carried out
multilayer simulations of the reversible model &t 300 K,
with system sizeL=1024, D/F=1C, E;=0.1 eV, and an
Ehrlich-Schwoebel barrier to interlayer diffusion given by 1
E,=0.07 eV. In our simulations, particles freshly deposited
near step-edges are assumed to “cascade” randomly to tr
nearest-neighbor sites beloWknockout”). Figure 14a)
shows serial resultgsolid line) for the rms surface height 0
fluctuations(surface width and monomer density up to 500
ML along with the corresponding parallel results obtained
using the SL algorithm with processor sizhg=1024 and
N,=64, 128, and 256 corresponding M,=16, 8, and 4,
respectively. As can be seen, there is no difference betwee
the serial and parallel results even though the typical mounc
size of approximately 100 lattice unifsee Fig. 1&)] is
significantly larger than the smallest sublattice size
N,/2=32. This indicates that the relevant length scale deter-
mining the existence of finite-size effects in the SL algorithm
is indeed the diffusion lengthy and not the characteristic
feature size. Since in these simulations the total system siz
L was fixed, the parallel efficiency may be written ‘

bl
o
1

—
DN

o
=3

Monomer density [x 103
o
©

=
w

L L L .
0 100 200 300 400 5007
cov [ML]

1 L l 1 1 L l L
0 100 200 300 400 500
cov [ML]

PE= 12— (12)

wherety, is the calculation time for a serial simulation of the
entire system. Since the processor size decreases with ir ™
creasingN,, both the relative magnitude of event fluctuations = =
and the overhead due to communication latency will also
increase. As a result, the parallel efficiency decreases witt
increasingN,, rather than saturating as in the case of fixed
processor size. The parallel efficiencies obtained in these

simulations were 92%(N,=4), 85% (N,=8), and 70% FIG. 14. (3) Comparison between serial and parallel results for
(N,=16), respectively. reversible model withL=N,=1024, D/F=1(°, E;=0.1 eV, and

E,=0.07 eV (N,=L/N,). (b) Gray-scale plot of 51X512 portion

of system at#=500 ML.

IV. DISCUSSION
tens of lattice spacingswhile significantly larger system
We have developed and tested a synchronous sublatticgzes are needed to avoid finite system-size effects, the SL

(SL) algorithm for parallel kinetic Monte Carlo simulations. algorithm should provide a useful, efficient, and accurate
In our algorithm, the maximum cycle lengthis given by  method to carry out parallel KMC simulations of these sys-
the inverse of the fastest diffusion rate. For sublattice sizetems.
which are smaller than the diffusion lendth, weak finite- We have also measured the parallel efficiency of the SL
size effects are observed which lead to deviations from thelgorithm as a function of the number of processidgsfor
results obtained using a serial algorithm. However, for subfixed processor size. Because the SL algorithm is synchro-
lattice sizes larger than the diffusion lendgh the results nous, the parallel efficiency is affected by fluctuations in the
obtained are identical to those obtained in serial simulationsaumber of events in different processors over a given cycle.
Since in many systems of interest the diffusion length isHowever, because only local communications are required,
typically relatively small(e.g., of the order of a few to a few these fluctuations saturate as the number of processors in-
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creases. As a result, linear scaling behavior for the totaM=L,L, is the system sizeusing the Maksym algorithfn
speedup as a function of the number of processors is oland as Iog\/l) using a binary tree algorithfln this case, the
served, e.g., the parallel efficiency is independent of theparallel efficiency calculated using E@L2) may be signifi-
number of processors in the lardg limit. cantly higher than that obtained using E#j), and may even
For the simple models we have studied here, the calculabe larger than 1, since the division of a system into smaller
tion time for a single event such as diffusion or deposition issubsystems may reduce the calculation time per event per
significantly smaller than the latency time for nearest-processor.
neighbor communication. As a result, the parallel efficiency Since in the models studied here we have used lists for
increases with processor size, since the communicationsach type of event, rather than the “partial-sum” algorithms
overhead per event are reduced by the increased number déscribed above, we would expect the serial calculation time
events in a cycle. However, even for relatively modest proper event to be independent of system size, and thus the two
cessor sizes, we have obtained reasonable values for tlefinitions of parallel efficiency should be equivalent. To test
asymptotic parallel efficienciPE ranging from 50% for the if this is the case, we have calculated the serial simulation
fractal model withD/F=10° and N,=N, =256, to 70% for time per event for the fractal model fdd/F=10° and
the fractal model withN,=256, N, 1024 For the slightly D/F=10P for a variety of system sizes ranging frdrs 64 to
more complicated edge dlffu3|c(|EC) model, for which the L=2048. Somewhat surprisingly, we found that the serial
number of events per cycle is larger, significantly larger efcalculation time per event increases somewhat with increas-
ficiencies are obtained for the same processor size, e.g., 60y processor size. In particular, an increase of approxi-
for N,=N,=256 andD/F=1C". Similarly, for the reversible mately 50% in the calculation time per event was obtained
model, we have obtained a parallel efficierRE=70% for  when going from a system of siZze=64 to L=2048. We
the same effective processor sigd,=64,N,=1024 with  believe that this is most likely due to memory or “cache”
N,=16. effects in our simulations. This increase in the serial calcu-
We have also studied the effects of fluctuations on thdation time per event with increasing system size indicates
parallel efficiency in our simulations. In particular, we found that the calculated parallel efficiencies shown in Fig. 11
that the relevant relative fluctuatiofss(7))/n,, scale as one would actually be somewhat larger if the more direct defini-
over the square root of the processor digee Eq.(11) and tion of parallel efficiency[Eq. (12)] were used. However,
Fig. 6]. By taking into account the effects of fluctuations andsince for largeN, this requires serial simulations of very
communication delays, calculated parallel efficiencies werdarge systems, the first definitidieg. (1)] was used.
obtained which are in excellent agreement with those ob- It is interesting to compare our sublattice algorithm with
tained in our simulations. In addition, by measuring the rel-the algorithm previously developed by Haidsral2° In the
evant fluctuations, we have been able to predict the maxiSL algorithm, we avoid conflicts by using sublattices, while
mum possible theoretical efficiencies in the absence operiodic synchronization is enforced by the use of blocking
communication delays. For example, for the fractal andcommunications at the end of a cycle. In contrast, in the
edge-diffusion models withD/F=1C° and N,=N,=256, algorithm of Haideret al,?’ sublattices are not used and so
maximum theoretical parallel efficiencies of 80% and 90%,two processors may simultaneously modify the same site or
respectively, were obtained. sites within the boundary region. In an attempt to correct the
Since increasing the processor size decreases the effectsulting discrepancies but still maintain computational effi-
of fluctuations as well as communications overhead, the paeiency, each processor initiates a nonblocking receive to
allel efficiency may be further increased by increasing thecheck for any boundary-event messages from its neighboring
processor size. Alternatively, in simulations on machinegrocessors after every event as well as a nonblocking send
with faster communicationgsuch as shared memory ma- immediately after performing a boundary event. Since the
chines or in simulations of more complicated KMC models times for receipt and sending of these messages do not nec-
for which the calculation time is significantly larglesuch as  essarily correspond to the simulation times, time ordering
self-learning KMC(Ref. 21) or accelerated dynami®, ef- can be violated at the boundaries. As in the SL algorithm,
ficiencies approaching these values may be possible eveeriodic synchronization is used to enforce consistency be-
without increasing the processor size. tween the boundary region of one processor and that of its
It is worth noting that in our simulations we have usedneighbor and thus stop errors from propagating.
two slightly different definitions for the parallel efficiency. In ~ While both algorithms may provide an accurate descrip-
the first definition[Eq. (1)], the parallel execution time was tion of the dynamics when coarse-grained over times signifi-
compared with the serial execution time of a system whoseantly longer than a cycle, neither algorithm corresponds to
size is the same as a single processor. In contrast, in thtee exact time evolution. For the SL algorithm this is clear,
second definitiodEq. (12)] the parallel execution time was since while one sublattice proceeds, the other sublégjice
directly compared with 1M, times the serial execution time are frozen during each cycle. In the algorithm of Haider
of a system whose total system size is the same as in thad.,?0 this is less evident since each processor can continu-
parallel simulation. If the serial KMC calculation time per ously update its entire region using the information available
event is independent of system size, then there should be mluring each cycle. However, as already noted in Ref. 20,
difference between the two definitions. However, in generatommunication delays can lead to errors. Furthermore, what
this may not be the case. For example, in KMC simulationds important is not the “real time” of an event but rather its
in which the rates for all events are stored separately, thévirtual” or “simulated” time. Since this is not taken into
calculation time per event will increase a4Y? (where account in the algorithm of Haidest al.?° this leads to an
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additional source of “short time-scale” errors even in thein Ref. 20 for selecting events along with EG2) for the PE.
absence of communication delays. Finally, we note that evetf the more efficient “list” method had been used to select
if the algorithm of Haideet al?° were significantly modified events along with Eq1), then the parallel efficiencies would
such that the local minimum condition were enforced for thehave been significantly smaller. For comparison, in simula-
virtual times of all eventgincluding nonboundary events tions using the SL algorithm and E@l) for the PE, we
the resulting “conservative” asynchronous algorithm is stillobtained parallel efficiencies ranging from 1.0 fgg=2 to
not rigorous, as noted in the Introduction, since the time for0.94 for N,=16. However, if the Maksym algorithm had
an event already executed by a processor may change duelieen used in these simulations along with ELp) for the
events which propagate across processors. PE, then the calculated PE would have been significantly
We now compare the accuracy of both algorithms inlarger than 1. Thus, the SL algorithm leads to parallel
simulations of thin film growth. In the SL algorithm de- efficiencies which are significantly higher than obtained
scribed here, the cycle time is chosen according to the prassing the algorithm of Haideet al?° We note that the
scription T=1/R., WhereR,,a IS the fastest possiblglif- main reason for the relatively high parallel efficiencies ob-
fusive) single-event rate in the KMC table. Such a tained in these simulations is the relatively low valuédf
“conservative” choice of cycle time ensures that atoms near 8)/F=7x 10°) which leads to a relatively large monomer
boundary will on average only make one move into thedensity and number of events per cycle, thus significantly
“ghost” region in a given cycle, thus allowing the next sub-reducing the overhead due to communications latency as
lattice to “catch up” in the next iteration. As we have shown,well as the effects of fluctuations.
such a choice leads to results which are identical except for Finally, we return to the general question of the applica-
the smallest processor sizes, to serial results for a wide varbility and validity of the SL algorithm. In general, we expect
ety of models ranging from the nonequilibrium “fractal” that for a wide class of nonequilibrium processes there exists
model to the “reversible” model. In contrast, in the algorithma clearly defined diffusion length,, which may or may not
of Haideret al,?° the cycle timeT is chosen according to the vary slowly with time. For these processes we expect that
more complicated prescriptioff =(N,/2r)/[(Rynn+F)NN,  finite-size effects will not occur as long as the sublattice size
+ 6] involving the slowest possibléliffusive) event rate in s larger thadp. Furthermore, as long as this length scale is
the KMC tableR,,, as well as the processor dimensidfig  not too large compared to the desired system size, parallel
N,, the range of interaction, and 5, which is a small con-  simulations using the SL algorithm will be advantageous. As
stant introduced in Ref. 20 to keep the cycle lenftfinite ~ our results indicate, parallel KMC simulations using the syn-
“at the extreme condition of zero flux and substrate temperachronous sublattice algorithm are in general likely to be sig-
ture.” We note that the origin of this expression is not clearnificantly faster than either the hybrid version of the conser-
Furthermore, as noted in Ref. 20, such a prescription needgtive asynchronous algorithm or the synchronous relaxation
to be modified to handle the “fractal” case studied here inalgorithm. As a result, we expect that the synchronous sub-
which free adatoms dominate the mobility. lattice algorithm may be particularly useful as a means to
It is also interesting to compare the parallel efficiencycarry out a variety of parallel nonequilibrium simulations.
obtained using the SL algorithm with that obtained using the
algorithm of Haideret al?° for the GaAs growth model stud-
ied in Ref. 20. In simulations of this model &t 800 K with This research was supported by the NSF through Grant
N,=N,=400 andF=1 ML/s, Haideret al. obtained parallel No. DMR-0219328. We would also like to acknowledge
efficiencies ranging from 0.1 foN,=2 to 0.9 forN,=16.  grants of computer time from the Ohio Supercomputer Cen-
The apparent increase in the PE with increasijgs due to  ter (Grant No. PJS0245and the Pittsburgh Supercomputer
the fact that the less-efficient Maksym algorithmas used Center(Grant No. DMR030007J)P
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