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The standard kinetic Monte Carlo algorithm is an extremely efficient method to carry out serial simulations
of dynamical processes such as thin film growth. However, in some cases it is necessary to study systems over
extended time and length scales, and therefore a parallel algorithm is desired. Here we describe an efficient,
semirigorous synchronous sublattice algorithm for parallel kinetic Monte Carlo simulations. The accuracy and
parallel efficiency are studied as a function of diffusion rate, processor size, and number of processors for a
variety of simple models of epitaxial growth. The effects of fluctuations on the parallel efficiency are also
studied. Since only local communications are required, linear scaling behavior is observed, e.g., the parallel
efficiency is independent of the number of processors for fixed processor size.
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I. INTRODUCTION

Kinetic Monte Carlo sKMCd is an extremely efficient
method1–6 to carry out dynamical simulations of stochastic
and/or thermally activated processes when the relevant acti-
vated atomic-scale processes are known. KMC simulations
have been successfully used to model a variety of dynamical
processes ranging from catalysis to thin film growth. The
basic principle of kinetic Monte Carlo is that in order to
efficiently simulate a dynamical system with a variety of
different rates or processes, at each step in the simulation one
picks the next process to occur with a probability propor-
tional to the rate for that process. The time of the next event
is determined by the total overall rate for all processes to
occur, and after each event the rates for all processes are
updated as necessary.

In contrast to Metropolis Monte Carlo,7 in which each
Monte Carlo step corresponds to a configuration-independent
time interval and each event is selected randomly but only
accepted with a configuration-dependent probability, in ki-
netic Monte Carlo both the selected event and the time inter-
val between events are configuration-dependent while the ac-
ceptance probability is fixedsall attempts are acceptedd. In
the context of traditional equilibrium Monte Carlo simula-
tions, this is sometimes referred to as then-fold way.1 Al-
though KMC requires additional bookkeeping to keep track
of the ratessprobabilitiesd for all possible events, the KMC
algorithm is typically significantly more efficient than the
Metropolis algorithm since no selected moves are rejected.
In particular, for problems such as thin film growth in which
the possible rates or probabilities for events can vary by sev-
eral orders of magnitude, the kinetic Monte Carlo algorithm
can be orders of magnitude more efficient than Metropolis
Monte Carlo.

The standard KMC algorithm is a serial algorithm since
only one event can occur at each step. However, for some
problems one needs to simulate larger length and time scales
than can be simulated using a serial algorithm. For these
problems it would be desirable to develop efficient parallel
kinetic Monte Carlo algorithms so that many processors can

be used simultaneously in order to carry out realistic compu-
tations over extended time and length scales.

Recently there has been a great deal of work on the de-
velopment of rigorous asynchronous parallel algorithms for
Metropolis Monte Carlo using domain decomposition. In
particular, because the attempt time in Metropolis Monte
Carlo is independent of system configuration, an asynchro-
nous “conservative” algorithm may be used.8–12 In such an
algorithm, all processors whose next attempt time is less than
their neighbor’s next attempt times are allowed to proceed.
Unfortunately such a “conservative” algorithm does not
work for kinetic Monte Carlo since in KMC the event time
depends on the system configuration. In particular, since fast
events may “propagate” across processors, the time for an
event already executed by a processor may change due to
earlier events in nearby processors, thus leading to an incor-
rect evolution. As a result, the development of efficient par-
allel algorithms for kinetic Monte Carlo simulations remains
a challenging problem.

A hybrid version of the conservative asynchronous algo-
rithm which may be applied to kinetic Monte Carlo has been
developed by Lubachevsky9 in the context of Ising simula-
tions and has been implemented by Kornisset al.13–15In this
approach, “n-fold way” simulations are carried out in the
interior of each processor, while Metropolis simulations are
carried out at the boundary. At each step, either an interior
move or a boundary move is selected with the appropriate
probability. While all “n-fold way” interior moves are imme-
diately accepted, all Metropolis attempts must wait until the
neighboring processor’s next attempt time is later before be-
ing either accepted or rejected. However, because of the pos-
sibility of significant rejection of boundary events, the paral-
lel efficiency may be very low for problems with a wide
range of rates for different processes. For example, we have
recently16 used such a mapping to carry out parallel KMC
simulations of a simple “fractal” model of submonolayer
growth with a moderate value of the ratioD /F of the mono-
mer hopping rateD to thesper sited deposition rateF. How-
ever, due to the rejection of boundary events, an extremely
low parallel efficiency was obtained.16 Furthermore, in order
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to use such an approach, in general one needs to know in
advance all the possible events and their rates and then to
map them to Metropolis dynamics so that all events may be
selected with the appropriate probabilities. While such a
mapping may be carried out for the simplest models, for
more complicated models it is likely to be prohibitive.

A more efficient algorithm, which is also rigorous, is the
synchronous relaxationsSRd algorithm.17,18 This algorithm
was originally used by Eicket al.17 to simulate large circuit-
switched communication networks and more recently by Lu-
bachevsky and Weiss18 in the context of Ising model simu-
lations. In this approach, all processors remain synchronized
at the beginning and end of a time intervalT, while an itera-
tive relaxation method is used to correct errors due to bound-
ary events. This algorithm has the advantage of generality
sfor example, it is not necessary to know the types and/or
rates of all possible events in advanced and flexibility since
the cycle lengthT can be dynamically tuned19 to optimize
the parallel efficiency. However, due to fluctuationsswhich
increase logarithmically19 with the number of processorsNpd
as well as the requirement of global communications at the
end of each cyclesthe global communications time also in-
creases logarithmically withNpd, the computational speedup
as a function ofNp is sublinear for fixed processor size. In
addition, implementing such an algorithm is relatively com-
plex. Therefore, there is a need for a somewhat simpler and
more efficient algorithm.

In order to address these problems, we have developed a
simpler synchronous sublatticesSLd algorithm for parallel
kinetic Monte Carlo which we describe in detail here. While
the SL algorithm is not rigorous, we find that using certain
reasonable assumptions on the cycle length and processor
size, the results obtained are identical to those obtained in
serial simulations. Furthermore, because the SL algorithm
requires only local communications, the parallel efficiency is
essentially independent of the number of processors in the
largeNp limit, thus leading to linear scaling. As a result, the
parallel efficiency is in general significantly greater than for
the synchronous relaxation algorithm. We note that an ap-
proximate approach somewhat similar to ours has previously
been developed by Haideret al.20 In this work, the use of
“ghost regions” to provide boundary information along with
the use of frequent synchronization to reduce the propagation
of errors were also discussed. However, as noted in their
work,20 this approach has to be modified to study some of the
growth models considered here.

The organization of this paper is as follows. In Sec. II, we
describe the algorithm. In Sec. III, we present results ob-
tained using this algorithm for several different models of
thin film growth, including a comparison with serial results.
We also study the effects of fluctuations on the parallel effi-
ciency and present results for the measured and theoretical
parallel efficiency as a function of processor size and number
of processors. The effects of finite processor size on the ac-
curacy of the results obtained are also discussed and com-
pared with finite-size effects due to finite system size. Fi-
nally, in Sec. IV we summarize our results and discuss the
general applicability of the SL algorithm to parallel kinetic
Monte Carlo simulations.

II. SYNCHRONOUS SUBLATTICE ALGORITHM

As in previous work on the “conservative” asynchronous
algorithm,9,10 in the synchronous sublatticesSLd algorithm,
different parts of the system are assigned via spatial decom-
position to different processors. However, in order to avoid
conflicts between processors due to the synchronous nature
of the algorithm, each processor’s domain is further divided
into different regions or sublatticesssee Fig. 1d. A complete
synchronous cycle corresponding to a time intervalT is then
as follows. At the beginning of a cycle, each processor’s
local time is initialized to zero. One of the sublattices is then
randomly selected so that all processors operate on the same
sublattice during that cycle. Each processor then simulta-
neously and independently carries out KMC events in the
selected sublattice until the time of the next event exceeds
the time intervalT ssee Fig. 2d. As in the usual serial KMC,
each event is carried out with time increment
Dti =−lnsr id /Ri, where r i is a uniform random number be-

FIG. 1. Diagram showingsad square sublattice decomposition
snine processorsd and sbd strip sublattice decompositionsthree pro-
cessorsd. Solid lines correspond to processor domains while dashed
lines indicate sublattice decomposition. Dotted lines insad and sbd
indicate a “ghost-region” surrounding the central processor.

FIG. 2. Diagram showing time evolution in the SL algorithm.
Dashed lines correspond to selected events, while the dashed line
with an X corresponds to an event which is rejected since it exceeds
the cycle time.
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tween 0 and 1 andRi is the total KMC event rate. Each
processor then communicates any necessary changessbound-
ary eventsd with its neighboring processors, updates its event
rates, and moves on to the next cycle using a new randomly
chosen sublattice.

Figure 1 shows two possible methods of spatial and sub-
lattice decomposition which are appropriate for simulations
of thin film growth—a square sublattice decompositionsFig.
1sadd and a strip sublattice decompositionsFig. 1sbdd. In the
square sublattice decomposition, the system is divided into
squares, each of which is assigned to a different processor,
and each processor’s domain is further divided into four
square sublattices. At the beginning of each cycle, one of the
four sublatticessA, B, C, or Dd is randomly chosen. In the
strip-sublattice geometry, the system is divided into strips,
each of which is assigned to a different processor, and each
processor’s domain is further divided into two strips or sub-
lattices. At the beginning of each cycle, one of the two sub-
latticessA or Bd is randomly chosen.

In order to avoid conflicts, the sublattice size must be
larger than the range of interactionstypically only a few
lattice units in simulations of thin film growthd. In addition,
in order for each processor to calculate its event rates, the
configuration in neighboring processors must be known as
far as the range of interaction. As a result, in addition to
containing the configuration information for its own domain,
each processor’s array also contains a “ghost region” which
includes the relevant information about the neighboring pro-
cessor’s configuration beyond the processor’s boundary.

At the end of each cycle, each processor exchanges infor-
mation with its neighboring processors in order to properly
update its corresponding boundary and ghost regions. For
example, if sublattice A is selected in the case of square-
sublattice decomposition, then at the end of a cycle, possible
boundary events must be communicated to the three proces-
sors north, west, and northwest of each processor. By using
sequential north and west communications, one can elimi-
nate the northwest communication, and so only two commu-
nications are needed at the end of each cycle. Similarly, if
sublattice B is selected in the case of strip-sublattice decom-
position, then at the end of a cycle, possible boundary events
must be communicated to the processor to the east.

Since moves are only allowed in the selected sublattice
during a cycle, several cycles are needed for the entire sys-
tem time to progress byT. Thus, in the squaresstripd geom-
etry, it takes on average four cyclesstwo cyclesd to increase
the overall system time byT. During each cycle, the event
rates in the nonselected sublattices of a given processor are
automatically updated as each event proceeds, just as in the
usual serial KMC. Sublattice selection can be carried out
either by having one processor select the sublattice for that
cycle and then distribute it to all processors, or more effi-
ciently by seeding all processors with the same random num-
ber generator so that they all independently select the same
sublattice for each cycle.

We note that due to the reduced communication in the
strip-sublattice decomposition compared to the square-
sublattice decomposition, the strip-sublattice decomposition
is more efficient. In addition, since the sublattice in the strip
geometry is twice as large as for the square geometry for the

same processor sizeNxNy, there will be twice as many events
per cycle in the strip geometry, thus further reducing the
overhead due to communication time. Thus, we expect that
the overhead due to communication latency in the strip ge-
ometry will be approximately one-half of that for the square
geometry.

We now consider the validity and efficiency of the syn-
chronous SL algorithm. If the time intervalT is not too large,
then the SL algorithm corresponds to allowing different sub-
lattices to get slightly “out of synch” during each cycle. Over
many cycles one expects such fluctuations to cancel out and
so the parallel evolution should be identical to the corre-
sponding serial KMC simulation. Of course, in order to
maximize the efficiency of the algorithmsi.e., the average
number of events per processor per cycled and minimize the
communication time overhead, one would like to have the
largest possible value ofT which does not “corrupt” the time
evolution. As we shall demonstrate below, by picking the
cycle lengthT less than or equal to the average time for the
fastest possible activated eventse.g., monomer hopping in
the simplest possible model of thin film growthd, we do in-
deed obtainsexcept for very small processor sizes for which
finite-size effects may occurd results which are identical to
those obtained in serial KMC except for very small sublattice
sizes. Thus, by using the general rule that the time intervalT
must be smaller than or equal to the inverse of the fastest
possible event rate in the KMC table, we expect that the
synchronous algorithm will provide accurate results for suf-
ficiently large sublattices. We note that the synchronous sub-
lattice algorithm can also be used in a “self-learning” KMC
sRef. 21d in which the KMC rate tables are updated as the
simulation goes along. In this case, if a new “fastest-event
rate” is discovered in the middle of a cycle, then one merely
restarts the cycle from the beginning using a smaller cycle
time T.

III. RESULTS

In order to test the performance and accuracy of our syn-
chronous sublattice algorithm, we have used it to simulate
three specific models of thin film growth. In particular, we
have studied three solid-on-solidsSOSd growth models on a
square lattice: a “fractal” growth model, an edge-and-corner
diffusion sECd model, and a reversible model with one-bond
detachments“reversible model”d. In each of these three mod-
els, the lattice configuration is represented by a two-
dimensional array of heights and periodic boundary condi-
tions are assumed. In the “fractal” model,22 atoms
smonomersd are deposited onto a square lattice withsper sited
deposition rateF, diffuseshopd to nearest-neighbor sites with
hopping rateD, and attach irreversibly to other monomers or
clusters via a nearest-neighbor bondscritical island size of
1d. The key parameter is the ratioD /F, which is typically
much larger than one in epitaxial growth. In this model, frac-
tal islands are formed in the submonolayer regime due to the
absence of island relaxation. The EC model is the same as
the fractal model except that island relaxation is allowed, i.e.,
atoms which have formed a single nearest-neighbor bond
with an island may diffuse along the edge of the island with
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diffusion rateDe=reD and around island corners with rate
Dc=rcD ssee Fig. 3d. Finally, the reversible model is also
similar to the fractal model except that atoms with one bond
sedge atomsd may hop along the step edge or away from the
step with rateD1=r1D, thus allowing both edge-diffusion
and single-bond detachment. For atoms hopping up or down
a step, an extra Ehrlich-Schwoebel barrier to interlayer
diffusion23 may also be included. In this model, the critical
island sizei sRef. 24d can vary fromi =1 for small values of
r1 to i =3 for sufficiently large values ofD /F and r1.

25

For the fractal and reversible models, the range of inter-
action corresponds to one nearest-neighborslatticed spacing,
while for the EC model it corresponds to the next-nearest-
neighbor distance. Thus, for these models the width of the
“ghost region” corresponds to one lattice spacing. We note
that at each step of the simulation, either a particle is depos-
ited within the appropriate sublattice, or a particle diffuses to
a nearest-neighbor or next-nearest-neighbor lattice site. In
order to avoid “double-counting,” only particles within a
processor’s domain may diffuse, e.g., if a particle diffuses
from the boundary region of a processor into its ghost region
during a cycle, then that particle is no longer free to move
during that cycle. In more general models, for which con-
certed moves involving several atoms may occur,26–29 the
ghost region needs to be at least as large as the range of
interaction and/or the largest possible concerted move. In
such a case, the processor and sublattice to which a con-
certed event belongs can be determined by considering the
location of the center of mass of the atoms involved in the
concerted move.

In order to maximize both the serial and parallel effi-
ciency in our KMC simulations, we have used lists to keep
track of all possible events of each type and rate. For each
sublattice, a set of lists is maintained which contains all pos-
sible moves of each type. A binary tree is used to select
which type of move will be carried out, while the particular
move is then randomly chosen from the list of the selected
type. After each move, the lists are updated.

A. Computational details

In order to test our algorithm we have carried out both
“serial emulations” as well as parallel simulations. However,
since our main goal is to test the performance and scaling
behavior on parallel machines, we have primarily focused on
direct parallel simulations using the Itanium and AMD clus-
ters at the Ohio Supercomputer CentersOSCd as well as on
the Alpha cluster at the Pittsburgh Supercomputer Center

sPSCd. All of these clusters have fast communications—the
Itanium and AMD clusters have Myrinet and the Alphaserver
cluster has Quadrics. In our simulations, the interprocessor
communications were carried out using MPIsMessage-
Passing Interfaced. Unless explicitly noted, the results shown
here were obtained using the Itanium and AMD cluster at
OSC.

B. Comparison with serial results

As a test of our algorithm, we first present some detailed
comparisons with serial results for different numbers of pro-
cessors and system sizes for the strip geometry. Similar re-
sults were obtained using square decomposition but are not
shown here for brevity. Figure 4 shows a comparison of par-
allel and serial results for the fractal model withD /F=105

and a square system of sizeL=256. The parallel simulations
were carried out using strip sublattice decomposition with
processor sizesNx=16, 32, and 64 withNy=256 correspond-
ing to Np=16, 8, and 4, respectively, whereNp is the number
of processors. In particular, Fig. 4sad shows the substrate
monomer densityN1 and island densitysaveraged over 500
runsd as a function of coverageu in the first half-layer of

FIG. 3. Schematic diagram of island-relaxation mechanisms for
sad edge-and-corner andsbd reversible models.

FIG. 4. Comparison between serial and parallel results using
synchronous sublattice algorithm with strip decompositionsL=Nyd
for fractal model withD /F=105.
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growth, while Fig. 4sbd shows the rms surface height
fluctuations or surface widthsaveraged over 100 runsd as a
function of coverage in the first few layers of growth.
The inset of Fig. 4sbd also shows the monomer density
as a function of coverage in the first five layers of growth. As
can be seen, there is no difference within statistical error
between the serial and the parallel results. A similar compari-
son is shown in Fig. 5 for the edge-diffusionsECd model
sD /F=105,re=0.1,rc=0d using strip sublattice decomposi-
tion. As can be seen, there is again no difference between the
parallel and serial results.

C. Parallel efficiency as a function ofD /F

We now consider the performance of the synchronous
sublattice algorithm, starting with the dependence of the par-
allel efficiency on the monomer diffusion rateD /F for the
fractal model for a fixed number of processorssNp=4d. Here
we define the parallel efficiency PE as equal to the ratio of
the execution timet1p8 for an ordinary serial simulation of one
processor’s domain to the parallel execution timetNp

of Np

domains usingNp processors, i.e.,

PE=
t1p8

tNp

. s1d

Thus, the overall “performance factor” of the parallel simu-
lation se.g., boost in events/s over a serial simulationd is
given by the parallel efficiency multiplied by the number of
processorsNp. We note that in calculating the parallel effi-
ciency using Eq.s1d, we used the single-processor sublattice
algorithm simulation time fort1p8 rather than the serial calcu-
lation time tser obtained using the standard KMC algorithm.
This is partly motivated by the fact that this makes it easier
to obtain an expression for the theoretical efficiency. How-
ever, we have found that the sublattice algorithm with a
single processor is actually somewhat more efficient than the
standard serial KMC algorithm, presumably due to memory
and cache effects. Accordingly, the parallel efficiencies cal-
culated using Eq.s1d would actually be somewhat larger if
tser were used fort1p8 . In particular, for smallD /F this can
lead to efficiencies larger than 1.

We note that there are two primary factors which deter-
mine the parallel efficiency. The first is the overhead due to
communications at the end of every cycle, when all proces-
sors exchange boundary information with their neighbors.
Since in our simulations the number of boundary events is
relatively smallsi.e., the processor size is not too larged, the
primary cause of communications overhead is the latency
time for local communications which is independent of pro-
cessor domain size. The second important factor controlling
the efficiency is the existence of fluctuations in the number
of events in different processors. In particular, in any given
cycle one processor may have many events, while its nearest
neighbor may have fewer events. As a result, while the pro-
cessor with many events is calculating its events, its neigh-
boring processor with few events must idleswaitd until it has
received the boundary information from the first processor
before moving to the next cycle.

To illustrate this effect more quantitatively, we consider
the effects of fluctuations on the parallel efficiency in the
case of the one-dimensional strip sublattice decomposition
shown in Fig. 1sbd. In this case, there are two sublatticessA
and Bd and during each cycle one of the sublattices is ran-
domly selected. For example, if the B sublattice is selected,
then at the end of a cycle all processors will do asnonblock-
ingd send of any boundary events in the B sublattice to the
processor on their right, followed by asblockingd receive of
the corresponding boundary information from the processor
on their left. Thus, for example, if processor 1 has more
events than processor 2, and so takes longer to execute these
events before initiating its send to processor 2, then proces-
sor 2 must wait before moving to the next cycle, thus leading
to inefficiency. However, processor 2’s execution is not af-
fected by processor 3 during the same cycle, since its send to
processor 3 is nonblocking.

Denoting the communication overhead per cycle astcom
and taking into account the fluctuations of events between
nearest-neighbor processors, we obtain the following expres-
sion for the average time per cycle:

ktNp
stdl = kt1p8 stdl + tcom+ kDstdlfkt1p8 stdl/navg, s2d

wherekt1p8 stdl is the average time per cycle for a serial simu-
lation of a single processor’s domain,nav is the average num-

FIG. 5. Comparison between serial and parallel results using
synchronous sublattice algorithm with strip decomposition for the
EC model withD /F=105, L=256, andDe=0.1D, Dc=0.
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ber of events per processor per cycle,Dstd is the relevant
fluctuation in the number of events in a given cyclet aver-
aged over all processors, and the angular brackets denote an
average over all cycles. The ratiokt1p8 stdl /nav in the last term
of Eq. s2d corresponds to the average calculation time to
process an event. Therefore, the parallel efficiencyPE may
be written as

PE=
kt1p8 stdl
ktNp

stdl
= F1 +

tcom

kt1p8 stdl
+

kDstdl
nav

G−1

. s3d

In the limit of negligible communication timetcom/ kt1p8 stdl
→0, this implies that the maximum possible parallel effi-
ciency is given by

PEmax= F1 +
kDstdl

nav
G−1

. s4d

We also note thatnav,NxNy and since the fluctuations are
on averageuncorrelated, one expectskDstdl,Înav. This im-
plies that the maximum possible parallel efficiency may be
written as

PEmax= F1 +
a

sNxNyd1/2G−1

, s5d

where the constanta is model-dependent. This result shows
clearly that the maximum theoretical efficiency approaches 1
in the limit of largenav corresponding to largeNx, Ny.

There are two distinct ways in which the average fluctua-
tion Dstd might be calculated. If we assume that at the be-
ginning of each cycle all processors are perfectly synchro-
nized, then for the strip geometry one may write

DSstd =
1

Np
o
i=1

Np

fni+dstdstd − nistdgQ„ni+dstdstd − nistd…,

s6d

wherenistd is the number of events in processori in cycle
t, Qsxd=0s1d if x is negativespositived, anddstd= +1s−1d if
the A sBd sublattice is selected in cyclet. Since we are in-
terested in the average over many cycles, this is equivalent to
the simpler form

DSstd =
1

2Np
o

i

unistd − ni+1stdu, s7d

where the factor of 1/2 is due to the fact that only half the
time will the relative fluctuation in the relevant neighboring
processor be positive, and thus lead to a delay.

However, due to fluctuations one must also take into ac-
count the existence of desynchronization at the beginning of
a cycle. In order to take this into account, we may calculate
the sum or “starting time”Sistd corresponding to the sum of
the total number of events in processori and the sum of all
delay events due to neighboring processors in a given pro-
cessori at the start of cyclet. At the start of the first cycle
st=1d one hasSis1d=0 for all processorsi and nis1d is the
number of events in processori in that cycle. At the start of

each subsequent cycle, the sumSistd may be calculated in
each processor in terms of the previous values ofSist−1d
andnist−1d as follows:

Sistd = Sist − 1d + nist − 1d + DistdQ„Distd…, s8d

where

Distd = Si+dstdst − 1d + ni+dstdst − 1d − Sist − 1d − nist − 1d

s9d

and wheredstd= +1s−1d if the A sBd sublattice is selected in
cyclet. Then the average delayDstd due to fluctuations in a
given cyclet may be written

Dstd =
1

Np
o
i=1

Np

DistdQ„Distd…. s10d

Figure 6 shows the measured fluctuationskDstdl /nav and
kDSstdl /nav for the simple fractal model as a function ofD /F
for fixed processor sizeNx=256, Ny=1024, andNp=4 ob-
tained from simulations up tou=1 ML. As can be seen, for
Np=4, the full fluctuation kDstdl is approximately 30%
larger than that obtained assuming that all processors are
synchronized at the beginning of each cycle. For the simple
fractal model, one expectsnav,N1,sD /Fd−2/3, which im-
plies kDstdl /nav,sD /Fd1/3. As can be seen in Fig. 6, there is
very good agreement with this form for theD /F dependence.

Figure 7 shows the corresponding resultsssymbolsd for
the parallel efficiency as a function of the ratioD /F. Results
are shown for parallel KMC simulations withNp=4 of a
square system with system sizeL=1024 with both square
sublattice decompositionsNx=Ny=512d and strip sublattice
decompositionsNx=256, Ny=1024d. Due to the decreased
communication overhead in the strip geometrys1 send/

FIG. 6. Fluctuations as a function ofD /F for the fractal model
with Np=4 and strip geometry withNx=256,Ny=1024.
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receive versus 2 send/receives per cycled, the parallel effi-
ciency of the strip geometry simulations is significantly
larger than for the square geometry. As can be seen, for
D /Fø106, the parallel efficiency for the strip geometry is
greater than 50%. However, with increasingD /F the parallel
efficiency decreases significantly since the decrease in the
number of events per cyclenav fsee Fig. 7sadg leads to an
increase in the communications overheadtcom/ kt1p8 stdl as
well as in the relative fluctuationskDstdl /nav.

Also shown in Fig. 7sdashed linesd is the parallel effi-
ciency calculated using Eq.s3d based on the measured values
of kDstdl /nav, kt1p8 stdl /nav, and the measured interprocessor
communication timetcom.15 ms per send/receive. As can be
seen, there is good agreement between the measured and
calculated results. The maximum theoretical parallel efficien-
cies calculated using Eq.s4d assuming negligible communi-
cation overhead are also shownssolid linesd. As can be seen,
the maximum theoretical efficiencies are significantly higher
than the measured efficiencies for largeD /F, although they
also decrease with increasingD /F due to the increase in
fluctuations. For the simple fractal model with strip geom-
etry, our results for the maximum possible parallel efficiency
may be well described by the expression

PEfrac
max= f1 + 0.21sD/Fd1/3/sNxNyd1/2g−1. s11d

This result may be used to estimate the maximum possible
efficiency for the fractal model for different processor
sizes and values ofD /F. For example, ifNx=Ny=64 and

D /F=105, then this implies a maximum possible parallel
efficiency given byPEmax=0.40. This result shows that even
in the absence of delays due to interprocessor communica-
tion, due to the existence of fluctuations, the parallel effi-
ciency will decrease with increasingD /F.

Figure 8 shows similar results for the parallel efficiency
as a function ofD /F for the edge-diffusion model with
De=0.1D, Dc=0, Np=4, andu=1 ML. As can be seen, al-
though the parallel efficiency for the edge-diffusion model
still decreases with increasingD /F, it is significantly larger
than for the fractal model. In particular, due to the increased
number of events per cycle and the resulting reduced com-
munication overhead, the parallel efficiency remains above
50% for largeD /F. As an example, for the case of strip
geometry andD /F=107, the parallel efficiency is more than
three times that for the simple fractal model, while the num-
ber of events is approximately 10 times larger. As for the
fractal model, the calculated parallel efficiencysdashed linesd
is in good agreement with the measured values. Due to the
increase in the number of events per cycle, and the resulting
decrease in the relative fluctuations, the maximum theoreti-
cal efficienciesssolid linesd are also significantly higher than
for the fractal case.

D. Parallel efficiency as a function of the number
of processors for fixed processor size

Figure 9 shows the performancesevents/sd for the simple
fractal model withD /F=105 as a function of the number of

FIG. 7. sad Events per cycle andsbd parallel efficiency for the
fractal model withNp=4 su=1 MLd as a function ofD /F. Dashed
lines correspond to Eq.s3d while solid lines correspond to maxi-
mum theoretical efficiency given by Eq.s4d.

FIG. 8. sad Events per cycle andsbd parallel efficiency for the
edge-diffusion model withNp=4 as a function ofD /F. Dashed
lines correspond to Eq.s3d while solid lines correspond to maxi-
mum theoretical efficiency given by Eq.s4d.
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processorsNp with fixed processor size, using both square
decomposition withN=512 and strip decomposition with
Nx=256 and Ny=1024 obtained from simulations up to
u=1 ML. Because of the large number of processors, these
simulations were carried out at the Pittsburgh Supercomputer
Center. As can be seen in both cases there is a roughly linear
speedup of the performance with increasing number of pro-
cessorsNp. For comparison, the equivalent single-processor
sseriald computation speed for this model is approximately
2.83105 events/s. However, due to the decreased commu-
nication cost, the speed-up using the strip geometry is sig-
nificantly higher than for the square decomposition.

We now consider the dependence of the parallel efficiency
on the number of processorsNp in more detail for the case of
strip geometry. Figure 10 shows the measured fluctuations
kDstdl /nav andkDSstdl /nav as a function ofNp for the fractal
model for D /F=105. With increasingNp, the relative event
fluctuationkDSstdl /nav remains constant. In contrast, the full
fluctuation kDstdl /nav increases slowly with increasingNp

but appears to saturate at a finite value for largeNp. This is
supported by the fit shown in Fig. 10ssolid lined, which
agrees quite well with the simulation results and which has
the formkDSstdl /nav=0.30−0.28/Np

0.68. Due to the saturation
of fluctuations, we expect that the parallel efficiency will
also saturate for largeNp.

Figure 11 shows our results for the measured parallel ef-
ficiency sopen and closed symbolsd as a function ofNp for
fixed processor size for the fractal and edge-diffusion mod-
els. As expected, the parallel efficiency is essentially con-
stant for largeNp, although there is a slight decrease due to
increased communication overhead forNp.100. Also
shownsdashed linesd are the parallel efficiencies calculated
from Eq. s3d using the measured fluctuations and communi-
cation times, as well as the maximum possible theoretical
parallel efficienciesssolid linesd calculated using Eq.s4d. As
can be seen, there is relatively good agreement between the
calculated and measured parallel efficiencies.

We note that the results for largeNp sopen symbolsd were
obtained using the Alpha cluster at the Pittsburgh Supercom-

puter CentersPSCd for which the communication latency is
somewhat larger than for the OSC cluster. As a result, the
parallel efficiencies are somewhat lower than would be ob-
tained with the OSC cluster. For comparison, OSC results for
the fractal model withNx=Ny=256 and with Nx=256,
Ny=1024 are also shown up toNp=64 sfilled symbolsd. As
can be seen, due to the decreased communication time, the
OSC results for the parallel efficiency are significantly larger

FIG. 9. Total computational speedsevents/sd as a function of the
number of processors for the fractal model withD /F=105. FIG. 10. Fluctuations for the fractal model withD /F=105 as a

function of Np. Solid line corresponds to a fit of the form
kDstdl /nav=0.3−0.28/Np

0.68.

FIG. 11. Parallel efficiencyssymbolsd as a function of the
number of processorsNp for fractal and edge-diffusion models
with D /F=105 and strip-sublattice decompositionsNx=256 with
Ny=256 and 1024d. Dashed lines correspond to Eq.s3d while solid
lines correspond to maximum theoretical efficiency calculated using
Eq. s4d.
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than the corresponding PSC results. Except for the PSC frac-
tal results withNx=Ny=256, the parallel efficiencies are all
larger than 50%.

E. Finite-size effects

We now consider the effects of finite processor size on the
accuracy of the results obtained using the synchronous sub-
lattice algorithm. For simplicity, we focus on the case of
strip-sublattice decomposition. As we have already shown
ssee Figs. 4 and 5d, for sublattice sizes which are not too
small, there is perfect agreement between the synchronous
sublattice results and the corresponding serial results. How-
ever, for very small processor sizes there exists a small
“finite-size9 effect which leads to results which are slightly
different from those obtained using the usual serial KMC
algorithm. In particular, as shown in Fig. 12, there is essen-
tially perfect agreement between the synchronous sublattice
results for the fractal model with system sizeL=256,
D /F=105, andNx=16–256 and the corresponding serial re-
sults. However, for the smallest processor sizesNx=8d there
is approximately a 2% difference between the synchronous
sublattice results for the peak island densityN and the cor-
responding serial resultssalthough there are no differences in
the monomer densityN1d. In order to compare these effects
with those of finite system size, in Figs. 12scd and 12sdd we
also show the corresponding serial results for systems of size
Nx=8–256 andNy=256. As can be seen, the finite-size ef-
fects which occur for small system size are much larger than
those due to finite processor size. This indicates that the ef-
fects of finite processor size are both qualitatively different

as well as much weaker than those due to finite-system size.
We now consider these finite-size effects in somewhat

more detail. While a variety of length scalesssuch as the
typical mound or feature size in multilayer growthd may oc-
cur in the models studied here, there is onedynamicallength
scale corresponding to the “diffusion length9 lD se.g., the
typical distance a monomer may diffuse before being cap-
turedd which plays a particularly important role. In particular,
the diffusion length may be written in terms of the peak
submonolayer island density, i.e.,lD,Npk

−1/2. Since in the
synchronous sublattice algorithm, particles which diffuse
outside the active sublattice are no longer active during that
cycle, we conjecture that for sublattice sizessNx/2d which
are smaller than the diffusion lengthlD, finite-size effects
may occur. For the fractal model studied here, one has
Npk,sD /Fd−1/3, which implies lD,sD /Fd1/6, e.g., the
diffusion length increases slowly with increasingD /F. As
shown in Fig. 13, by measuring the peak island density for
D /F=105, we obtainlD.11, which implies a critical proces-
sor sizeNx given by Nx=2 lD.22. This result is in good
agreement with the observation of the onset of significant
finite-size effects forNx,16.

Also shown in Fig. 13 are similar results for the edge-
diffusion model withD /F=105 andre=0.1. In this case, the
diffusion length is slightly higher than for the fractal model.
However, again there are no finite-size effects forNx.2lD.
Similar results have also been obtained for the reversible
one-bond detachment model, as well as a reversible bond-
counting modelsnot shownd. In all cases, we find that there
are no differences between the serial results and the parallel
KMC results as long asNx.2lD. In contrast, forNx,2lD,
noticeable but weak finite-size effects are observed.

FIG. 12. Finite-size effects in parallel and serial simulations of
the fractal model withD /F=105. Parallel simulationssaveraged
over 200 runsd are for system sizeL=256 with processor sizes
Nx=8,16,32,64, and 128 andNy=256. Serial simulationssaver-
aged over 500 runsd are for system sizeNx3256.

FIG. 13. Diffusion lengthlD=Npk
−1/2 in parallel and serial simu-

lations of the fractal models200 runsd and the edge-diffusion model
s100 runsd with D /F=105 andT=1/D sopen symbolsd. All simula-
tions are for system sizeL=256 with processor sizesNx=8, 16, 32,
64, 128, and 256 andNy=256. Horizontal dashed lines correspond
to error bars for serial simulations.

SEMIRIGOROUS SYNCHRONOUS SUBLATTICE… PHYSICAL REVIEW B 71, 125432s2005d

125432-9



While these results are for a cycle lengthT=1/D given by
the inverse of the fastest hopping rate, for a smaller cycle
length we expect that the critical processor sizeNx corre-
sponding to finite-size effects will be significantly reduced.
As shown in Fig. 13sfilled symbolsd for the fractal model
with cycle lengthT=1/s6Dd, the critical processor sizeNx is
significantly smaller than the diffusion lengthlD. However,
for such a reduced cycle length, the parallel efficiency is also
significantly reduced due to communication overhead and
fluctuations.

As a further test of both the parallel efficiency and finite-
size effects in the SL algorithm, we have carried out
multilayer simulations of the reversible model atT=300 K,
with system sizeL=1024, D /F=105, E1=0.1 eV, and an
Ehrlich-Schwoebel barrier to interlayer diffusion given by
Eb=0.07 eV. In our simulations, particles freshly deposited
near step-edges are assumed to “cascade” randomly to the
nearest-neighbor sites belows“knockout”d. Figure 14sad
shows serial resultsssolid lined for the rms surface height
fluctuationsssurface widthd and monomer density up to 500
ML along with the corresponding parallel results obtained
using the SL algorithm with processor sizesNy=1024 and
Nx=64, 128, and 256 corresponding toNp=16, 8, and 4,
respectively. As can be seen, there is no difference between
the serial and parallel results even though the typical mound
size of approximately 100 lattice unitsfsee Fig. 14sbdg is
significantly larger than the smallest sublattice size
Nx/2=32. This indicates that the relevant length scale deter-
mining the existence of finite-size effects in the SL algorithm
is indeed the diffusion lengthlD and not the characteristic
feature size. Since in these simulations the total system size
L was fixed, the parallel efficiency may be written

PE=
t1p

NptNp

, s12d

wheret1p is the calculation time for a serial simulation of the
entire system. Since the processor size decreases with in-
creasingNp, both the relative magnitude of event fluctuations
and the overhead due to communication latency will also
increase. As a result, the parallel efficiency decreases with
increasingNp rather than saturating as in the case of fixed
processor size. The parallel efficiencies obtained in these
simulations were 92%sNp=4d, 85% sNp=8d, and 70%
sNp=16d, respectively.

IV. DISCUSSION

We have developed and tested a synchronous sublattice
sSLd algorithm for parallel kinetic Monte Carlo simulations.
In our algorithm, the maximum cycle lengthT is given by
the inverse of the fastest diffusion rate. For sublattice sizes
which are smaller than the diffusion lengthlD, weak finite-
size effects are observed which lead to deviations from the
results obtained using a serial algorithm. However, for sub-
lattice sizes larger than the diffusion lengthlD, the results
obtained are identical to those obtained in serial simulations.
Since in many systems of interest the diffusion length is
typically relatively smallse.g., of the order of a few to a few

tens of lattice spacingsd while significantly larger system
sizes are needed to avoid finite system-size effects, the SL
algorithm should provide a useful, efficient, and accurate
method to carry out parallel KMC simulations of these sys-
tems.

We have also measured the parallel efficiency of the SL
algorithm as a function of the number of processorsNp for
fixed processor size. Because the SL algorithm is synchro-
nous, the parallel efficiency is affected by fluctuations in the
number of events in different processors over a given cycle.
However, because only local communications are required,
these fluctuations saturate as the number of processors in-

FIG. 14. sad Comparison between serial and parallel results for
reversible model withL=Ny=1024, D /F=105, E1=0.1 eV, and
Eb=0.07 eV sNp=L /Nxd. sbd Gray-scale plot of 5123512 portion
of system atu=500 ML.
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creases. As a result, linear scaling behavior for the total
speedup as a function of the number of processors is ob-
served, e.g., the parallel efficiency is independent of the
number of processors in the largeNp limit.

For the simple models we have studied here, the calcula-
tion time for a single event such as diffusion or deposition is
significantly smaller than the latency time for nearest-
neighbor communication. As a result, the parallel efficiency
increases with processor size, since the communications
overhead per event are reduced by the increased number of
events in a cycle. However, even for relatively modest pro-
cessor sizes, we have obtained reasonable values for the
asymptotic parallel efficiencyPE ranging from 50% for the
fractal model withD /F=105 and Nx=Ny=256, to 70% for
the fractal model withNx=256, Ny=1024. For the slightly
more complicated edge-diffusionsECd model, for which the
number of events per cycle is larger, significantly larger ef-
ficiencies are obtained for the same processor size, e.g., 60%
for Nx=Ny=256 andD /F=105. Similarly, for the reversible
model, we have obtained a parallel efficiencyPE.70% for
the same effective processor sizesNx=64,Ny=1024d with
Np=16.

We have also studied the effects of fluctuations on the
parallel efficiency in our simulations. In particular, we found
that the relevant relative fluctuationskDSstdl /nav scale as one
over the square root of the processor sizefsee Eq.s11d and
Fig. 6g. By taking into account the effects of fluctuations and
communication delays, calculated parallel efficiencies were
obtained which are in excellent agreement with those ob-
tained in our simulations. In addition, by measuring the rel-
evant fluctuations, we have been able to predict the maxi-
mum possible theoretical efficiencies in the absence of
communication delays. For example, for the fractal and
edge-diffusion models withD /F=105 and Nx=Ny=256,
maximum theoretical parallel efficiencies of 80% and 90%,
respectively, were obtained.

Since increasing the processor size decreases the effects
of fluctuations as well as communications overhead, the par-
allel efficiency may be further increased by increasing the
processor size. Alternatively, in simulations on machines
with faster communicationsssuch as shared memory ma-
chinesd or in simulations of more complicated KMC models
for which the calculation time is significantly largerfsuch as
self-learning KMCsRef. 21d or accelerated dynamics29g, ef-
ficiencies approaching these values may be possible even
without increasing the processor size.

It is worth noting that in our simulations we have used
two slightly different definitions for the parallel efficiency. In
the first definitionfEq. s1dg, the parallel execution time was
compared with the serial execution time of a system whose
size is the same as a single processor. In contrast, in the
second definitionfEq. s12dg the parallel execution time was
directly compared with 1/Np times the serial execution time
of a system whose total system size is the same as in the
parallel simulation. If the serial KMC calculation time per
event is independent of system size, then there should be no
difference between the two definitions. However, in general
this may not be the case. For example, in KMC simulations
in which the rates for all events are stored separately, the
calculation time per event will increase asM1/2 swhere

M =LxLy is the system sized using the Maksym algorithm4

and as logsMd using a binary tree algorithm.6 In this case, the
parallel efficiency calculated using Eq.s12d may be signifi-
cantly higher than that obtained using Eq.s1d, and may even
be larger than 1, since the division of a system into smaller
subsystems may reduce the calculation time per event per
processor.

Since in the models studied here we have used lists for
each type of event, rather than the “partial-sum” algorithms
described above, we would expect the serial calculation time
per event to be independent of system size, and thus the two
definitions of parallel efficiency should be equivalent. To test
if this is the case, we have calculated the serial simulation
time per event for the fractal model forD /F=103 and
D /F=105 for a variety of system sizes ranging fromL=64 to
L=2048. Somewhat surprisingly, we found that the serial
calculation time per event increases somewhat with increas-
ing processor size. In particular, an increase of approxi-
mately 50% in the calculation time per event was obtained
when going from a system of sizeL=64 to L=2048. We
believe that this is most likely due to memory or “cache”
effects in our simulations. This increase in the serial calcu-
lation time per event with increasing system size indicates
that the calculated parallel efficiencies shown in Fig. 11
would actually be somewhat larger if the more direct defini-
tion of parallel efficiencyfEq. s12dg were used. However,
since for largeNp this requires serial simulations of very
large systems, the first definitionfEq. s1dg was used.

It is interesting to compare our sublattice algorithm with
the algorithm previously developed by Haideret al.20 In the
SL algorithm, we avoid conflicts by using sublattices, while
periodic synchronization is enforced by the use of blocking
communications at the end of a cycle. In contrast, in the
algorithm of Haideret al.,20 sublattices are not used and so
two processors may simultaneously modify the same site or
sites within the boundary region. In an attempt to correct the
resulting discrepancies but still maintain computational effi-
ciency, each processor initiates a nonblocking receive to
check for any boundary-event messages from its neighboring
processors after every event as well as a nonblocking send
immediately after performing a boundary event. Since the
times for receipt and sending of these messages do not nec-
essarily correspond to the simulation times, time ordering
can be violated at the boundaries. As in the SL algorithm,
periodic synchronization is used to enforce consistency be-
tween the boundary region of one processor and that of its
neighbor and thus stop errors from propagating.

While both algorithms may provide an accurate descrip-
tion of the dynamics when coarse-grained over times signifi-
cantly longer than a cycle, neither algorithm corresponds to
the exact time evolution. For the SL algorithm this is clear,
since while one sublattice proceeds, the other sublatticessd
are frozen during each cycle. In the algorithm of Haideret
al.,20 this is less evident since each processor can continu-
ously update its entire region using the information available
during each cycle. However, as already noted in Ref. 20,
communication delays can lead to errors. Furthermore, what
is important is not the “real time” of an event but rather its
“virtual” or “simulated” time. Since this is not taken into
account in the algorithm of Haideret al.,20 this leads to an
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additional source of “short time-scale” errors even in the
absence of communication delays. Finally, we note that even
if the algorithm of Haideret al.20 were significantly modified
such that the local minimum condition were enforced for the
virtual times of all eventssincluding nonboundary eventsd,
the resulting “conservative” asynchronous algorithm is still
not rigorous, as noted in the Introduction, since the time for
an event already executed by a processor may change due to
events which propagate across processors.

We now compare the accuracy of both algorithms in
simulations of thin film growth. In the SL algorithm de-
scribed here, the cycle time is chosen according to the pre-
scription T=1/Rmax, whereRmax is the fastest possiblesdif-
fusived single-event rate in the KMC table. Such a
“conservative” choice of cycle time ensures that atoms near a
boundary will on average only make one move into the
“ghost” region in a given cycle, thus allowing the next sub-
lattice to “catch up” in the next iteration. As we have shown,
such a choice leads to results which are identical except for
the smallest processor sizes, to serial results for a wide vari-
ety of models ranging from the nonequilibrium “fractal”
model to the “reversible” model. In contrast, in the algorithm
of Haideret al.,20 the cycle timeT is chosen according to the
more complicated prescriptionT=sNx/2rd / fsRmin+FdNxNy

+dg involving the slowest possiblesdiffusived event rate in
the KMC tableRmin as well as the processor dimensionsNx,
Ny, the range of interactionr, andd, which is a small con-
stant introduced in Ref. 20 to keep the cycle lengthT finite
“at the extreme condition of zero flux and substrate tempera-
ture.” We note that the origin of this expression is not clear.
Furthermore, as noted in Ref. 20, such a prescription needs
to be modified to handle the “fractal” case studied here in
which free adatoms dominate the mobility.

It is also interesting to compare the parallel efficiency
obtained using the SL algorithm with that obtained using the
algorithm of Haideret al.20 for the GaAs growth model stud-
ied in Ref. 20. In simulations of this model atT=800 K with
Nx=Ny=400 andF=1 ML/s, Haideret al. obtained parallel
efficiencies ranging from 0.1 forNp=2 to 0.9 for Np=16.
The apparent increase in the PE with increasingNp is due to
the fact that the less-efficient Maksym algorithm4 was used

in Ref. 20 for selecting events along with Eq.s12d for the PE.
If the more efficient “list” method had been used to select
events along with Eq.s1d, then the parallel efficiencies would
have been significantly smaller. For comparison, in simula-
tions using the SL algorithm and Eq.s1d for the PE, we
obtained parallel efficiencies ranging from 1.0 forNp=2 to
0.94 for Np=16. However, if the Maksym algorithm had
been used in these simulations along with Eq.s12d for the
PE, then the calculated PE would have been significantly
larger than 1. Thus, the SL algorithm leads to parallel
efficiencies which are significantly higher than obtained
using the algorithm of Haideret al.20 We note that the
main reason for the relatively high parallel efficiencies ob-
tained in these simulations is the relatively low value ofD /F
sD /F.73103d which leads to a relatively large monomer
density and number of events per cycle, thus significantly
reducing the overhead due to communications latency as
well as the effects of fluctuations.

Finally, we return to the general question of the applica-
bility and validity of the SL algorithm. In general, we expect
that for a wide class of nonequilibrium processes there exists
a clearly defined diffusion lengthlD, which may or may not
vary slowly with time. For these processes we expect that
finite-size effects will not occur as long as the sublattice size
is larger thanlD. Furthermore, as long as this length scale is
not too large compared to the desired system size, parallel
simulations using the SL algorithm will be advantageous. As
our results indicate, parallel KMC simulations using the syn-
chronous sublattice algorithm are in general likely to be sig-
nificantly faster than either the hybrid version of the conser-
vative asynchronous algorithm or the synchronous relaxation
algorithm. As a result, we expect that the synchronous sub-
lattice algorithm may be particularly useful as a means to
carry out a variety of parallel nonequilibrium simulations.
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