
Recent advances in parallel kinetic Monte

Carlo: synchronous sublattice algorithm

Y. Shim and Jacques G. Amar

Department of Physics & Astronomy, University of Toledo, Toledo, OH 43606

Abstract. An efficient, semi-rigorous synchronous algorithm for parallel kinetic
Monte Carlo simulations is presented. The accuracy and parallel efficiency are stud-
ied as a function of processor size, number of processors, and the ratio D/F of
monomer hopping rate (D) to deposition rate (F) for two different simple mod-
els of epitaxial growth. Since only local communication is required, the algorithm
scales, i.e. for a large number of processors the parallel efficiency is independent of
the number of processors.

1 Introduction

While kinetic Monte Carlo (KMC) is an extremely efficient method [1–4]
to carry out dynamical simulations of stochastic and/or thermally activated
processes when the relevant activated atomic-scale processes are known, the
standard KMC algorithm is inherently a serial algorithm since only one event
can occur at each step and its next event time is determined by the total
overall rate for all processes to occur. However, for some problems one needs
to simulate larger length and time-scales than can be simulated using a serial
algorithm. Thus, it would be desirable to develop efficient parallel kinetic
Monte Carlo algorithms so that many processors can be used simultaneously
in order to carry out simulations over extended time- and length-scales.

Unlike KMC, the attempt time in Metropolis Monte Carlo (MMC) [5] is
independent of system configuration and thus, an asynchronous “conserva-
tive” algorithm may be used [6–9]. In such an algorithm all processors whose
next attempt time is less than their neighbor’s next attempt times are allowed
to proceed. Unfortunately such a “conservative” algorithm does not work for
kinetic Monte Carlo. Since fast events may “propagate” across processors, the
time for an event already executed by a processor may change due to earlier
events in nearby processors, thus leading to an incorrect time evolution. One
may also consider a hybrid version of the conservative asynchronous algo-
rithm which has been developed by Lubachevsky [7] in the context of Ising
simulations. In this algorithm, “n-fold way” [1] simulations are carried out in
the interior of each processor, while Metropolis Monte Carlo simulations are
carried out at the boundary. Although the presence of the boundary regions
leads to a correct time evolution in a processor, because of the possibility of
significant rejection of boundary events, the parallel efficiency may be very

low for problems with a wide range of rates for different processes. In addi-
tion, due to the asynchronous nature of the algorithm, the parallel efficiency
is further reduced by the complexity involved in data taking.

In order to address these problems, we present a simple synchronous sub-
lattice (SL) algorithm for parallel kinetic Monte Carlo simulations. While the
SL algorithm is not rigorous, we find that using certain reasonable assump-
tions on the cycle length and processor size, the results obtained are identical
to those obtained in serial simulations and in particular, the algorithm is very
efficient. We also find that the parallel efficiency is essentially independent of
the number of processors in the large Np limit, thus leading to linear scaling.

2 Synchronous Sublattice AlgorithmA BC D A BC D A BC DA BC D A BC D A BC DA BC D A BC D A BC D
(a) N N

L A B A B A BN x N y(b)
Fig. 1. Two possible methods of spatial and sublattice decomposition. (a) square
sublattice decomposition (9 processors) and (b) strip sublattice decomposition (3
processors). Solid lines correspond to processor domains while dashed lines indi-
cate sublattice decomposition. Dotted lines in (a) and (b) indicate “ghost-region”
surrounding central processor.

In the synchronous sublattice (SL) algorithm, different parts of the sys-
tem are assigned via spatial decomposition to different processors. However,
in order to avoid conflicts between processors due to the synchronous nature
of the algorithm, each processor’s domain is further divided into different
regions or sublattices (see Fig. 1). At the beginning of a cycle each proces-
sor’s local time is initialized to zero. One of the sublattices is then randomly
selected so that all processors operate on the same sublattice during that cy-
cle. Each processor then simultaneously and independently carries out KMC
events in the selected sublattice until the time of the next event exceeds the
time interval T . As in the usual serial KMC, each event is carried out with
time increment ∆ti = − ln(ri)/Ri where ri is a uniform random number
between 0 and 1 and Ri is the total KMC event rate. Each processor then
communicates any necessary changes (boundary events) with its neighboring
processors, updates its event rates and moves on to the next cycle using a

new randomly chosen sublattice. Sublattice selection can be carried out by
seeding all processors with the same random number generator so that they
all independently select the same sublattice for each cycle. By picking the
cycle length T less than or equal to the average time for the fastest possi-
ble activated event we do indeed obtain results which are identical to those
obtained in serial KMC except for very small sublattice sizes.

3 Results

In order to test the performance and accuracy of our synchronous sublattice
algorithm, we have studied two different solid-on-solid (SOS) growth models
on a square lattice: a “fractal” growth model and an edge-and-corner diffusion
(EC) model with periodic boundary conditions. In the “fractal” model [10],
atoms (monomers) are deposited onto a square lattice with deposition rate F ,
diffuse to nearest-neighbor sites with hopping rate D and attach irreversibly
to other monomers or clusters via a nearest-neighbor bond. The EC model
is the same as the fractal model except that island relaxation is allowed, i.e.
atoms which have formed a single nearest-neighbor bond with an island may
diffuse along the edge of the island with diffusion rate De = reD and around
island-corners with rate Dc = rcD.

For the fractal model, the range of interaction corresponds to one nearest-
neighbor (lattice) spacing, while for the EC model it corresponds to the next-
nearest-neighbor distance. Thus, for these models the width of the “ghost-
region” corresponds to one lattice-spacing. If a particle diffuses from the
boundary region of a processor into its ghost-region during a cycle, then that
particle is no longer free to move during that cycle. We have carried out
both serial serial and parallel simulations using the Itanium clusters at the
Ohio Supercomputer Center (OSC) as well as on the Alpha cluster at the
Pittsburgh Supercomputer Center (PSC).

Fig. 2 shows a comparison of parallel and serial results for the fractal
model with D/F = 105 and a square system of size L = 256. The parallel
simulations were carried out using a square sublattice decomposition with
processor sizes N = 32, 64 and 128 corresponding to Np = 64, 16, and 4
respectively, where Np is the number of processors. In particular, Fig. 2(a)
shows the substrate monomer and island densities as a function of coverage
θ, while Fig. 2(b) shows the surface width as a function of coverage. As can
be seen, there is no difference within statistical error between the serial and
the parallel results.

We define the parallel efficiency PE as equal to the ratio of the execution
time t′

1p for an ordinary serial simulation of one processor’s domain to the
parallel execution time tNp

of Np domains using Np processors,

PE =
t′
1p

tNp

(1)

0 . 20 . 30 . 40 . 50 . 6
0 1 2 3 4 5

width
c o v [M L]

(b)
1 0 (51 0 (41 0 (31 0 (2

1 0 (4 1 0 (3 1 0 (2 1 0 (1 1 0 0s e r i a lN = 1 2 8N = 6 4N = 3 2D ensiti es
c o v [M L]

M o n o m e r
I s l a n d

(a) L = 2 5 6

Fig. 2. Comparison between serial and parallel results using synchronous sublattice
algorithm with square decomposition (L = N ×Np) for fractal model with D/F =
105.

Thus, the overall “performance factor” of the parallel simulation (e.g. boost
in events/sec over a serial simulation) is given by the parallel efficiency mul-
tiplied by the number of processors Np.

Fig. 3 (a) shows the corresponding results (symbols) for the parallel effi-
ciency as a function of the ratio D/F . Results are shown for parallel KMC
simulations with Np = 4 of a square system with system size L = 1024. As
can be seen, for D/F ≤ 106, the parallel efficiency for the strip geometry is
greater than 50% due to the decreased communication overhead. However,
with increasing D/F the parallel efficiency decreases significantly since the
decrease in the number of events per cycle leads to an increase in the com-
munications overhead as well as in the relative fluctuations. Also shown in
Fig. 3 (a) (dashed lines) is the calculated parallel efficiency. As can be seen,
there is good agreement between the measured and calculated results (for de-
tail, see Ref.[11]). Fig. 3 (b) shows the update rate per second as a function
of Np. There is a roughly linear speedup of the performance with increas-
ing number of processors Np. Due to the decreased communication cost, the
speed-up using the strip geometry is significantly higher than for the square
decomposition.

As we have already shown (see Figs. 2), for sublattice sizes which are not
too small, there is perfect agreement between the synchronous sublattice re-
sults and the corresponding serial results. However, for very small processor
sizes there exists a small “finite-size” effect which leads to results which are
slightly different from those obtained using the usual serial KMC algorithm.
In particular, as shown in the inset of Fig. 4 (a), there is essentially perfect
agreement between the synchronous sublattice results for the fractal model
with system size L = 256, D/F = 105, and Nx = 16 − 256 and the cor-
responding serial results. However, for the smallest processor size (Nx = 8)
there is approximately a 2% difference between the synchronous sublattice

00 . 20 . 40 . 60 . 8 1
1 0 3 1 0 4 1 0 5 1 0 6 1 0 7S q u a r e s u b . (N = 5 1 2)S t r i p s u b . (N x = 2 5 6 N y = 1 k)parall el effi ci ency

D / F
(a)

02 0 04 0 06 0 08 0 0
0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0

S q u a r e : N = 5 1 2S t r i p : N x = 2 5 6 N y = 1 0 2 4
upd at e/ sec[x105]

N p
(b)

Fig. 3. (a) parallel efficiency for fractal model with Np = 4 (θ = 1 ML) as function
of D/F and (b) parallel efficiency (symbols) as function of number of processors
Np for fractal model with D/F = 105.

results for the peak island density and the corresponding serial results al-
though there are no differences in the monomer density. As shown in Fig. 4
(a), similar results are obtained for the island size distribution Ns.

0 1 0 01 1 0 � 42 1 0 � 43 1 0 � 4
0 1 0 2 0 3 0 4 0 5 0

s e r i a lN x = 6 4N x = 3 2N x = 1 6N x = 8N s(£)
C l u s t e r s i z e s

L = 2 5 6 , D / F = 1 0 5´ = 0 . 2
(a)0 . 0 0 60 . 0 0 70 . 0 0 80 . 0 0 90 . 0 1 0 0 . 1 0 . 2 0 . 3I sl andd ensit y N x = 8N x = 1 6 Ò 2 5 6c o v [M L] 1 0 . 61 0 . 81 11 1 . 2

0 5 0 1 0 0 1 5 0 2 0 0 2 5 0 3 0 0
l D

N x
E d g e ã d i f f u s i o n m o d e lF r a c t a l m o d e lT = 1 / (6 D)2 l D

2 l D
(b)

Fig. 4. Finite-size effects in parallel and serial simulations for L = 256 with D/F =
105 and processor sizes Nx = 8, 16, 32, 64, and 128 and Ny = 256. (a) Island size
distribution as a function of cluster size s and the inset shows island density as a
function of coverage and (b) diffusion length as a function of Nx for fractal and EC
models with re = 0.1 and rc = 0.

There is one dynamical length scale corresponding to the “diffusion length”
lD which plays a particularly important role. The diffusion length may be

written in terms of the peak submonolayer island density, i.e. lD ∼ N
−1/2

pk .
We find that for a variety of models we studied, there are no finite-size ef-
fects for Nx > 2lD which can be considered as critical processor size. By

measuring the peak island density for D/F = 105 shown in the inset of Fig.
4, we obtain lD ≃ 11 which implies a critical processor size Nx given by
Nx ≃ 2 lD ≃ 22. This result is in good agreement with the observation of the
onset of significant finite-size effects for Nx < 16. We also find similar results
for the edge-diffusion model with D/F = 105 and re = 0.1 and rc = 0. For
a smaller cycle-length we expect that the critical processor size Nx corre-
sponding to finite-size effects will be significantly reduced. As shown in Fig.
4 (filled symbols) for the fractal model with cycle length T = 1/(6D), the
critical processor size Nx is significantly smaller than the diffusion length
lD. However, for such a reduced cycle length, the parallel efficiency is also
significantly reduced.

4 Conclusion

In our algorithm, the maximum cycle length T is given by the inverse of the
fastest diffusion rate. For sublattice sizes which are smaller than the diffusion
length lD, weak finite-size effects are observed which lead to deviations from
the results obtained using a serial algorithm. However, for sublattice sizes
larger than the diffusion length lD, the results obtained are identical to those
obtained in serial simulations. Since in many systems of interest the diffusion
length is typically relatively small while significantly larger system sizes are
needed to avoid finite system-size effects, the sublattice algorithm should
provide a useful, efficient, and accurate method to carry out parallel KMC
simulations of these systems. Since only local communication is required, the
algorithm scales, i.e. for a large number of processors the parallel efficiency
is independent of the number of processors.

References

1. A.B. Bortz, M.H. Kalos, and J.L. Lebowitz, J. Comp. Phys. 17, 10 (1975).
2. G.H. Gilmer, J. Crystal Growth 35, 15 (1976).
3. A.F. Voter, Phys. Rev. B 34, 6819 (1986).
4. J.L. Blue, I. Beichl, and F. Sullivan, Phys. Rev. E 51, R867 (1995).
5. N.C. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, and E.

Teller, J. Chem. Phys. 21, 6 (1953).
6. K.M. Chandy and J. Misra, IEEE Trans. Software Eng. 5, 440 (1979); J. Misra,

ACM Comput. Surv. 18, 39 (1986).
7. B.D. Lubachevsky, Complex Systems 1, 1099 (1987); J. Comput. Phys. 75,

103 (1988).
8. G. Korniss, Z. Toroczkai, M.A. Novotny, and P.A. Rikvold, Phys. Rev. Lett.

84, 1351 (2000).
9. G. Korniss, M.A. Novotny, H. Guclu, Z. Toroczkai, and P.A. Rikvold, Science

299, 677 (2003).
10. J.G. Amar, F. Family, and P.-M. Lam, Phys. Rev. B 50, 8781 (1994).
11. Y. Shim and J. G. Amar, Phys, Rev. B (accepted)

(http://lanl.arXiv.org/abs/cond-mat/0406379).

