
Parallel Kinetic Monte Carlo Simulations on a Shared Memory

Multiprocessor System

Travis Smith∗

Advisor: Dr. Jacques G. Amar

Department of Physics & Astronomy

University of Toledo, Toledo, OH 43606

(Dated: August 7, 2003)

Abstract

In order to simulate non-equilibrium processes over larger time scales and for realistic size sys-

tems, it is desirable to use parallel computing. Unfortunately, the standard algorithm for simulating

activated processes, kinetic Monte Carlo (KMC), is inherently serial and thus only suitable for use

with a single processor. Recently, however, our group has developed parallel (KMC) algorithms

which have been successfully tested on a Beowulf cluster using Message Passing Interface (MPI)

Application Program Interface (API). Due to the lack of communication overhead such algorithms

should be even more efficient on shared-memory machines. As a first step in investigating this

possibility, I have been developing a parallel KMC code to simulate one-dimensional irreversible

epitaxial growth on a shared memory machine using OpenMP. We have verified and tested this

code on the Sunfire and Origin 2000 computers at the Ohio Supercomputer Center (OSC) using

multiple processors. Unfortunately, so far we have not obtained a significant speed increase using

this method. However, we believe that this is not due to a fundamental limitation in the algorithm

but rather to computational and/or compiler limitations. In the near future, we hope to increase

the parallel efficiency of our code so that it can then be applied to more complex and realistic

problems.

∗Electronic address: tsmith2@physics.utoledo.edu

1



I. INTRODUCTION

The simulation of non-equilibrium processes such as irreversible epitaxial thin film growth

is a useful tool in understanding the process of crystal growth. There is a computational

limit on the complexity and size of a system that can be simulated in a reasonable amount

of time. To overcome this limit and explore the area of thin film growth in more detail it

is useful to examine multiprocessor computing. To reduce the computational time required

to run these simulations two major types of multiprocessor systems are being explored by

my group: shared memory and distributed memory machines. Shared memory machines

are also known as symmetric multiprocessor (SMP) systems. Distributed memory machines

are mostly called beowulf clusters because of the cost effectiveness of such implementations

(due to being made completely of off-the-shelf parts). Beowulf clusters are a large bunch of

computers all networked together and the addition of any computer, or node, to a cluster

only requires a network interface and the installation of the required software. This leads

to a very versatile and cost effective system. While they are much more scalable than SMP

machines but require extra time to communicate. Scalability is something SMP machines

lack because all of the processors must be identical and are not made from off-the-shelf

parts. The use of beowulf clusters for these simulations is outside the scope of this paper

but has been researched by my group. However, the use of SMP machines will be discussed

in greater detail.

II. KINETIC MONTE CARLO

Kinetic Monte Carlo (KMC) is used for Markov processes or activated events. KMC is

faster than Metropolis Monte Carlo (MMC, which was developed in 1949 by Metropolis and

Ulam) since MMC events are only accepted with a finite probability based upon the rate

of the event. In contrast KMC accepts the next event with an acceptance probability of 1.

Monte Carlo simulations in general are an excellent way to solve computational problems

and have a wide range of uses outside of the regime of physics and mathematics.

Thin film growth has some inherent randomness to the particle movements and so using

KMC makes a sensible choice in this simulation. With KMC there is no waiting around for

the next event to happen, the event is selected and the system time is updated accordingly.

2



The time interval is ∆t = −
ln r

Rtotal

where r is a uniform random number on the interval [0, 1)

and Rtotal is the total rate of the local system. We get this equation from Markov processes.

After updating the system time and completing the event the next event is then selected,

the system time updated, and this continues until the ending conditions are met. Often this

is until a given number of monolayers have been deposited in the system.

III. MODEL

We have used OpenMP to simulate a simple one-dimensional model of irreversible growth

on a square lattice. In our model, particles are deposited randomly with rate F per site

per unit time while monomers diffuse with hopping rate D. Whenever a diffusing monomer

encounters another monomer as nearest-neighbor, the two particles are irreversibly bonded

and form a stable dimer. Similarly, a monomer will irreversibly attach to an island if any

particle of that island is its nearest-neighbor. Monomers deposited on top of islands also

diffuse with rate D.

At each point of a KMC simulation, the type of event (i.e. deposition or diffusion) is

chosen by calculating the ratio P of the total diffusion rate (corresponding to the number

of monomers times the hopping rate D) to the total rate for all events including deposition.

A uniform random number r between 0 and 1 is then generated. If r ≤ P , then a diffusion

move is selected, and conversely if r > P , then a deposition move is selected.

IV. OPENMP

OpenMP [http://www.openmp.org] is a standard that is used to run programs in parallel

on shared memory, or symmetric multiprocessing, machines. Directives are added into the

source code that tells the special compiler how to make the code run in such a manner

that allows use of more than one processor. These changes only describe when the program

starting running in parallel. By using OpenMP a program runs normally until it is told to

break off into separate threads owned by different processors.

We created a test program to verify that OpenMP on SMP machines did scale properly.

Our results (as seen in Table I) show that OpenMP does in fact scale. The total CPU time

stays the same while the wall time or length of time you wait for the simulation to complete

3



scales as 1

NCPUs
.

TABLE I: OpenMP Run Times for Test Program

Number of Processors 1 2 4

Wall Time 29 s 15 s 7.5 s

Total CPU Time 29 s 30 s 30 s

V. SYNCHRONOUS KMC ALGORITHM

For our model of irreversible one-dimensional growth, our Synchronous KMC algorithm

is not difficult to implement. For a system with N processors, the system to be simulated

is broken up into N equal parts with each part being controlled by one of the processors.

Each part of the lattice that is controlled by a processor is also broken up further into two

sublattices. Each sublattice is labeled with a 0 or a 1 and and is randomly selected at the

beginning of each cycle to be the same for all procesors. The length of each cycle corresponds

to a period Tmax which is determined by the rate of the fastest event in the system.

During each synchronous cycle each processor figures out the rates for each type of event in

its own sublattice. In our case there were only two types of events: diffusion and deposition.

All of the rates Ri are summed together as Rtotal. A time for the next event is generated

and added to the current local time: ∆t = − ln r

Rtotal

where r is a random number from zero to

one. If t is greater than Tmax then the event is rejected and we randomly select a sub-lattice

again. If t is less than Tmax then the probability of the first type of event happening is R1

Rtotal

and the probability of the second type of event occurring is R1+R2

Rtotal

and so on for each type

of event left.

Depositing is carried out by randomly selecting a site of the selected sublattice and

incrementing the height of that site by one. A routine to update the neighbors and make

sure that monomers are kept track of is then called. Diffusion works a bit differently. A list

of monomers, or walkers is kept. If a diffusion move is selected, then a walker is randomly

selected from the walker list and assigned a random direction. In more complex simulations

in two-dimensions with corner or edge diffusion a direction is often stored with the location

of the walker. For this simple one dimensional case this was not done. Again, once the

walker moves the area around the event is updated to ensure that the list of walkers is

4



complete and correct.

VI. RESULTS

We first wrote a serial code to emulate our parallel KMC algorithm for our 1D model of

irreversible growth. Excellent agreement was found between the usual serial KMC results

and our parallel emulation results. We then implemented a parallel version of our code by

using OpenMP on the Origin 2000 and Sunfire at the Ohio Supercomputer Center (OSC).

As can be seen in Fig. 1 using our OpenMP code we also found excellent agreement with

serial KMC results. However, unfortunately the code did not scale properly for the SMP

machines that we used (see Table II). In particular, the “wall time” did not decrease for fixed

system size with an increasing number of processors. The cause of this poor scaling is not

understood, but does not appear to be due to a defect in the algorithm, since other members

of our group have obtained good scaling using similar algorithms on Beowulf clusters using

MPI. Instead, we believe that it is due to some limitation of the implementation of OpenMP

or SMP machines that we do not yet understand.

TABLE II: OpenMP Run Times for Parallel KMC

Number of Processors 1 2 4

Wall Time 31.2 s 30.8 s 36.2 s

Total CPU Time 31.2 s 61.6 s 144.8 s

VII. FUTURE GOALS

In the near future, we hope to be able to understand and correct the scaling problem

with our OpenMP implementation so that we can carry out parallel KMC simulations of

this model as well as more complicated models. We also plan to use OpenMP to carry out

simulations using asynchronous KMC.

5



FIG. 1: Comparison of Parallel Code to known values for KMC Simluation

VIII. CREDITS AND THANKS

This work was supported by a grant from the National Science Foundation. We would

also like to thank the Ohio Supercomputer Center for a grant of computer time.

6


