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Abstract. A fully self-consistent rate-equation approach to irreversible sub-

monolayer growth is presented. This approach explicitly takes into account the

correlation between the size of an island and the corresponding average capture

zone. It is shown that this leads to capture numbers which depend explicitely on

the island-size, and excellent agreement with experimental and Monte Carlo results

is found for this size-dependency. Consequently, the predictions for the island-size

distributions are in very good agreement with Monte Carlo simulation results over

the whole range of coverages in the pre-coalescence regime.

1. Introduction

Molecular beam epitaxy (MBE) o�ers the possibility of atomic-scale con-

trolled production of thin �lms, high quality crystals, and nanostructures

[1]. In the submonolayer regime, the competition between nucleation, ag-

gregation, and coalescence of islands leads to a distribution of islands of

various sizes and morphologies which is experimentally measurable [2] and

provides detailed information about the kinetics of growth. In the last three

decades, considerable theoretical e�ort has been made toward understand-

ing and predicting the island size-distribution [3, 4, 5, 6, 7, 11, 12].

One of the standard tools used in such theoretical studies of submono-

layer growth is the rate-equation (RE) approach [3, 4, 13] which involves
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a set of deterministic, coupled reaction-di�usion equations describing the

time (coverage) dependence of average quantities via a set of rate-coeÆcients

usually called capture-numbers [3, 13]. The RE variables are the average

densities of monomers, N1, and of islands of size s � 2, Ns, where s is the

number of atoms in the island. For irreversible growth, a general form of

these equations may be written as,

dN1

d�
=  � 2N1 � 2R�1N

2

1 �RN1

X
s�2

�sNs (1)

dNs

d�
= RN1 (�s�1Ns�1 � �sNs) + ks�1Ns�1 � ksNs; for s � 2; (2)

where � is the coverage,  is the fraction of the substrate not covered by

islands, �s are the capture numbers, and ks are the rates of deposition on

top of existing islands. Here, the kinetic constant R = D=F is the ratio

of the di�usion constant D to the deposition ux F , where D = Dh=4

for the case of isotropic nearest-neighbor hopping with rate Dh on a two-

dimensional isotropic square lattice (respectively D = Dh=2 in the one-

dimensional case). The terms with �s describe the rate of monomer capture

by other monomers or by existing islands, while the terms with ks (where

ks = s2=df and df is the fractal dimension of the islands [7]) correspond to

the deposition of adatoms directly on islands of size s.

While simple mean-�eld choices for the capture numbers lead to cor-

rect predictions for the scaling behavior of the island and monomer den-

sities as a function of deposition ux and temperature [3, 5, 14], in order

to make quantitative predictions more accurate expressions for the rate-

coeÆcients should be used. Recently, Bales and Chrzan [7] have developed

a self-consistent RE approach which leads to quantitative predictions for

the average island and monomer densities in two-dimensional irreversible

growth. Similar results have also been obtained for one-dimensional growth

[12] as well as for reversible two-dimensional growth [8]. However, in all

cases the island-size distributionsNs are not correctly predicted. The reason

is that spatial and temporal correlations in the growth of islands [9, 10, 11]

are neglected in these approaches.

In this work we present a novel calculation scheme which captures the

essential correlations between the size of the island, the corresponding av-

erage capture zone, and the capture number. A second set of equations,

coupled to the usual rate equations, is used to describe the evolution of the

island-size dependent capture zones. The combined set of equations self-

consistently leads to size- and coverage-dependent capture numbers �s(�)

in good agreement with experimental [10] and kinetic Monte-Carlo (KMC)

simulation results [6]. Furthermore, numerical integration of the full rate-
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equations with these capture numbers leads to island-size distributions in

good agreement with KMC simulations.

2. Monomer Di�usion and Local Capture Numbers

In what follows we restrict the discussion to the case of two-dimensional

growth, but we note that the approach may be extended to one-dimensional

growth [15]. Two models extensively used in studies of submonolayer growth

[5, 6] are considered: a point-island model and an extended island model.

In the point-island model each island occupies just one lattice site (which

physically corresponds to islands growing only in a direction perpendicular

to the substrate), while in the extended-island model an island occupies a

number of lattice sites equal to its size s. The fraction of the substrate not

covered by islands is then given by  = 1 � � + N1 for extended islands

and by  = 1�N for point islands (where N =
P

s�2Ns is the total island

density).

In order to take into account the correlation between an island and its

local capture zone, we consider the following model for the environment

of an island. An island of size s is approximated by a circular region of

radius Rs = � s1=df , where � is a \geometrical" prefactor which accounts

for the circular approximation of the island area while the fractal dimension

df depends on the morphology of the island (here for extended islands we

consider only the case of compact shapes, i.e. df = 2). The area surrounding

the island is divided into an inner (Rs < r < Rex) and an outer region

(Rex < r < 1). The inner region corresponds to an \exclusion" zone

in which only monomers can be found. The area of the exclusion zone

Aex is assumed to be proportional to the area AV of the Voronoi polygon

surrounding the island, i.e. Aex = �AV where the factor � (typically larger

than 1) is assumed to be the same for all islands. Accordingly, the radius

of this zone is Rex =
p
� RV , where RV =

p
AV =� is the \radius" of

the Voronoi polygon. In the outer region, corresponding to r > Rex, we

assume a \smeared" uniform distribution of monomers and islands which

is independent of the size of the central island, as in Ref. [7].

This geometry naturally leads to the de�nition of a mean-�eld \nucle-

ation" length �1 = 1=
p
2�1N1 and to that of a monomer \capture" length

� = 1=
q
2�1N1 +

P
s�2 �sNs. In terms of these quantities, and de�ning

� = �1=�, one can follow the steps described in details in [7, 16] to obtain

the quasistatic di�usion equation satis�ed by the local monomer density,

r2n1 '
�
��2
1

(n1 � �2(N1=)); for Rs < r � Rex,

��2(n1 �N1=); for r > Rex.
(3)
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For the case of irreversible growth, the (isotropic) local monomer density

n1(r) must vanish at the island edge and must also match the average local

density (N1=) far away from the island (the renormalized value N1= is

due to the fact that the average local monomer density is actually larger

than the overall monomer density N1 by a factor of 1=). In addition, the

interior and exterior solutions must match at the exclusion zone boundary.

The general solution of Eq. (3) satisfying the boundary conditions above is

given by,

n1(r) =

�
N1

�
�2= + aI0 (r=�1) + bK0 (r=�1)

�
for Rs < r � Rex,

N1 [1= + c K0(r=�)] for Rex < r <1.
(4)

where the coeÆcients a, b, and c are determined by the boundary conditions

at the island edge and at the exclusion zone.

Equating the microscopic ux of atoms 2�RsD[dn1=dr]r=Rs at the edge

of the island to the corresponding macroscopic RE-like term DN1~�s(AV ),

one obtains the local capture number, ~�s(AV ),

~�s(AV ) =
2�Rs

�1

�
aI1

�
Rs

�1

�
� bK1

�
Rs

�1

��
: (5)

The size-dependent capture numbers �s needed in the rate-equations are

then computed by averaging the local capture numbers ~�s(AV ), Eq. (5),

over the distribution of Voronoi areas. De�ning Gs(�;AV ) as the number

density of Voronoi areas of size AV surrounding an island of size s at cov-

erage �, one can thus write,

�s(�) = h~�s(AV )iGs
�
P

AV
Gs(�;AV ) ~�s(AV )P
AV

Gs(�;AV )
(6)

where h: : :i
Gs

denotes the average with respect to the distributionGs(�;AV ).

3. Voronoi Area Distribution Evolution Equations

In order to use Eq. (6) to compute the capture numbers, one has to de-

termine the Voronoi-area distribution Gs(�;A). Taking into account the

change in the areas by nucleation and aggregation of islands, and ignoring

for the moment the break-up of Voronoi areas when new islands are nucle-

ated, one can write a general set of evolution equations for the functions

Gs(�;A) in the following form,

dG2(�;A)

d�
= (dN=d�) Æ(A�Aav)�RN1~�2(A)G2(�;A); (7)

dGs(�;A)

d�
= RN1 [~�s�1(A)Gs�1(�;A)� ~�s(A)Gs(�;A)] (s � 3): (8)
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The �rst term on the right side of (7) corresponds to nucleation of dimers

while the remaining terms in (7) and (8) correspond to growth of islands via

aggregation. It has been assumed that the Voronoi areas around the (new)

dimers nucleated at coverage � are equal to the average Voronoi area at

that coverage, Aav = 1=N . The break-up of larger areas due to nucleation,

neglected in (8), will be accounted for through a uniform rescaling to be

justi�ed a posteriori.

In principle, Eqs. (7) and (8) can be numerically integrated. However, if

the local capture number ~�s(A) has no explicit dependence on the island-

size s (as in the case of point islands), then an analytic solution can be ob-

tained. We therefore consider the mean-�eld approximation ~�s(A) ' ~�S(A)

(where S = (��N1)=N is the average island size). After changing the cov-

erage variable to xA =
R
�

�A
R N1(�) ~�S(A) d� (where 1=N(�A) = A de�nes

�A), (7) and (8) can be solved in closed form [15],

Gs(xA;A) = BA xs�2
A

e�xA=(s� 2)! (s � 2): (9)

In the aggregation regime Eq. (9) corresponds to a sharply peaked distri-

bution as a function of A whose peak position Âs satis�es

x
Âs

= s� 2; (10)

and, along with (6), one can approximate �s = ~�s(Âs).

Because the e�ects of break-up of Voronoi cells due to nucleation have

been neglected in (7) and (8), these areas must be rescaled so that the

average Voronoi area is equal to Aav = 1=N as described in detail in [15,

16] (in the case of extended islands additional geometrical corrections are

included ). Accordingly, the capture numbers are approximated by

�s = ~�s(A
0
s); (11)

where A0
s is the rescaled and corrected Âs.

4. Self-Consistency (Closure) Conditions

Because of the coupling between the evolution of the capture-zones dis-

tribution and that of the island densities, the local monomer density and

capture numbers must satisfy certain self-consistency conditions.

Since the parameters � and � are independent of the island size and

Voronoi areas, it is reasonable to use an approximation in which the Voronoi

areas surrounding islands of size s are replaced by their average values.

Denoting the average Voronoi area corresponding to an island of size s at

a given coverage � by As, this leads to the approximation �s = ~�s(As).
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The de�nition of the capture length � then leads to the capture number

self-consistency condition,

2�1N1 +
X
s�2

Ns~�s(As) = 1=�2: (12)

If nt
1
(As) denotes the total number of monomers in a Voronoi area of size As

surrounding an island of size s, then the self-consistency condition for the

monomer density corresponds to the requirement that the total monomer

density in the Voronoi polygons must be equal to the average monomer

density N1, i.e. X
s�2

Ns n
t

1(As) = N1: (13)

The general Eqs. (12) and (13) can be solved at any given coverage � for

two of the three unknowns �, � and �, once the third is known and once the

average Voronoi area As is known for all s [17]. The details are presented

elsewhere [15, 16], and in here we just note that the value � is �xed (� ' 0:3

for extended islands, respectively � ' 0:12 for point islands) such that the

monomer and total island density are correctly predicted.

5. Results

Before presenting the results, let us briey review the essential steps in the

calculations.

1) The functions �(�), �1(�), and �(�) are pre-calculated by using contracted

RE for the monomer and for the total island density as described in detail

in [15, 16].

2) The integration of the full rate-equations (1) and (2) starts at very low

coverage �0, with initial conditions N1(�0) = �0, and Ns(�0) = 0 for s � 2.

At low coverage, for which both the average island-size S and typical values

of xA are small, the average capture number �av = (1=�2�1=�2
1
)=N is used

in the island-density rate-equations.

3) At coverages such that the average island-size S is suÆciently large (we

chose as criterion S � 10) and the peak in the Voronoi-area distribution

Gs(�;A) is well-de�ned, the appropriate Voronoi-area evolution equation

results for �s are used as follows.

4) At the current coverage, Eq.(10) is solved at every s for the correspond-

ing Âs and the rescaled and corrected values A0
s are calculated.

5) The new capture numbers are obtained from �s = ~�s(A
0
s), i.e. Eq. (11),

and a new integration step is performed.

The coupled evolution of the island densities and capture zones deter-

mines self-consistently the capture numbers. As we have mentioned, pre-
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dicting the correct values of the capture numbers is crucial for calculation

of the island size-distribution. It is thus important to see how our results

compare with the measured capture numbers from KMC simulations [9]

or experiments [10]. Fig. 1 shows the rate-equations results (lines) for the

Figure 1. Scaled capture-number distributions �s=�av for point (top), respectively ex-
tended islands (bottom) as a function of the scaled island size (respectively, in insets, of
the scaled average capture zone).

scaled capture number distribution �s=�av as a function of the scaled island-

size for point (top) and extended (bottom) islands at Rh = 108 and 109

(Rh = Dh=F ). In both cases it can be seen that the scaled capture-number

distribution is essentially independent of coverage and weakly dependent

on Rh, but depends strongly on the scaled island-size. Also shown are KMC

simulation results (symbols) at � = 0:2 for Rh = 108 � 109 from Ref. [9]

(top panel) and the experimentally measured capture number distribution

for Cu/Co on Ru(0001) from Ref. [10](botom panel). As can be seen, there

is good agreement with the simulations and experiments (within statistical

uctuations), although for large s=S the RE results are slightly below the

measured distributions. Also, as shown by the insets, for As=Aav > 1 the
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capture numbers are to a good approximation linearly dependent on the

Voronoi areas, in agreeement with Ref.[9, 10].

Figure 2. Scaled island-size distribution for extended (left), respectively point islands
(right) calculated using RE's (solid lines), along with corresponding KMC results (sym-
bols).

Since the size- and coverage-dependence of the capture number are

correctly predicted by our approach, along with the average monomer

and island densities (not shown), it is not surprising that the island size-

distributions f(s=S) = NsS
2=� are also correctly predicted, as shown in

Fig. 2 for Rh = 108. For both cases the agreement between the RE pre-

dictions and the corresponding kinetic Monte Carlo simulation results is

very good. The dependence of the scaled island-size distribution on the is-

land morphology is also clearly indicated: the peak is somewhat higher and

shifted to the right for point islands in comparison with extended islands.

A small \overshooting" of the peak value for extended islands and a slight

shift in the peak position for point islands may be noted in our RE results,

both being most probable caused by the fact that the uniform rescaling of
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areas does not fully account for the neglect of the break-up in the area evo-

lution equations. Similar results (not shown) have been obtained for other

values Rh.

Our calculations may also be extended to the case of one-dimensional

growth for which the capture zones are represented by the \gaps" between

islands. For this case, as shown in detail elsewhere [15], the scaled capture

Figure 3. Scaled island-size distribution (top) for point-islands calculated using RE's
(solid lines), along with KMC (symbols) and MF results (dashed lines); corresponding
scaled average capture zone distribution (bottom).

numbers are basically equal to the scaled average capture zones. An ex-

ample of results obtained for one-dimensional growth is shown for the case

of point-islands in Fig. 3. As for the two-dimensional growth, there is very

good agreeement between the predicted and the KMC measured scaled av-

erage capture zones (bottom panel), which indicates that the scaled capture

rates are corectly predicted. As a consequence, the island size-distributions

(top panel) obtained are in very good agreement with KMC results, in con-

trast with the typical \divergent" behavior (dashed line) obtained using

the mean-�eld form �s = �av.

6. Summary and Discussion

We have presented a rate-equation theory of two-dimensional irreversible

submonolayer growth in which the existence of a capture zone with a uc-

tuating area around every island and the correlations between its average
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size and that of the island are explicitly taken into account. A general set of

evolution equations for the Voronoi-area distributions has been solved an-

alytically and the solution has been used to self-consistently determine the

size- and coverage-dependent capture numbers �s(�). The island-size de-

pendence of the capture numbers was found to be in good agreement with

simulation [9] and experimental [10] results. We note that the very good

agreement found between the resulting scaled island-size distributions and

KMC simulations suggests that the capture numbers �s depend essentially

on the corresponding average capture zone, and not on the details of the

capture zones distributions.
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