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Monte Carlo methods are algorithms
for solving various kinds of compu-
tational problems by using random
numbers (or rather, pseudorandom

numbers). Monte Carlo simulations play an impor-
tant role in computational science and engineering,
with applications ranging from materials science to
biology to quantum physics. They also play an im-
portant role in a variety of other fields, including
computer imaging, architecture, and economics.
Nicholas Metropolis suggested the name “Monte
Carlo”—in reference to the famous casino in
Monaco—in one of the first applications of the
Monte Carlo method in physics.1 Because of the
repetitive nature of a typical Monte Carlo algo-
rithm, as well as the large number of calculations in-
volved, the Monte Carlo method is particularly
suited to calculation using a computer.

Monte Carlo methods are particularly useful for
problems that involve a large number of degrees
of freedom. For example, deterministic methods
of numerical integration operate by taking several
evenly spaced samples from a function. While this

might work well for functions of one variable,
such methods can be very inefficient for functions
of several variables. For example, to numerically
integrate a function of an N-dimensional vector
(where N = 100) with a grid of 10 points in each
dimension would require the evaluation of 10100

points, which is far too many to be computed.
Monte Carlo methods provide a way out of this
exponential time increase: as long as the function
is reasonably well behaved, it can be estimated by
randomly selecting points in N-dimensional space
and then taking an appropriate average of the
function values at these points. By the central
limit theorem, this method will display 1/
convergence—that is, quadrupling the number of
sampled points will halve the error, regardless of
the number of dimensions. Another very impor-
tant application for Monte Carlo simulations is
optimization. The traveling salesman problem is
an example of an optimization problem that is
very difficult to solve using conventional methods,
but that might be approximately solved via Monte
Carlo methods. A variety of Monte Carlo meth-
ods such as stochastic tunneling,2 simulated
annealing,3 genetic algorithms,4 and parallel tem-
pering5 have been developed to handle such opti-
mization problems.

One of the first uses of Monte Carlo simulations
is described in the classic article by Nicholas C.
Metropolis, Arianna W. Rosenbluth, Marshall N.

N

The Monte Carlo Method 
in Science and Engineering

M O N T E  C A R L O
M E T H O D S

Since 1953, researchers have applied the Monte Carlo method to a wide range of areas.
Specialized algorithms have also been developed to extend the method’s applicability and
efficiency. The author describes some of the algorithms that have been developed to
perform Monte Carlo simulations in science and engineering.

JACQUES G. AMAR

University of Toledo

1521-9615/06/$20.00 © 2006 IEEE

Copublished by the IEEE CS and the AIP



10 COMPUTING IN SCIENCE & ENGINEERING

Rosenbluth, Augusta H. Teller, and Edward
Teller.1 In this work, the general Metropolis algo-
rithm is first described along with its application
to the equation of state of fluids. Using the Los
Alamos National Laboratory’s MANIAC com-
puter (11,000 operations per second), Metropolis
and his colleagues obtained results for the equa-
tion of state of the hard disk fluid by performing
Monte Carlo simulations of 2D systems with 56
and 224 particles. Since then, the computational
power of a single processor has increased by ap-
proximately a factor of 105, and the Monte Carlo
algorithm has become increasingly sophisticated.

This article describes some of the algorithms that
have been developed to perform both equilibrium
and nonequilibrium Monte Carlo simulations of a
variety of systems of interest in biology, physics,
chemistry, materials science, and engineering. 

Metropolis-Hastings Monte 
Carlo and Detailed Balance
As in the original article by Metropolis and his
colleagues, in many scientific applications, re-
searchers use Monte Carlo simulations to sample
as accurately as possible the properties of a many-
body system within a given statistical distribution
or ensemble. An example is the Gibbs canonical
ensemble with probability distribution Pi =
exp(–Ei/kBT)/Z, where Ei is the energy of the sys-
tem in configuration i, kB is Boltzmann’s constant,
T is the temperature, and Z is the partition func-
tion. Starting with a given initial state i, two steps
are usually involved in generating the next Monte
Carlo state. First, a possible new state or trial con-
figuration j is selected with a trial selection prob-
ability or rate Tij. Then the new configuration is
either accepted with probability P acc

ij , and the sys-

tem makes a transition from state i to state j, or it
is rejected with probability 1 – Pij

acc. The overall
transition rate from state i to state j is thus given
by the transition matrix wij = TijPij

acc.
The sequence of configurations generated in a

Monte Carlo simulation is generally referred to as
a Markov chain because the transition rate or prob-
ability depends on the current state but not on pre-
vious states. To generate a Markov chain of states
with the desired probability distribution Pi, the
overall transition probabilities wij should satisfy the
detailed balance condition

wijPi = wjiPj, (1)

which implies that the desired distribution Pi is a
stationary state. Assuming ergodicity—that is, a
nonzero multitransition probability of reaching any
allowed state of the system from any other allowed
state—this condition further implies that, in such
a Monte Carlo simulation, the system will ap-
proach the equilibrium ensemble distribution. For-
mally, the ergodicity requirement also implies that
the transition matrix w must satisfy

[wn]ij > 0 (2)

for n > nmax for all i, j. Although the ergodicity
properties of a particular many-body system are
difficult to study, it is believed, in general, that al-
most any reasonable choice of allowed trial moves
will satisfy ergodicity.

Several possible forms for the acceptance
probabilities Pij

acc satisfy the detailed balance con-
dition in Equation 1. The simplest and most
commonly used corresponds to the Metropolis-
Hastings rule,6

FURTHER READING

G iven the vast literature on Monte Carlo simulations, it is
virtually impossible to discuss all the methods that

have been developed in an article of this length. For fairly re-
cent surveys of the literature, see the books on Monte Carlo
methods by M.H. Kalos and P.A. Whitlock,1 D.P. Landau and
K. Binder,2 and B.A. Berg3 as well as a recent Los Alamos Na-
tional Laboratory conference proceedings on the Monte
Carlo method in the physical sciences.4 A fairly recent discus-
sion of extended ensemble methods is provided in a review
article by Yukito Iba.5 For a good description of classical
Monte Carlo simulations of fluids, the book by Allen and
Tildesley6 is also recommended.
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. (3)

Another option is the “symmetric” Barker
expression,7

. (4)

Many Monte Carlo simulations, including the
ones carried out in the original article by Me-
tropolis and his colleagues,1 use symmetric trial
configuration selection rates Tij = Tji. Thus, in a
typical Metropolis Monte Carlo simulation of the
canonical ensemble with equilibrium distribution 
Pi ~ exp(–Ei/kBT), the acceptance probability Pij

acc

for a transition from state i to state j can be writ-
ten as

Pij
acc = min(1, exp(–�(Ej – Ei)), (5)

where � = 1/kBT. An example is the Ising spin-
model with “spin-flip” or Glauber dynamics: at
each step, a spin is randomly selected from the lat-
tice and then flipped with an appropriate accep-
tance probability. In Monte Carlo simulations of
fluids with velocity-independent interactions,1 the
velocity (momentum) degrees of freedom can be
integrated out; only the atomic positions are im-
portant. Thus, the energy Ei in Equation 5 can be
taken to include only the configuration-dependent
portion of the energy. For the hard-disk system
studied in the original Metropolis article,1 the
Monte Carlo method is particularly simple. All
trial moves involving an overlap are immediately
rejected, and all trial moves not involving an over-
lap are accepted. In this case, a simple way of gen-
erating trial configurations is to randomly select a
hard disk and then displace it randomly within
some radius �.

Although Monte Carlo simulations can be used
to efficiently sample an equilibrium distribution,
nonequilibrium or “dynamic” Monte Carlo simu-
lations are also of interest. In these simulations, the
trial configuration selection rates Tij are usually as-
sumed to correspond to a fixed attempt rate � –1,
which is the same for all possible allowed transi-
tions. We can obtain the time t for a given transi-
tion by noting that the survival probability that the
system remains in state i at time t after arrival is
given by Pi

surv(t) = e–t/�. The probability distribution
Pi

tr(t) that the system undergoes a transition from
state i at time t is then

, (6)

which implies that the average transition time is
given by �t� = �. Such a distribution of transition
times t can be generated using the expression

t = –� ln(r), (7)

where r is a uniform random number between 0
and 1.

Constant-NPT Ensemble
While Equation 5 may be used to perform Metrop-
olis Monte Carlo simulations in the Gibbs canoni-
cal ensemble, researchers have extended the Monte
Carlo method to a variety of other ensembles. For
example, in classical simulations of molecular liquids
and gases in the constant NPT ensemble (where N
is the number of particles, P is the pressure, and T is
the temperature), the configurational average of a
quantity A can be rewritten as8

, (8)

where ZNPT is the corresponding partition func-
tion, V = L3 is the volume of the system, and U(s)
corresponds to the system’s configuration-depen-
dent total potential energy. Here, we use a set of
scaled coordinates s = s1, s2, ... sN, where si = L–1ri
and ri is the coordinate of particle i. Accordingly,
the corresponding equilibrium distribution is
given by

Pi ~ exp(–�H), (9)

where H = PV + U(s) – �–1Nln(V). A trial configu-
ration is generated by randomly displacing a ran-
domly selected molecule (molecule k) or making a
volume change from Vi to Vj :

s j
k = s i

k + �smax(2η – 1)

Vj = Vi + �Vmax(2� – 1), (10)

where � is a uniform random number between 0
and 1, η is a 3D vector whose components are also
uniform random numbers between 0 and 1, and 1
is the vector (1, 1, 1). The quantities �smax and 
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�Vmax govern the maximum changes in the scaled
coordinates of the particles and in the volume of
the simulation box, respectively, and are typically
adjusted8 to produce a Metropolis move acceptance
ratio of 35 to 50 percent.9 Once the new state j is
selected, the quantity �H is calculated as

�Hij = P(Vj – Vi) + �Uij – N�–1ln(Vj/Vi), (11)

and the transition from state i to state j is accepted
with transition probability

Pij
acc = min(1, exp(–�� Hij)). (12)

Grand Canonical Monte Carlo
In Monte Carlo simulations of phase transitions
and phase equilibria, the grand canonical ensemble
corresponding to constant chemical potential � is
particularly useful.10–13 As an example, in Monte
Carlo simulations in the constant-(�, V, T) ensem-
ble, the energy can fluctuate due to particle dis-
placements. However, fluctuations in the particle
number and energy can also occur via particle in-
sertions and deletions, which are selected with
equal probability. If deletion is chosen, a trial con-
figuration j in which one of the particles is ran-
domly removed is generated. In this case, the
acceptance probability for the new configuration
can be written as11

, (13)

where z = exp(��), � = is the ther-
mal wavelength, and N is the number of particles
in the system before deletion. If insertion is cho-
sen, then a trial configuration j in which an addi-
tional particle is inserted at a randomly chosen
location is generated. In this case, the acceptance
probability for the new configuration can be writ-
ten as

. (14)

Acceleration Methods 
and Extended Ensembles
Since the development of the Metropolis algorithm,
a variety of Monte Carlo acceleration methods have
emerged. Some of these methods involve altering

or biasing the trial configurations and selection rates
Tij to make them more efficient, whereas others in-
volve performing simulations in different ensem-
bles. We now review some of these methods.

n-Fold Way Algorithm
In some cases, such as at low temperatures when the
acceptance probability is low and most transitions
are rejected, the standard Metropolis algorithm can
become inefficient. To eliminate rejection in discrete
Monte Carlo simulations, A.B. Bortz, Mal H. Kalos,
and Joel L. Lebowitz developed the rejection-free
n-fold way algorithm.14 The basic idea is to calcu-
late all the possible transition rates wij = TijPij

acc for all
possible trial configurations j (with j � i) for a given
initial configuration i, and then directly select the
new configuration j with a probability proportional
to wij. Once the new configuration is selected, it is
always accepted. The penalty for eliminating rejec-
tion is the additional overhead for determining all
possible transition states and rates, as well as the
memory required to keep track of all the transitions.

If N possible new states exist, then the new
configuration j can be selected by first calculat-
ing the partial sums Si

0 = 0 and S i
n = �n

k=1wik for n
= 1 to N and then generating a uniform random
number r between 0 and Si

N. A search can then be
performed to find the value of j such that S i

j–1 < r
< S i

j, after which a transition to state j is carried
out. Such a search can either be performed di-
rectly by going through the list of partial sums or
more efficiently by using a binary search. How-
ever, in many cases, a relatively small number Nc
of possible values of the transition probabilities
or rates w� exist in which each value of � corre-
sponds to a different transition class. The main
work then involves determining the number n i�
of possible transitions from state i for each class,
and then selecting the type or “class” � of transi-
tion with probability

. (15)

Once a particular class � is selected, then one of the
ni

� possible transitions in that class is randomly se-
lected from a list of all transitions in that class.

Since in a typical dynamical Metropolis Monte
Carlo simulation, the trial configuration selection
rate Tij is a constant 1/� for all possible transitions,
for the corresponding n-fold way simulation, we
can write w� = � –1P�

acc, where P�
acc is the acceptance

probability for class �. The average time for a
transition then depends on the initial configura-
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tion i and is given by ��ti� = �/��ni
�P�

acc, while the
time for a particular transition is given by �ti =
–ln(r)��ti�, where r is a uniform random number
between 0 and 1. Thus, if the acceptance proba-
bilities P�

acc are low, then the time interval per step
for an n-fold way simulation will be much larger
than for a standard Metropolis simulation. Al-
though originally developed for Ising spin systems,
the n-fold way algorithm has recently been ex-
tended to the simulation of continuum systems.15

However, in this case, the overhead associated with
determining the next move is significantly larger
than in the discrete case.

Cluster Acceleration
In many cases, the use of Monte Carlo trial moves
that correspond to relatively small local changes
can be relatively efficient. However, when large-
scale fluctuations become important, such as at a
critical point, such localized moves become rela-
tively inefficient. On the other hand, the use of ar-
bitrary large moves (such as increasing the
maximum displacement in a fluid or moving a large
number of particles randomly) can lead to a signif-
icant decrease in the acceptance probability. One
approach to overcoming these problems has been
the development of cluster acceleration methods
such as the Sweeny16 and Swendsen-Wang
(SW)17,18 algorithms. The SW algorithm is based
on a mapping of the Ising model to a percolation
model by C.M. Fortuin and P.W. Kasteleyn19 and
was originally developed to accelerate the Monte
Carlo simulation of Ising and Potts spin models
near the critical point. Consider a q-state Potts
model Hamiltonian,

, (16)

where the Potts spins si are on a lattice and take on
the integer values 1, 2, ... q, and the sum is over all
nearest-neighbor spins. The Kronecker delta in
Equation 16 corresponds to ferromagnetic cou-
pling, that is, the energy is minimized when near-
est-neighbor spins have the same value. In the SW
algorithm, bonds are created between all neigh-
boring spins with the same value with probability
p = 1 – exp(–J/kBT), thus leading to a set of bond
clusters. (An isolated spin with no bonds is also
considered to be a single cluster.) In a single
Monte Carlo move, the bond clusters are then all
“flipped”—that is, for each bond cluster, a new
randomly chosen Potts value is selected and as-
signed to all the spins in that bond cluster. Be-
cause the clusters can be arbitrarily large at the

critical temperature in this algorithm, the new
configuration can differ substantially from the
original one. In Monte Carlo simulations of the
2D Ising model performed with this algo-
rithm,17,18 researchers found that critical slowing
down was significantly reduced.

Ulli Wolff 20 has developed a somewhat differ-
ent cluster algorithm to study continuous spin
models. In the Wolff algorithm, a single cluster is
built at each step and then flipped using a gener-
alized spin-flip operation. In simulations of the
2D Ising model and continuous spin O(n) models
with n = 2 (xy model) and n = 3 (Heisenberg
model) using the Wolff algorithm, the critical
slowing down was found to be further reduced. A
variety of extensions and modifications of the SW

and Wolff algorithms have since been developed,
including cluster algorithms for vertex models21

as well as acceleration algorithms for quantum
spin systems.22

More recently, researchers have extended clus-
ter acceleration methods to the simulation of
continuous systems such as complex fluids.23–25

In particular, Jiuwen Liu and Erik Luijten24,25

have developed an elegant generalization of the
SW and Wolff algorithms for the simulation of
fluids with a pair-potential based on the general-
ized geometric cluster algorithm developed by C.
Dress and W. Krauth.23 In Liu and Luijten’s al-
gorithm, the cluster selection and flipping
processes are combined. At the beginning of each
Monte Carlo step, a randomly chosen particle i at
initial position ri is first inverted (“pivoted”)
about a randomly selected pivot point to a new
position r �i. Using the same pivot point, subse-
quent particles j are then added to the cluster
with probability

pij = max(1 – exp(–�(V(|r�i – rj|) – V(|ri – rj|)), 0), (17)

where V(r) is the pair-potential describing the
molecular interaction. If accepted as part of the
cluster, the particle j is also inverted about the
pivot point, so that all the particles belonging to a

H J s s
i j

i j
= − ∑δ ,

,

In many scientific applications, researchers use

Monte Carlo simulations to sample as accurately

as possible the properties of a many-body system

within a given statistical distribution or ensemble.
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cluster maintain their original separation. The
process is iterative—that is, once a particle has
been added to the cluster, it then also plays the role
of particle i in Equation 17 and can recruit new
particles to the cluster. The process ends when no
more particles can be added to the cluster. As in
the discrete cluster algorithms, there is no rejec-
tion because at least one particle is always moved.
For Monte Carlo simulations of binary mixtures
and complex fluids, the simulation efficiency can
be orders of magnitude higher using a geometric
cluster Monte Carlo than is found in the usual Me-
tropolis Monte Carlo.

Multicanonical Methods
Several interesting methods have been developed
in which the ensemble being simulated differs
from the actual ensemble for which results are
desired. The advantage of these methods, which
include umbrella sampling26 as well as the more

recently developed multicanonical method,27 is
that the use of a different ensemble can lead to a
better sampling of phase space and provide more
information, such as the entropy and partition
function. A somewhat related method is the his-
togram method of Alan Ferrenberg and Robert
Swendsen.28 In this method, information about
the density of states g(E) obtained during canon-
ical ensemble Monte Carlo simulations at tem-
perature T1 is used via “re-weighting” to
calculate properties of the system at a nearby
temperature T2.

Recently, Fugao Wang and David Landau have
developed a very interesting multicanonical Monte
Carlo algorithm.29,30 The idea of the Wang-Lan-
dau algorithm is to sample the energy space uni-
formly—“generate a flat histogram in energy
space” to determine the density of states g(E). Once
the density of states is determined, all thermo-
dynamic quantities can be calculated for arbitrary
temperatures using the Boltzmann distribution.
Typically, trial configurations are randomly chosen,
as in the standard Metropolis algorithm, so that the
trial configuration selection matrix Tij is symmet-

ric. The acceptance probability for a move from
state i to state j is then

, (18)

which implies that the probability of configura-
tion i is given by 1/g(Ei). Because the density of
states is g(Ei), this eventually leads to a flat his-
togram in energy space—that is, a “random walk”
in energy space. Initially, because the density of
states isn’t known, we have g(E) = 1. However,
each time an energy level E is visited, the corre-
sponding density of states g(E) is updated by mul-
tiplying the existing value by a modification factor
f > 1, which can be reduced slowly during the
course of the simulation to a value just slightly
higher than 1. The simulation process stops when
the modification factor is smaller than some pre-
defined final value, for example, ffinal = 1 + 	, where
	 << 1. Once this occurs, the density of states g(E)
should be converged to the correct value and can
be used to calculate thermodynamic quantities
such as the free energy,

. (19)

To accelerate the calculation of the density of
states, one can perform multiple simulations with
each for a different range of energy and then piece
together the results. In each simulation, the ran-
dom walk in energy space is kept in the selected en-
ergy range by rejecting any move out of that range.
The Wang-Landau multicanonical algorithm is
particularly useful near phase transitions or for dis-
ordered systems, and has been applied to a variety
of classical and quantum systems.  

Parallel Tempering
One method that has proven to be extremely use-
ful in Monte Carlo simulations of complex systems
with a rugged energy landscape is parallel temper-
ing. In this method, several independent replicas of
a system are simulated simultaneously, but under
different conditions (typically different tempera-
tures). Periodically, systems with neighboring
temperatures are allowed to interchange configu-
rations. For example, in the canonical ensemble,
the probability for a replica at temperature T1 to
accept a trial move from configuration i to config-
uration j is given by

F T k T Z

k T g E e
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The Wang-Landau multicanonical algorithm is

particularly useful near phase transitions or for

disordered systems, and has been applied to a

variety of classical and quantum systems.
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. (20)

Similarly, the probability for a replica at tempera-
ture T2 to accept a trial move from configuration j
to configuration i is given by

. (21)

The probability of accepting an interchange of
configurations between the two replicas corre-
sponding to a “swap” move is then given by the
product of Pij

acc(T1) and Pji
acc(T2), that is,

. (22)

Typically, a swap move is attempted between two
replicas after both have completed the same num-
ber of Monte Carlo steps.

The swap moves used in parallel tempering can
significantly improve the sampling of configuration
space. For example, replicas of a system that are
close to a glassy state can exchange their way “up”
in temperature so that energy barriers are easier to
overcome, and then come back down to low tem-
peratures to yield a new independent uncorrelated
configuration. This is particularly useful in per-
forming simulations at low temperatures or when
searching for ground states.31 Recent research has
combined the parallel tempering method with mul-
ticanonical Monte Carlo, which was found to sig-
nificantly improve the efficiency in simulations of
a Lennard-Jones fluid’s coexistence curve.32

Quantum Monte Carlo
The correlated motion of electrons plays a crucial
role in the aggregation of atoms into molecules and
solids, in electronic transport properties, and in
many other important physical phenomena. Al-
though ab initio calculations performed with den-
sity functional theory33 have become a vital tool in
materials science, condensed-matter physics, and
quantum chemistry, quantum Monte Carlo (QMC)
calculations are an important complementary al-
ternative. For example, QMC calculations have
been used to accurately calculate the exchange-cor-
relation functional for the homogeneous electron
gas as a function of density.34 These results have
been parameterized35 and then used as input to
density functional theory calculations in the local
density approximation.35

A variety of QMC methods have been devel-
oped, including the variational Monte Carlo, dif-
fusion Monte Carlo, and path-integral Monte
Carlo methods. The variational QMC method was

first developed for boson systems by W.L. McMil-
lan,36 and then generalized to fermions by David
Ceperley and colleagues.37 The diffusion or
Green’s function Monte Carlo method33,38 takes
advantage of the mapping between the imaginary-
time Schrödinger equation and a diffusion process
that includes drift due to a trial wavefunction quan-
tum force, and branching (a random walker in con-
figuration space is either duplicated or eliminated)
due to the difference between the local trial energy
and a reference energy. To take into account the
antisymmetry of the wavefunction for fermions, the
fixed-node approximation, in which particles are
absorbed at the nodes can be used. Path-integral
quantum Monte Carlo39 is based on the Feynman
path-integral interpretation of quantum mechan-
ics.40 Each quantum particle is represented by a
“ring polymer” whose elements (beads) are con-
nected by harmonic forces (springs). Interparticle
interactions are expressed as interactions between

simultaneous beads of the polymers, thus the par-
tition function of a quantum many-body system is
reduced to the distribution function of interacting
classical ring polymers with harmonic bonds. As for
the Green’s function Monte Carlo method, the
main challenge for fermionic systems comes from
the necessity of antisymmetrization.

Kinetic Monte Carlo
The techniques discussed so far primarily involve
equilibrium Monte Carlo, in which the goal is to
sample the equilibrium distribution or ensemble as
efficiently as possible. However, several important
nonequilibrium processes exist in physics, chem-
istry, and materials science in which the time evo-
lution is of interest. Although molecular dynamics
can be used to accurately model the evolution of
such systems on the atomic scale, the time scales
that can be reached are extremely limited. Accord-
ingly, researchers have used kinetic Monte Carlo
(KMC) simulations in many cases. In particular,
KMC simulations have been used to efficiently
model a wide variety of dynamical processes. A re-
cent review article discussing KMC simulations ap-
pears elsewhere.41

In KMC simulations, we assume that the transi-

P E Eij
swap

j i= − − −( )min ,exp( ( )( )1 1 2β β

P T E Eij
acc

j i( ) min ,exp( ( )2 21= − −( )β

P T E Eij
acc

j i( ) min ,exp( ( )1 11= − −( )β

Quantum Monte Carlo (QMC) calculations are

an important alternative to ab initio density

functional theory calculations.
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tions from one state to another state are Markov-
ian—that is, the transition rates wij depend only on
the initial state i and the final state j—and that each
transition corresponds to a Poisson process (the
transition rates wij are independent of time).42 This
is a good approximation for systems in which the
transitions involve infrequent thermally activated
events between states separated by relatively large
energy barriers. According to transition state the-
ory,43 the rates wij are then determined by an acti-
vation barrier E b

ij , as well as a prefactor Dij :

wij = Dij exp(–Eb
ij/kBT). (23)

The prefactors can be calculated more accurately
by using transition state theory,43 but are often set
to a typical vibrational frequency. To converge to
equilibrium, the detailed balance condition

(24)

must be satisfied. Typically, we assume that the en-
ergy barrier for a transition from configuration i to
configuration j can be written as Eb

ij = Ea
ij – Ei, where

E a
ij is the energy of the activated state separating

configurations i and j, and that Dij = Dji. These as-
sumptions automatically satisfy the detailed balance
condition in Equation 24.

Starting from an initial configuration i, the pro-
cedure is then similar to that for the n-fold way—
the next configuration is chosen with a probability
proportional to the transition rate wij. In particu-
lar, the partial sums Si

0 = 0 and Si
n = �n

k=1wik are gen-
erated for all N possible final configurations j. After
generating a uniform random number r between 0
and Si

N, a search is performed to find the value of j
such that S i

j–1 < r < Si
j and a transition to that state

is then carried out. If there are several different
transition rates wij for a given initial state i, the
search through the list of partial sums can be per-
formed efficiently by using a binary- or K-tree al-
gorithm.44 However, just as for the n-fold way, in
many cases there exist only a small number Nc of
distinct transition classes � (with corresponding
rates w� and n i

� different possible transitions in
each class). In this case, the next configuration can
be selected more efficiently by first selecting the
class of the transition with a probability propor-
tional to ni

�w� and then randomly selecting one of
the ni

� possible transitions in the selected class. The
time t for the transition is then given by

t = –ln(r)/Ri, (25)

where Ri = �j�iwij = ��ni
�w� is the total rate for a

transition from state i, and r is a uniform random
number between 0 and 1.

Many KMC simulations use a precalculated rate
catalog that includes a limited number of types of
transitions, such as monomer diffusion, and their
corresponding rates. However, a new “self-
learning” KMC method has recently been devel-
oped.45,46 In this method, a precalculated list of
diffusion processes and their associated energetics
and transition rates isn’t needed—rather, at any
time during the simulation, the activation energies
for all possible single or multi-atom processes are
either computed on-the-fly using a saddle-point
search procedure, or retrieved from a database in
which previously encountered processes are stored.
Initially, this method may require an extensive
amount of work to calculate the possible events that
might occur in the system. However, as long as the
interactions are short-ranged, updating the list of
possible events and their rates after each event only
requires a local calculation. In addition, this
method can lead to a substantial gain in accuracy
because of the inclusion of many-particle processes.
Recently, self-learning KMC has been used to
study the diffusion of Cu clusters on the Cu(111)
surface,45,46 for which there are many possible
types of events and energy barriers, and significant
differences between the results obtained using self-
learning KMC and ordinary KMC with a restricted
rate catalog were observed.

Parallel Monte Carlo
Although independent or quasi-independent paral-
lel simulations can be used in equilibrium Monte
Carlo to increase statistics and accelerate simulation
speed, the standard dynamic Monte Carlo algorithm
is inherently serial because only one event can occur
at each step. However, in some cases it is desirable to
perform Monte Carlo simulations over very long
times or for very large system sizes. In such cases, rig-
orous parallel dynamical Monte Carlo simulations—
in which the system is decomposed into different
parts that are then assigned to different processors
via domain decomposition—are of interest.

Parallel Metropolis Monte Carlo
In Metropolis Monte Carlo, the attempt times are
typically independent of system configuration (see
Equation 7), so parallel simulations can be carried
out using an asynchronous “conservative” algo-
rithm.47–50 In this algorithm, each processor keeps
track of the times of the events performed in its do-
main, but must check the next attempt times of the
appropriate neighboring processors when perform-
ing a boundary move. Thus, although Monte Carlo

w e w eij
E k T

ji
E k Tij

b
B ji

b
B− −=/ /
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events that occur away from the processor boundary
(that is, whose acceptance probabilities aren’t af-
fected by another processor’s configuration) are al-
lowed to proceed independently, boundary moves
can only be accepted or rejected if the “local time
condition” that the processor’s current attempt time
is less than the corresponding neighboring proces-
sors’ next attempt time is satisfied. This leads to an
asynchronous dynamics in which all processors or
domains have different local times at any stage of the
simulation, but communication is required when-
ever a boundary move is attempted. Even in the ex-
treme case in which all moves are boundary moves,
such as in the spin-flip Ising model,49 such an algo-
rithm doesn’t lead to deadlock because at any point
in time the processor whose local time is a minimum
can always proceed. For efficiency, a modified ver-
sion of this algorithm can also be used, in which n-
fold way simulations are performed in the interior
of each processor, while Metropolis simulations are
performed at the boundary.48,51

Recently, it has been shown49 that the conserva-
tive asynchronous (CA) algorithm scales (that is,
the overall simulation speed in Monte Carlo steps
per second is proportional to the number of
processors) because a finite fraction of all proces-
sors can proceed at any given time. However, the
CA algorithm also leads to a surface or “time hori-
zon” (corresponding to the next attempt times of
all processors) that roughens with time and whose
evolution can be described49 by the Kardar-Parisi-
Zhang (KPZ) equation.52 The roughening of the
time horizon can lead to problems with data-tak-
ing and memory storage because data can only be
taken using configurations in different processors
that correspond to the same local time.49 For mod-
els in which a processor’s “boundary moves” can af-
fect not only the acceptance probabilities of a
neighboring processor, but also that processor’s
boundary configuration, this can lead to more sub-
tle problems.53 However, research has recently
shown50 that by enhancing the local time restric-
tion to include a small fraction of randomly chosen
processors that are arbitrarily far away, thus creat-
ing a small-world network, the time horizon’s
roughness can be significantly reduced without sac-
rificing computational efficiency. As a result, the
memory storage requirements associated with data-
taking can be significantly reduced.

Parallel Kinetic Monte Carlo
While the CA algorithm is appropriate for parallel
Metropolis simulations, it cannot be directly ap-
plied to parallel kinetic Monte Carlo simulations,
since in KMC the event time depends on the sys-

tem configuration. In particular, because fast events
can “propagate” across processors, the time for an
event already executed by a processor can change
due to earlier events in nearby processors, thus
leading to an incorrect evolution. If all possible
KMC moves and event rates are known in advance,
the CA algorithm can still be used by mapping the
event rates to Metropolis probabilities.53 However,
for problems with a wide range of different possi-
ble event rates, the resulting parallel simulations
are typically very inefficient.53

A more efficient approach to parallel KMC sim-
ulations is the synchronous relaxation (SR) algo-
rithm.54,55 S.G. Eick and colleagues54 originally
used this algorithm to simulate large circuit-
switched communication networks, and it has also
been discussed recently by Boris Lubachevsky and
Alan Weiss55 in the context of Ising model simula-
tions. In this approach, all processors remain syn-

chronized at the beginning and end of a time
interval T, and an iterative relaxation method is used
to correct errors due to boundary events between
processors. The SR algorithm has the advantage of
generality (for example, it isn’t necessary to know
the types or rates of all possible events in advance)
and flexibility because the cycle length T can be dy-
namically tuned56 to optimize parallel efficiency.
However, due to fluctuations, which increase loga-
rithmically56 with the number of processors Np, as
well as the requirement of global communications
at the end of each cycle (the global communications
time also increases logarithmically with Np), the
computational speedup as a function of Np is sub-
linear for a fixed processor size.

Recently, a more efficient but semirigorous syn-
chronous sublattice (SL) algorithm has been de-
veloped.57 The SL algorithm is useful for a variety
of parallel KMC simulations and has recently been
applied to simulations of epitaxial Cu/Cu(100)
growth.58 Because the SL algorithm requires only
local communications, the parallel efficiency is in-
dependent of the number of processors in the large

While the conservative asynchronous algorithm is

appropriate for parallel Metropolis simulations, 

it cannot be directly applied to parallel kinetic

Monte Carlo simulations, since in KMC the

event time depends on the system configuration.
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processor limit, thus leading to linear scaling. In
addition, research has shown57 that by using cer-
tain reasonable assumptions on the cycle length
and processor size, the results obtained are identi-
cal to those obtained in serial simulations. Never-
theless, the development of rigorous efficient
parallel algorithms for KMC simulations remains
a challenging problem.

Since the original article by Metropolis and
his colleagues1 first appeared in 1953, re-
searchers have applied the Monte Carlo
method to a wide range of nonequilibrium

and equilibrium processes as well as to a variety of
complex problems. Moreover, various specialized
algorithms have been developed to extend its ap-
plicability and make it increasingly sophisticated
and efficient. Coupled with the rapid increase in
computer power, this evolution has greatly ex-
panded the complexity and size of systems to which
the Monte Carlo method can be applied. Although
the Monte Carlo method’s effectiveness in solving
complex problems is due in part to the central-limit
theorem, the development of improved algorithms
and sampling methods will continue to play an im-
portant role in expanding the accuracy and applic-
ability of Monte Carlo simulations in the sciences
and engineering.
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