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Abstract

The effects of deposition noise on two-dimensional mound coarsening with slope selection are

studied using both continuum and discrete models. Our continuum model may also be considered as

a model of two-dimensional polycrystalline growth with a preferred facet orientation. In agreement

with recent scaling arguments, we find n = β = 1/3, where n is the mound coarsening exponent and

β is the surface roughening exponent. We also find δ = 1/3 where δ is the facet length coarsening

exponent. These results are compared with simulation results obtained using a discrete model in

which deposition noise and diffusion have been included, but island nucleation and mass transfer

between mounds are assumed to be negligible. In the presence of an interfacet diffusion barrier, the

surface exhibits a self-affine morphology and Edwards-Wilkinson scaling behavior (β = 1/4) while

the average facet length is constant (δ = 0). However, in the absence of a barrier to interfacet

diffusion, we again find a mound-like morphology and coarsening with n = β = 1/3, while the

average facet length increases logarithmically with film thickness. The slow growth of the facet

length in this case may also explain the absence of island nucleation in polycrystalline growth.

Our results may also be useful in the development of improved continuum and discrete models of

polycrystalline growth.
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I. INTRODUCTION

The growth and coarsening of mounds during homoepitaxial growth on singular surfaces

has attracted considerable interest over the past several years [1], [2]. In particular, mound

formation has been observed in homoepitaxial growth of materials ranging from semicon-

ductors [3] - [5] to metals and metal alloys [6] - [13]. One reason for the interest has been the

desire to control instabilities during the growth process in order to produce either atomically

flat or nanostructured surfaces.

While the origin of the mound instability is understood to be the existence of diffusion

bias [14] (due for example to an Ehrlich-Schwoebel barrier to diffusion over steps [15]) the

asymptotic mound coarsening and surface roughening behavior are less well understood.

For example, simulations of mound coarsening with a selected slope indicate that in three-

dimensions the coarsening behavior can depend on the strength of the Ehrlich-Schwoebel

barrier [16], [17], on the surface symmetry [18], [19], as well as on the presence or absence

of relaxation mechanisms such as corner diffusion [17].

Recently, Tang and co-workers [20], [21] have presented scaling arguments for the coars-

ening behavior corresponding to two particular mechanisms of mound coalescence - bonding

energy driven coalescence, and coalescence due to deposition noise. For the case of bonding-

energy dominated coarsening in three-dimensions the value β = n = 1/4 was obtained

while for the case of noise-driven coarsening in the presence of slope selection, the result

β = n = 1/(d + 1) (where d is the dimensionality of the system) was obtained. The lat-

ter result implies β = n = 1/3 in two-dimensions, in agreement with continuum theories

of isotropic mound coarsening [22],[23] which take into account both ‘equilibrium’ effects

(such as surface curvature and detachment [24]) and kinetic effects such as diffusion bias.

However, no direct tests of the effects of deposition noise alone on the mound coarsening

behavior have been carried out.

Here we present the results of simulations of both continuum and discrete models of

two-dimensional mound growth with angle-selection in which the coarsening is entirely due

to deposition noise while other effects such as mass transfer due to detachment and island

nucleation are assumed to be negligible. Our continuum and discrete models may also

be considered to be models of two-dimensional polycrystalline growth with a single set of

symmetric preferred facet orientations. In agreement with the scaling arguments of Ref.
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[20] for noise-assisted coarsening in two-dimensions, we find n = β = 1/3 for the continuum

model. In order to better understand the connection between the coarsening behavior and

the microscopic dynamics, we have also carried out simulations of a discrete model of mound

coarsening in which again deposition noise plays a primary role, and the effects of nucleation

and surface relaxation due to detachment are not included. In this case, we find two different

universality classes. In the presence of an interfacet diffusion barrier, the surface exhibits

a self-affine morphology and Edwards-Wilkinson [25] scaling behavior (β = 1/4) while the

average facet length is constant and no coarsening is observed. However, in the absence of a

barrier to interfacet diffusion, we again find a mound-like morphology and coarsening with

n = β = 1/3. In this case, the average facet length is found to increase logarithmically with

the film thickness. Possible extensions of our models to the study of polycrystalline growth

with random orientations or shadowing are also discussed.

II. CONTINUUM MODEL

In order to simulate the effects of deposition noise within a continuum model we have

developed the following ‘ghost-particle’ model. The surface is represented by a set of lines

with a fixed mound or facet angle as shown in Fig. 1. At each stage of the deposition

process a random position along the substrate (see arrow in Fig. 1) is selected for deposition

of the next particle. This determines the facet upon which deposition is to take place. The

corresponding facet is then propagated in such a manner as to ensure a fixed growth ‘area’ at

each growth step corresponding to the area of each particle as shown in Fig. 1. In particular,

at each deposition step, the film gains an area of one (in units of the particle area). Fig.

1(a) shows the results of a typical particle deposition, while Fig. 1(b) shows a deposition in

which a facet is overrun by its neighbor.

As an initial surface configuration, we assumed a sequence of equal-sized ‘mounds’ or

triangles with facet length equal to one unit while the facet angle was assumed to be 45o. If

we think of the deposited ‘ghost’ particle as a square of side one rotated by 45o, this makes

the very early stages of growth similar to the single-step model [26]. In order to study the

resulting coarsening behavior, two measures of the average mound size were used - the r.m.s.

surface width w = 〈(h − 〈h〉)2〉1/2, and the average facet length f . The surface width was

used to obtain a ‘roughening’ exponent β where w ∼ 〈h〉β, while the facet length f was used
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(a)

(b)

FIG. 1: Diagram showing motion of facets after a single deposition event in ghost-particle model.

Arrow corresponds to position of deposited particle while shaded area shows growth of facet after

a deposition step. (a) A single facet is propagated. (b) Facet is overrun by its neighbor.

FIG. 2: Sequence of configurations in ghost-particle model (bottom to top) corresponding to (a)

starting configuration (b) 1.25 layers (c) 3.75 layers.

to obtain a coarsening exponent n, where f ∼ 〈h〉n. Since a fixed facet angle is assumed,

one expects that β = n. In our simulations, periodic boundary conditions were used.

Fig. 2 shows a typical sequence of configurations for a small system size with increasing

film thickness. In the absence of deposition noise, one expects that the initial surface config-
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uration will propagate essentially unchanged. However, as can be seen, due to the presence

of deposition noise there is significant mound coarsening. Also, as shown by the top picture

in Fig. 2, despite the ‘small area’ cutoff corresponding to the size of a particle, the facet

length can be arbitrarily small.

In order to accurately measure the coarsening behavior, simulation of a large system with

an initial state of 2000 triangles was carried out. In this simulation, 21,000 ghost particles

were deposited corresponding to an average film thickness of 10.5 layers. Fig. 3 shows

the corresponding results for the growth of the average facet size and surface width as a

function of film thickness. As can be seen, in agreement with the scaling arguments we find

β ' n ' 1/3.

III. DISCRETE MODEL

In order to better understand the results obtained in our continuum model we have also

studied a discrete model of mound coarsening in which both island nucleation and mass

transfer between mounds due to detachment are excluded but deposition noise is included.

One motivation for developing such a discrete model, is the fact that in three-dimensions

such a model is likely to be much easier to simulate than a continuum model. In particular,
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FIG. 3: Feature size as a function of film thickness obtained from continuum ghost-particle model.
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we have considered a variation of the single-step model [26] in which diffusion along a facet

to the nearest ‘kink’ site is allowed.

As in our continuum model, the starting configuration corresponds to a sequence of

alternate heights (0,1), which may be represented by a sequence of rotated squares on a

lattice (see Fig. 4(a)). At each deposition step, a deposition column is randomly selected

and a particle is deposited in that column. While in the original single-step model [26],

deposition in columns which are not local minima was rejected since they do not satisfy the

single-step restriction |hi+1 − hi| ≤ 1, in our model particles not deposited at kink sites are

allowed to diffuse to a nearby local minimum or kink site.

In particular we considered two versions of this single-step model. In the first version,

particles may only diffuse downhill to the nearest local minimum, i.e. there is an infinite

barrier to interfacet diffusion. In this version, if a particle is deposited at a site corresponding

to a local maximum (e.g. the column to the left of the particle being deposited in Fig. 4(b)),

then it is assumed to diffuse with equal probability to the local minimum on the right or on

the left. In the second version, particles may diffuse to local minima on either side of the

nearest local maximum, i.e. there is no barrier to interfacet diffusion. Rather than actually

carry out the diffusion, we have calculated the probability α = nR

nL+nR

(1 − α = nL

nL+nR

) of

going to the kink site to the right (left) as a function of the number of hops nR (nL) to the

nearest kink sites on the right (left) respectively [27], [28]. For the example shown in Fig.

4(b), α = 1 in the presence of an interfacet diffusion barrier while α = 1/3 in the absence

of an interfacet diffusion barrier.

In order to characterize the surface morphology, the height-height correlation function

G(x) = 〈h̃(0)h̃(x)〉 (where h̃(x) = h(x)−〈h〉) and the r.m.s. surface width w = [G(0)]1/2 were

calculated as a function of film thickness. The lateral feature size rc was also calculated by

determining the zero-crossing of G(x) in order to determine the lateral coarsening exponent

(rc ∼ 〈h〉n) while the average facet length f was also calculated. The average facet length f

(corresponding to the mean distance between kinks) was also calculated using the expression

f = L/Npk (where L is the system size and Npk is the number of local maxima) as a function

of thickness for both discrete models in order to obtain the facet coarsening exponent δ,

where f ∼ 〈h〉δ. In order to obtain good statistics, simulations were carried out with large

system sizes (L = 65536).

Fig. 5 shows our results for the surface width as a function of film thickness 〈h〉 for both
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FIG. 4: Diagram showing (a) initial configuration and deposition sites (circles) and (b) diffusion

in single-step model.

discrete models. Although the surface is significantly rougher than in the continuum model

due to the presence of kinks along the sides of the mounds (see Fig. 6), in the absence of a

barrier to interfacet diffusion we obtain β = 1/3, in agreement with our continuum model

results and the scaling argument prediction [20]. Similar results for the lateral coarsening

behavior (not shown) i.e. a well-defined lateral feature size rc and a coarsening exponent

n ' 1/3, were also obtained. Thus, in the absence of an interfacet diffusion barrier, well-

defined mounds are formed, while the coarsening behavior is in agreement with the scaling

arguments of Ref. [20]. In contrast, as shown in Fig. 5, in the presence of a barrier to

interfacet diffusion we find β ' 1/4. In this case there is no well-defined lateral feature size

and the surface is self-affine as shown in Fig. 6. Such behavior may be explained by the

presence of a downhill current [29] due to the combination of the interfacet diffusion barrier

and the single-step restriction. Such a downhill current leads to a positive surface tension

and Edwards-Wilkinson scaling behavior [25].

Fig. 7 shows our results for the facet length f as a function of film thickness. As

can be seen, in the presence of a barrier to interfacet diffusion, the average facet length is

essentially constant. The value in this case (f ' 3) is close to that expected for a random

walk of up and down steps, which is consistent with Edwards-Wilkinson scaling behavior in

two-dimensions. In contrast, in the absence of a barrier to interfacet diffusion, the average

facet length f increases logarithmically with film thickness. The slow growth of the facet

length in this case justifies our assumption of negligible island nucleation and may also help

to explain why, even if the nucleation length is relatively short compared to the mound size,

relatively well-defined facets are typically observed in polycrystalline growth. We note that
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FIG. 6: Surface morphology obtained from single-step model after 1000 layers have been deposited

(system size L = 256).

if single kinks (corresponding to an up step in a sequence of down steps or a down step in a

sequence of up steps) are neglected, then the average facet length becomes much larger (see

Fig. 6) and increases as f ∼ 〈h〉1/3 which is consistent with the observed mound coarsening

behavior.
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FIG. 7: Semilogarithmic plot of average facet length f as a function of film thickness

IV. DISCUSSION

We have developed and implemented both discrete and continuum models in order to

study the effects of deposition noise on two-dimensional mound coarsening. Using our con-

tinuum ghost-particle model, we have demonstrated, in agreement with the scaling argu-

ments put forward by Tang [20], that in the presence of deposition noise and angle-selection

but in the absence of thermal detachment and island nucleation, the coarsening exponent

for two-dimensional mound coarsening is n = 1/3. Our ‘ghost-particle’ model may also be

viewed as a model of polycrystalline growth for the case in which there is only one preferred

facet angle.

In order to better understand the relationship between microscopic growth mechanisms

and the overall coarsening behavior, we have also studied two discrete models corresponding

to a ‘conserved’ single-step model with surface diffusion. These models may also be thought

of as two-dimensional models of facetted growth. Our results indicate that relatively subtle

changes in the diffusion dynamics can lead to very large differences in the morphology and

coarsening behavior. In particular, we found that in the presence of a strong barrier to

interfacet diffusion, the surface is self-affine and Edwards-Wilkinson behavior (β = 1/4) is

obtained. In contrast, in the absence of such a barrier, well-defined mounds are observed
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and the mound coarsening behavior is the same as in the continuum model. Since even a

relatively weak barrier to interfacet diffusion will lead to a net downhill current, we expect

that in general, well-defined mounds will only occur asymptotically in the absence of such

a barrier. However, the crossover thickness before the self-affine behavior becomes manifest

may be relatively large. Exploring the dependence of such a crossover on the strength of

the interfacet barrier is a challenge for future work.

Interestingly, we also found that in the absence of an interfacet diffusion barrier, the mean

facet length, corresponding to the mean distance between kinks, increases logarithmically

with film thickness. This behavior is most likely related to the known logarithmic coarsening

which occurs for one-dimensional phase separation [30] and two-dimensional mound coars-

ening [23] in the absence of noise. In particular, while deposition noise leads to an initially

random distribution of kinks, in the limit of large film thickness and facet length, the deposi-

tion noise becomes increasingly irrelevant as far as the microscopic kink motion is concerned.

However, the remaining fluctuations play an important role in mound coalescence and lead

to mound coarsening with n = 1/3.

It is also interesting to compare our continuum model with the discrete model in the

presence of a strong interfacet diffusion barrier. As can be seen by comparing the growth

mechanisms for both models (Fig. 1 and Fig. 4), the differences are relatively small, despite

the large difference in the coarsening behavior. In particular, while both models allow mass

redistribution along facets, for sufficiently large facets growth only occurs on the facet on

which deposition takes place or on a neighboring facet “in the same valley”. However, in the

continuum model arbitrarily small facets may occur as shown in Fig. 2(b). Deposition on

such facets may lead to ‘overrunning’ of the neighboring facets as shown in Fig. 1(b), just

as in the discrete model without a barrier. The existence of such events may thus explain

the large coarsening exponent observed in the continuum model.

Finally, we note that our results may lead to the development of improved continuum

and discrete models of polycrystalline growth. For example, the van der Drift model [31],

has been used to study the deterministic evolution of polycrystalline thin-films with random

crystalline orientation in two and three dimensions [32] - [35]. In the future, it may be

possible to extend these results to include the effects of deposition noise and/or shadowing

on the coarsening behavior.
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