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The effects of long-rang@_évy) diffusion in submonolayer epitaxial growth are studied via kinetic Monte
Carlo simulations and rate equations. Such long-range diffusion may be relevant in the case of liquid-phase
epitaxy and electrochemical deposition. Results for the scaling of the submonolayer island density and size
distribution are presented as a function of they distribution exponeng and the ratidD/F of the diffusion
rate to the deposition rate. Both one- and two-dimensionay [fights (corresponding to infinitely fast hops
and one- and two-dimensional \ye walks (corresponding to finite hopping velocjitare examined. Good
agreement is found between theoretical predictions and simulations for the dependence of the island-density
scaling exponeng on the Lery exponents in both one and two dimensiongS1063-651X%98)12012-3

PACS numbgs): 82.20.Mj, 68.55-a, 61.43.Hv, 68.55.Jk

[. INTRODUCTION experiments. From a theoretical point of view such a study is
also of interest since it may lead to an improved understand-
The growth of thin films by deposition technigues such asing of nucleation and scaling in submonolayer growth.
molecular beam epitax¢yMBE) involves nucleation, aggre- In this paper we present both analytiqahte-equation
gation, and coalescence of islands on a two-dimensional sulend simulation results for the scaling of the island density
strate[1]. In the submonolayer regime this leads to the for-and island-size distribution for the case of submonolayer ep-
mation of islands of various sizes and morphologies, whictitaxial growth with long-range(Lévy) diffusion [17]. The
grow and eventually coalesce to form a complete layer.  organization of this paper is as follows. In Sec. Il we first
The standard theoretical approach to submonolayereview what is known about vy diffusion. In Sec. Il we
growth [2—11] involves the use of rate equatiofis2] that  present a rate-equation theory for the scaling of the island
describe the processes of adatom diffusion or hopping, islandensity as a function of deposition rate in the case of long-
nucleation and growth, and deposition. For the simplest case&nge diffusion. In Sec. IV we describe in detail our simula-
(corresponding to a critical cluster size of[2]) in which  tions of deposition with Ley diffusion. In Sec. V we present
single adatoms may diffuse with hopping rafe while  our simulation results for the scaling of the island density
dimers and all larger clusters are stable and immobile, thand island-size distribution for both i walks and Ley
standard rate-equation theofg2,4,5 predicts that thgper  flights in one and two dimensions and compare them with
site) island densityN at fixed coverage scales as our scaling theory. Finally, in Sec. VI we offer some
conclusions.
N~(D/F)~*, (1)
Il. LONG-RANGE (LIéVY) DIFFUSION

whereF is the (per sit¢ deposition flux and¢=d/(2d+2)
(whered is the dimensionality of the substratén particular, For ordinary Brownian diffusion, the mean-square dis-
x=1/3 for the case of deposition onto a two-dimensionalPlacement(r?(t)) of a diffuser's position about its initial
substrate angy= 1/4 for the case of deposition onto a one- POsition is given by
dimensional substrate or for deposition on a two-dimensional
substrate with highly anisotropic diffusion. This type of scal- (r3(t))~(Dt)~, 2
ing behavior for the island density has been verified in a
large number of experimental and theoretical studies irwhereu=1 andD is the diffusion coefficient antis time.
which diffusion occurred via short-rangeearest-neighbor The linear relationship between the mean-square displace-

and next-nearest-neighhdrops. ment and time is a consequence of the finite second moment
While in the case of thin-film depositioin vacug atoms  of the hop length along with the assumptions of translational

are expected to diffuse via relatively short-range h®, invariance and absence of drift.

in a number of experimenf44-16, long-range Ley diffu- However, in the case of vy diffusion the second-

sion[17] of atoms at the liquid-solid interface has been ob-moment of the hop length is infinite. In particular, for the

served. Such “long-range” diffusion may be relevant in case of a constant-velocity i¢ walk in d dimensions with

thin-film growth by electrochemical depositigfi8]. There-  Lévy exponents [which correspond$19] to a probability

fore, the study of thin-film growth with long-range diffusion density for the time spent in flight given by(t)~1/(1

[14-21 may be of interest in connection with a variety of +t)4"#] the probability for a hop of lengtlx is given for
large x by

*Present and permanent address. P(x)~x"975, 3)
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In this case, the mean-square displacement of a diffuser’s d
position about its initial position is given byr(t)) X= 545 20 (7)
~(Dt)* where

For the case of Brownian diffusion=1, so that Eq(7)

u=1 for p=2, implies the standard resulg=1/3 in d=2 and y=1/4 in
d=1 for this case. However, for the case of avizevalk
p=3—-p8 for 1=spB=<2, (4)  with anomalous diffusion, one hgas=3— for 1<B8<2
and u=2 for B<1. Thus, for ad-dimensional Ley walk
w=2 for B=<I1. Eq. (7) implies
For B>2, the second moment of the hop length is finite Y= 2f2d’ B=2, (8a)

and one has ordinary Brownian diffusion. However, #®r
=<2, the second moment diverges and one has anomalous

diffusion. In particular, the region oB with 1<B8<2 is _ (3=-p)d e
often referred to as enhanced diffusion while the rangg of X= 2+(6—2p)d’ l=p=2, (80)
with B<1 corresponds to “ballistic” diffusion.
In this study we consider submonolayer growth with two d
types of Lavy diffusion: Levy “walks” and Lévy “flights.” X= 5471 PsL (8¢)

For both Lary walks and flights with3<2 the second mo-

ment of the monomer hop length is infinite. However, ay e This implies that for a one-dimensional\yewalk (d=1),
walk assumes a finite hopping velocity whereas in our study

the Levy flight is an instantaneous jump where one jump is x=1/4, B=2, (93
completed in one time step.

3-pB
lll. SCALING THEORY FOR y WITH LONG-RANGE X~ 828" 1<p=2, (9b)
DIFFUSION
x=1/3, B<1, (99)

A simple scaling theory for the flux dependence of the
island density at fixed coverage in one and two dimensions hile f wo-di ional K (d=2
has been proposed in Ref8-5] for the case of short-range While for a two-dimensional Ley walk (d=2),
diffusion. Here we present similar arguments for the case of _ -

Levy walks and flights in one and two dimensions. X=183, p=2, (109

For the case of submonolayer growth with irreversible

attachment, the rate of change of the total island density XY= 3_3 1<pB<2, (10b)
(corresponding to the rate of island formatios equivalent -2

to the rate at which dimers are formed when two monomers

meet. This may be written as the product of the total decay x=2/5 p<l. (109

rate of monomer®&,=n/r (wheren is the monomer density
and 7 is the monomer “lifetime”) times the probabilityP,
=n/(N+n) that a monomer has collided with another
monomer during this time rather than with an existing island
Thus, one may write

Using similar reasoning, we can also obtain a rate-
equation prediction fo(B) for the case of one- and two-
dimensional Ley flights, for which the hop is taken to be
instantaneous. In this case, one does not expect a significant
difference in the value of the scaling expongntbetween
Léevy walks and Ley “flights” for 8>2 since the average
. (5) hop length is close to 1. However, f@<2 the average hop
length increases with decreasipgand becomes infinite for

B<1) so that a significant difference is expected. In particu-

In the steady state the rate of deposition of monomers i%r, we assume that for \g flights rather than walks, and
exactly balanced by the rate of absorption due to encountegs, <2, that a lower bound for the lifetime of a monomer

with other monomers and existing islands so thatF7  cqresponds to the elapsed time before a hop of length equal
while n/(N+n)zn/N_ smcen<N.l/28|m|Iarly,/2|n the steady {5 the typical island distande~N~Yd. We expect that ird
state the average distan¢e?(7))"*~(D7)** a monomer  _1 g gives a relatively good estimate for the monomer
travels during its lifetimer is of the order of the typical |ifetime (since a monomer which has jumped a typical island

. . _l/d _ . .
island distancé~N""" for d;%'z- Equating these two dis- gjistance will almost certainly collide with an islanethile in
tances, one obtains~1/(DN“#). Substituting into Eq(5)  g=2 this only gives a relatively weak lower bound.

n
N+n

dN_ n
do \Fr

and integratingand ignoring the coverage dependencélpf From Eq.(3) (with d set equal to 1 even in two dimen-
one obtains, sions since our two-dimensional simulations corresponded to
independent one-dimensional hops in thandy directiong
N~ (D/F)~#d/(znd+2) (6)  the probability of such a hop may be written as

which implies that P(I>N~1d)~NA/d, (11
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If we now assume that the monomer lifetimeis propor-

tional to the inverse of this probability, i.er~1/(DNF'%), 0.025 prrrryr T
we obtain 1d Walk v B=4.00 ]
L o] B = 1.33 4
0.020 [ 8
L e B=067 1
Y=g B2 (12a ’
[ v v yvyvy YYvy v ]
0.015 A "y
= =2 12 L v .
X B+ 2d1 B ’ ( b) r v o 00000s
i 0.010 00?® ° 007
for the d-dimensional Ley flights considered herg2]. (Y o° ]
Il o .....oooooo....;’
r [ ]
IV. SIMULATIONS 0.0050 _-f o .
In order to study submonolayer growth with \yediffu- i ]
sion we have carried out kinetic Monte Carlo simulations in (0 L A WS I PR N R P
one and two dimensions for the case of irreversiblearest- 0 010203 04 05 06 07 08
neighboy attachment corresponding to a critical island size 0

of 1. In_ par_ticular, at _each instant of tim_e either a deposif[ion FIG. 1. Island densitiN as a function of coverage for the case of
ora dlff.u.sm.n move is selected according to the following submonolayer deposition with diffusion via one-dimensionahle
probabilities: walks for D/F=10° and 8=4.0 (Brownian diffusion, 8=1.33

1 N, (D/F) 13 (enhanced diffusion and 8= 0.67 (ballistic diffusion.

Pr=ar N ey PN peE . ) . .
F1+Ny(D/F) P 1+Ny(D/F) be terminated short of its designated total hop distance due to
an existing island or monomer occupying a site in the diffus-

where pg is the probability of selecting a deposition move er's path or nearest neighbor to the path.

andF is the (per sitg deposition flux,pp, is the total prob- For the Lery walks, the situation was similar to that for

ability of picking a diffusion move, and, is the density | ¢y flights. However, in this case the adatoms are assumed
(per sitg of adatoms on the surface. If a deposition move isy, jtfse with a finite velocity that allows for only one hop
selected, then an adatom is deposited on a randomly selectggl o4ch diffusion step. Accordingly, a list of each diffusing

site. f a diffusion move is selected, then an ad_a(um_mno- adatom’s direction of jump and distance left to jump was
men with no bonds is selected and allowed to juwith & o1y along with the diffuser list. As in the flight case, in the

length given by the Ley distribution in a randomly chosen —ace of Ley walks the diffuser is capable of being stopped
d!rect!on corresponding to one of the nearest-neighbor latticgort of its jump length if it encounters other adatoms or
directions. , o . islands along the way. In this case it is removed from the
_In order to satisfy the probability distribution for &g \onomer ist and either creates an island by nucleation with
flights given in Eq.(3), the jump lengthsX were generated ,nother monomer or is added to an existing island.
using the formula For one-dimensional walks and flights, the system kize
X=[r~ 18] (14 ~Was varied from 80000 to 100000, while for two-
' dimensional walks and flights varied from 300 to 1000. In

wherer was a uniform random number between 0 and 1 andarticular the larger values df were used for the case of
the brackets denote the closest integer. It is easy to show thafhall 8 in two dimensions in order to avoid finite-size ef-
in this case Eq(14) implies thatP(X) ~ X~ #*1) for largeX, fects due to the large hopping length. Averages were taken
while the minimum hop length is equal to 1. We note thatOVer of the order of 30 runs. For each run, data was collected
since in our two-dimensional simulations the hopping direcfor twenty coverages ranging from=0.04 to 0.8. The pa-
tions were restricted to the four nearest-neighbor direction§@meterD/F corresponding to the ratio of the diffusi¢hop)

of a square lattice, in this case the resultingvydiights ~ate to the deposition flux ranged froB/F =10 to 1.
actually corresponded to two independent one-dimensiondin€se are typical values for molecular beam epitaxy.

Lévy flights/walks rather than the usual two-dimensional

Lévy flight for which the direction chosen is completely ran- V. RESULTS

dom and continuous. Accordingly the use of Eq.(thout
any modification for substrate dimensionalityn both one
and two dimensions led to the appropriate scaling of the Figure 1 shows typical simulation results for the depen-

A. One-dimensional Levy walks

form of Eq. (4) for the mean-square displacement. dence of the island density as a function of the coverage
In our simulations four different cases were studied: onefor values of the Ley exponentg ranging from 0.67(bal-
dimensional Ley walks, one-dimensional vy flights, two- listic regime to 4 (Brownian diffusion [23] for the case of

dimensional Lgy walks, and two-dimensional g flights.  deposition with diffusion via a one-dimensionaluyewalk.

In the case of the one-dimensionalwyeflight a diffusing  As shown in Fig. 1, the overall island density decreases with
monomer was allowed to jump up to a distarXeén one  decreasing3 due to the increased hopping length. Similarly,
diffusion step(whereX=1) but must first visit all sites in the range of coverage over which the island density is ap-
between. By visiting all interim lattice sites, the flight may proximately constant appears to be increasing with decreas-
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FIG. 2. Maximum island densiti),,., as a function oD/F for
deposition with diffusion via one-dimensional\newalks for same
values ofg as in Fig. 1. Dashed lines correspond to power-law fits.

ing B. This behavior is similar to what has previously been
observed 8] for normal diffusion adD/F is increased. Simi-
larly, Fig. 2 shows typical results for the dependence of the
peak island-density on the rati®/F of the diffusion to the
deposition rate for the same values@fas in Fig. 1, along
with power-law fits to determing. As expected, fol3>2
the value ofy is close to 1/4 while fo3<<2 the value ofy
is larger than 1/4.

Figure 3 summarizes our simulation results for the depen
dence of the scaling exponegton the Lery exponents for
the case of one-dimensional \ne walks. For largegs, the
value of x is close to the expected value of 1/4 while@s agreement between the simulation results and the rate-
decreases beloy.=2 the value ofy increases and appears equation prediction. However, the simulation results tend to
to saturate at a value close to 1/3. Also shown for comparibe consistently slightly lowefabout 0.01) than the rate-
son is the rate-equation predicti@®) for y as a function of equation prediction for both large and sméll This may be
B (dashed ling As can be seen, there is reasonably gooddue in part to finite-size effects as well as to the fact that we

are not in the fully asymptotidarge D/F) limit.

FIG. 4. Pictures of clusters formed during submonolayer depo-
Sition with two-dimensional Ley diffusion at coverag@= 0.2 with
D/F=10° (picture sizel =300).(a) 3=4.0 (b) 3=0.5.

0.40 1A L B B N
0.38 ] o 1d Flight : B. One-dimensional Levy flights
-0 + ldWalk ] We have also carried out simulations for the case of depo-
036 3 Eq. 9 E sition with diffusion via one-dimensional ‘g flights. As
0.34 | v T Eq. 12 - already mentioned, in this case the simulations were the
C ] same as for the walks, except that the diffusing adatoms were
0.32 T ] allowed to hop instantaneously the length of the selected hop
x 0.30 L ] rather than at a finite velocity.
! —_ Figure 3 shows a summary of our results f¢B) for this
0.28 [ 7] case. As can be seen, f8e>2 there is very little difference
0.96 I ] between the results for kg flights and Lery walks. How-
UL 5 ] ever, forB<2 the value ofy is significantly higher for Ley
0.24 [ * G 4 flights than for Lery walks as expected due to the large hop
T length. Also shown in Fig. 3 is the rate-equation prediction
0224 1 2 3 4 5 (12) for x(B) for one-dimensional Dey flights. As can be
B seen, there is very good agreement between our simulation

results and the prediction of the scaling theory.
FIG. 3. Island-density scaling exponeptas a function of the

Lévy exponentg for the case of one-dimensional\yewalks and
flights. The symbols correspond to simulation results while the solid
curve[Eq. (9)] and dashed curvieg. (12)] correspond to the rate- Figure 4 shows typical pictures of the clusters formed by
equation predictions. Levy walks in two dimensions at coverage=0.2 both for

C. Two-dimensional Levy walks
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FIG. 6. Maximum island densiti) . as a function oD/F for
deposition with diffusion via two-dimensional ixg walks for the
same values of as in Fig. 5. Dashed lines correspond to power-
law fits.

FIG. 5. Island densitiN as a function of coverage for the case of
submonolayer deposition with diffusion via two-dimensionaly.e
walks for D/F=10° and 8=4.0 (Brownian diffusion, 8=1.33
(enhanced diffusion and 3= 0.67 (ballistic diffusion.

B=4.0 corresponding to Brownian diffusion as well as for ordinary(Brownian diffusion (d=2) and clusters with frac-

B=1/2 corresponding to enhanced or ballistic diffusion. Fortal dimensiord;<2, the asymptotic value of is larger than

large B the clusters look dendritic and similar to those ob-1/3 and is instead given by=2/(4+d¢). This gives x

tained in previous simulatiori$,8] of deposition with short- =0.35 rather than=1/3 in the low-coverage, largB/F,

range diffusion and irreversible attachment and without cluslarge 8 (Brownian diffusion limit for which d¢=1.7. How-

ter relaxation. In this case, the fractal dimensthnof such  ever, for small3 (8<2) this effect should be reduced since

clusters is less than 2 but is close to that obtained in ordinargne expectsl;=2 for g<1.

diffusion-limited aggregatiodDLA) [24] for which d;=1.7

in two dimensions. However, as Fig(b4 shows, forg<2 D. Two-dimensional Levy flights

the clusters formed are significantly more compact and ap- . . .

. : . We have also carried out simulations for the case of two-

pear to have a fractal dimension which approaches 2 fo(rj. . . . : . ;

imensional Ley flights. Figure 7 shows our simulation re-

small 5. This is due to the “persistence” of the walks for sults for x(B) for this case along with the rate-equation pre-
B<2, which allows particles to penetrate more deeply into & X 9 q P

cluster than for the case of short-range diffusion. We notdiCtion Eq.(12). As for the one-dimensional case, fge-1
inge dirtusion. %he results for two-dimensional flights are relatively close
that the dependence of the fractal dimensiorsiafjle DLA X .
i to—although slightly higher than—those for two-

clusters grown via ey walks on the walk exponer® has
been previously studief®5,26, and found to be in qualita- 050 e
tive agreement with the results above. R ' ' ' '

Figure 5 shows typical results for the dependence of the [ .

2d Walk

island density on coverage for three different valueg dér
the case of two-dimensional g walks. As for the case of
one-dimensional walks, the overall island density decreases
with decreasing3 due to the increase of the diffusion length.
Similarly, the coverage corresponding to the peak island den-
sity is significantly lower in two dimensions than in one
dimension. Typical results for the peak island density as a
function of D/F are shown in Fig. 6. As expected, the value
of x is close to 1/3 forB3>2 but increases above this value
for B<2.

Figure 7 shows a summary of our simulation results for
x(B) for two-dimensional [ey walks along with the rate-
equation prediction, Eq.10). As can be seen, there is rea-
sonable agreement with EL0). However, for very smalB
as well as for3>2 the simulation results are slightly higher.
This may be due in part to the effects of logarithmic correc-
tions that are known to occur in two-dimensidiis7]. The

0.45 |-
0.40

0.35

2d Flight
Eq. 10
Eq. 12

0.30 ————

FIG. 7. Island-density scaling exponeptas a function of the
Lévy exponentg for the case of two-dimensional kg walks and

“fractal” dimension of the clusters discussed above mayflights. The symbols correspond to simulation results while the solid

also play a role in the slightly increased valuesyofsince it

has been showj#,10] that for submonolayer deposition with rate-equation predictions.

curve [Eg. (10] and dashed curvgEg. (12)] correspond to the
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FIG. 8. Island-size distribution scaling function§(s/S) g (s/S)

=N,S% ¢ for the case of two-dimensional iz walks (a) 8=4.0.

=N,S% 6 for the case of one-dimensional\yewalks. (a) 8=4.0. (b) B=4/3

(b) B=4/3.

dimensional walks. However, fgg<1—for which the aver- dimensional Ley walks and flights. Over a range of cover-
age hop length diverges—the exponentis significantly — age in the precoalescence scaling regime, the scaled island-
larger for Levy flights than for Lery walks. Over this range size distribution is expected to be independent of both the
there appears to be reasonably good agreement between oatio D/F and the coveragé [7-11].

simulation results fory(B) for the case of two-dimensional Figures 8 and 9 show typical results for the scaled island-
Lévy flights and the rate-equation predictiéh?), although  size distribution for the case of kg walks in one and two

the simulation values are still a little bit higher than the rate-dimensions. As can be seen from Fig. 8, there is little differ-
equation prediction. This may be due in part to the existenc@nce between the scaled island-size distribution for the case
of logarithmic corrections in two dimensions, as well as toqf Brownian diffusion (3=4) and long-range Ly diffusion

the fractal cluster dimensiot<2 for f>1. (B=4/3) for the case of one-dimensionalvuyewalks. How-
ever, for the case of two-dimensionalwewalks (Fig. 9),
there is a small but noticeable difference between the Brown-
ian diffusion (3=4) case and long-range e diffusion
(B=4/3) case. In particular, for the case of long-range dif-
is the density per site of islands of sigat coverage] as a fusion the peak_of the scaled dist_ribution appears to be some-
function of coverage and the tzg exponent3. In particular, what lower, while there are relatively more small-size clus-

we have measured the scaled island-size distributiof€rs: This is most likely due to the increased compactness of
[9,10,27,28 two-dimensional clusters for small<?2, which leads to de-

creased island-island coalescence in the case of long-range
diffusion. Similar results for the scaled-island-size distribu-
tion have been obtained for the case of one-dimensional and
where S is the average island size, for both one- and two-two-dimensional Ley flights.

E. Scaling of the island-size distribution

In addition to the scaling of the island densitywe have
also studied the island-size distributibly(#) [whereNg( )

f(s/S)=Ng(6)S?% 9, (15)
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VI. CONCLUSIONS lation results fory for 8>2 were close to the standard val-
We have presented the results of kinetic Monte Carlg ®® of 1/4(1/3) in one (two) dimensions, fof3<2 the value

simulations for the scaling of the island-density and islan Of x was found to increase with decreasigand to ap-

size distribution in the case of submonolayer deposition wittProaCh our rate-equation prediction of 85) for small 8
long-range Ley diffusion in one and two dimensions. Re- " ©N€ (two) dimensions. We also found good agreement

sults were presented for both \yewalks and Ley flights With our rate-equat_ion pr_edictions fqr(_,B) for Lévy flights
and were restricted to the case of a critical island size of 1" °N€ and two dimensions, for whick was somewhat

corresponding to stable clusters of size 2 or greater. Usin Iglf;]e(r:ct)?]ztirr;sftort\év: ”;ialed island-size distribution was found
scaling arguments and a rate-equation analysis, an analyticol be almost t’he same for the case of long-range diffusion as
prediction for the dependence of the island-density scalin$a g-rang

exponenty on the diffusion exponer® was also derived and or short-range _dlﬁgsmn. Th!s indicates that t.he main effect
of long-range diffusion is to increase the scaling exponent

coggﬁatrﬁg thsr; (z)llﬂrsaltljnrrzjcl)itgl)gy:aeisgclats'osition with adatom dif_rather than to alter the island-size distribution. Consequently,

fusion with a Lary exponent>2, we found good agree- in experimentgsuch as in liquid-phase epitaxy and/or elec-

ment in both one and two dimensions between the standartr chemical depositionin which long-range diffusion may

: : o play a role, the principal observable effect may be the in-
(short-range hopp@gate—equatmn predlcuons.for the sca!— creased sensitivity of the island density to the deposition rate
ing exponenty relating the dependence of the island den5|tydue t0 the increased value gf
on the ratioD/F of the diffusion rate to the deposition rate.
However, for the case of submonolayer deposition with long-
range Ly diffusion (8<2) the scaling exponent(8) was
found to be significantly larger than for the case of Brownian This work was supported by National Science Foundation
diffusion and to increase with decreasify Reasonable Grant No. DMR-9520842 and by the Office of Naval Re-
agreement was found between our simulations and our ratgearch. Part of this work was carried out using the computa-
equation predictions fog(3) for the case of Ley walks in  tional facilities of the Cherry L. Emerson Center for Scien-
both one and two dimensions. In particular, while our simu-tific Computation at Emory University.
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