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Submonolayer epitaxial growth with long-range„Lévy… diffusion

Jacques G. Amar,1,2 Fereydoon Family,1 and David C. Hughes1
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The effects of long-range~Lévy! diffusion in submonolayer epitaxial growth are studied via kinetic Monte
Carlo simulations and rate equations. Such long-range diffusion may be relevant in the case of liquid-phase
epitaxy and electrochemical deposition. Results for the scaling of the submonolayer island density and size
distribution are presented as a function of the Le´vy distribution exponentb and the ratioD/F of the diffusion
rate to the deposition rate. Both one- and two-dimensional Le´vy flights ~corresponding to infinitely fast hops!
and one- and two-dimensional Le´vy walks ~corresponding to finite hopping velocity! are examined. Good
agreement is found between theoretical predictions and simulations for the dependence of the island-density
scaling exponentx on the Lévy exponentb in both one and two dimensions.@S1063-651X~98!12012-3#

PACS number~s!: 82.20.Mj, 68.55.2a, 61.43.Hv, 68.55.Jk
a
-
su
or
ic

y

la
a

th

na
e-
n

al

i
r

b
in

n
of

y is
nd-

ity
ep-

st

and
ng-
la-
t
ity

ith
e

is-
l

ace-
ent

nal

e

I. INTRODUCTION

The growth of thin films by deposition techniques such
molecular beam epitaxy~MBE! involves nucleation, aggre
gation, and coalescence of islands on a two-dimensional
strate@1#. In the submonolayer regime this leads to the f
mation of islands of various sizes and morphologies, wh
grow and eventually coalesce to form a complete layer.

The standard theoretical approach to submonola
growth @2–11# involves the use of rate equations@12# that
describe the processes of adatom diffusion or hopping, is
nucleation and growth, and deposition. For the simplest c
~corresponding to a critical cluster size of 1@2#! in which
single adatoms may diffuse with hopping rateD while
dimers and all larger clusters are stable and immobile,
standard rate-equation theory@2,4,5# predicts that the~per
site! island densityN at fixed coverageu scales as

N;~D/F !2x, ~1!

whereF is the ~per site! deposition flux andx5d/(2d12)
~whered is the dimensionality of the substrate!. In particular,
x51/3 for the case of deposition onto a two-dimensio
substrate andx51/4 for the case of deposition onto a on
dimensional substrate or for deposition on a two-dimensio
substrate with highly anisotropic diffusion. This type of sc
ing behavior for the island density has been verified in
large number of experimental and theoretical studies
which diffusion occurred via short-range~nearest-neighbo
and next-nearest-neighbor! hops.

While in the case of thin-film depositionin vacuo, atoms
are expected to diffuse via relatively short-range hops@13#,
in a number of experiments@14–16#, long-range Le´vy diffu-
sion @17# of atoms at the liquid-solid interface has been o
served. Such ‘‘long-range’’ diffusion may be relevant
thin-film growth by electrochemical deposition@18#. There-
fore, the study of thin-film growth with long-range diffusio
@14–21# may be of interest in connection with a variety
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experiments. From a theoretical point of view such a stud
also of interest since it may lead to an improved understa
ing of nucleation and scaling in submonolayer growth.

In this paper we present both analytical~rate-equation!
and simulation results for the scaling of the island dens
and island-size distribution for the case of submonolayer
itaxial growth with long-range~Lévy! diffusion @17#. The
organization of this paper is as follows. In Sec. II we fir
review what is known about Le´vy diffusion. In Sec. III we
present a rate-equation theory for the scaling of the isl
density as a function of deposition rate in the case of lo
range diffusion. In Sec. IV we describe in detail our simu
tions of deposition with Le´vy diffusion. In Sec. V we presen
our simulation results for the scaling of the island dens
and island-size distribution for both Le´vy walks and Le´vy
flights in one and two dimensions and compare them w
our scaling theory. Finally, in Sec. VI we offer som
conclusions.

II. LONG-RANGE „LÉVY … DIFFUSION

For ordinary Brownian diffusion, the mean-square d
placement^r 2(t)& of a diffuser’s position about its initia
position is given by

^r 2~ t !&;~Dt !m, ~2!

wherem51 andD is the diffusion coefficient andt is time.
The linear relationship between the mean-square displ
ment and time is a consequence of the finite second mom
of the hop length along with the assumptions of translatio
invariance and absence of drift.

However, in the case of Le´vy diffusion the second-
moment of the hop length is infinite. In particular, for th
case of a constant-velocity Le´vy walk in d dimensions with
Lévy exponentb @which corresponds@19# to a probability
density for the time spent in flight given byc(t);1/(1
1t)d1b# the probability for a hop of lengthx is given for
largex by

P~x!;x2d2b. ~3!
7130 © 1998 The American Physical Society
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In this case, the mean-square displacement of a diffus
position about its initial position is given bŷ r 2(t)&
;(Dt)m where

m51 for b>2,

m532b for 1<b<2, ~4!

m52 for b<1.

For b.2, the second moment of the hop length is fin
and one has ordinary Brownian diffusion. However, forb
<2, the second moment diverges and one has anoma
diffusion. In particular, the region ofb with 1,b,2 is
often referred to as enhanced diffusion while the range ob
with b,1 corresponds to ‘‘ballistic’’ diffusion.

In this study we consider submonolayer growth with tw
types of Lévy diffusion: Lévy ‘‘walks’’ and Lévy ‘‘flights.’’
For both Lévy walks and flights withb,2 the second mo-
ment of the monomer hop length is infinite. However, a Le´vy
walk assumes a finite hopping velocity whereas in our st
the Lévy flight is an instantaneous jump where one jump
completed in one time step.

III. SCALING THEORY FOR x WITH LONG-RANGE
DIFFUSION

A simple scaling theory for the flux dependence of t
island density at fixed coverage in one and two dimensi
has been proposed in Refs.@3–5# for the case of short-rang
diffusion. Here we present similar arguments for the case
Lévy walks and flights in one and two dimensions.

For the case of submonolayer growth with irreversib
attachment, the rate of change of the total island densitN
~corresponding to the rate of island formation! is equivalent
to the rate at which dimers are formed when two monom
meet. This may be written as the product of the total de
rate of monomersRt5n/t ~wheren is the monomer density
and t is the monomer ‘‘lifetime’’! times the probabilityP1
5n/(N1n) that a monomer has collided with anoth
monomer during this time rather than with an existing isla
Thus, one may write

dN

du
5S n

Ft D S n

N1nD . ~5!

In the steady state the rate of deposition of monomer
exactly balanced by the rate of absorption due to encoun
with other monomers and existing islands so thatn;Ft
while n/(N1n).n/N sincen!N. Similarly, in the steady
state the average distance^r 2(t)&1/2;(Dt)m/2 a monomer
travels during its lifetimet is of the order of the typica
island distancel;N21/d for d51,2. Equating these two dis
tances, one obtainst;1/(DN2/md). Substituting into Eq.~5!
and integrating~and ignoring the coverage dependence ofN)
one obtains,

N;~D/F !2md/~2md12! ~6!

which implies that
r’s

us

y

s

of

rs
y

.

is
rs

x5
d

2d12/m
. ~7!

For the case of Brownian diffusionm51, so that Eq.~7!
implies the standard result,x51/3 in d52 and x51/4 in
d51 for this case. However, for the case of a Le´vy walk
with anomalous diffusion, one hasm532b for 1,b,2
and m52 for b,1. Thus, for ad-dimensional Le´vy walk
Eq. ~7! implies

x5
d

212d
, b>2, ~8a!

x5
~32b!d

21~622b!d
, 1<b<2, ~8b!

x5
d

2d11
, b<1. ~8c!

This implies that for a one-dimensional Le´vy walk (d51),

x51/4, b>2, ~9a!

x5
32b

822b
, 1<b<2, ~9b!

x51/3, b,1, ~9c!

while for a two-dimensional Le´vy walk (d52),

x51/3, b>2, ~10a!

x5
32b

722b
, 1<b<2, ~10b!

x52/5, b,1. ~10c!

Using similar reasoning, we can also obtain a ra
equation prediction forx(b) for the case of one- and two
dimensional Le´vy flights, for which the hop is taken to b
instantaneous. In this case, one does not expect a signifi
difference in the value of the scaling exponentx between
Lévy walks and Le´vy ‘‘flights’’ for b.2 since the average
hop length is close to 1. However, forb<2 the average hop
length increases with decreasingb ~and becomes infinite for
b,1) so that a significant difference is expected. In partic
lar, we assume that for Le´vy flights rather than walks, and
for b,2, that a lower bound for the lifetimet of a monomer
corresponds to the elapsed time before a hop of length e
to the typical island distancel;N21/d. We expect that ind
51 this gives a relatively good estimate for the monom
lifetime ~since a monomer which has jumped a typical isla
distance will almost certainly collide with an island! while in
d52 this only gives a relatively weak lower bound.

From Eq.~3! ~with d set equal to 1 even in two dimen
sions since our two-dimensional simulations corresponde
independent one-dimensional hops in thex andy directions!
the probability of such a hop may be written as

P~ l .N21/d!;Nb/d. ~11!
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7132 PRE 58AMAR, FAMILY, AND HUGHES
If we now assume that the monomer lifetimet is propor-
tional to the inverse of this probability, i.e.,t;1/(DNb/d),
we obtain

x5
d

212d
, b>2, ~12a!

x5
d

b12d
, b<2, ~12b!

for the d-dimensional Le´vy flights considered here@22#.

IV. SIMULATIONS

In order to study submonolayer growth with Le´vy diffu-
sion we have carried out kinetic Monte Carlo simulations
one and two dimensions for the case of irreversible~nearest-
neighbor! attachment corresponding to a critical island s
of 1. In particular, at each instant of time either a deposit
or a diffusion move is selected according to the followi
probabilities:

pF5
1

11N1~D/F !
, pD5

N1 ~D/F !

11N1~D/F !
, ~13!

wherepF is the probability of selecting a deposition mov
andF is the ~per site! deposition flux,pD is the total prob-
ability of picking a diffusion move, andN1 is the density
~per site! of adatoms on the surface. If a deposition move
selected, then an adatom is deposited on a randomly sele
site. If a diffusion move is selected, then an adatom~mono-
mer! with no bonds is selected and allowed to jump~with a
length given by the Le´vy distribution! in a randomly chosen
direction corresponding to one of the nearest-neighbor lat
directions.

In order to satisfy the probability distribution for Le´vy
flights given in Eq.~3!, the jump lengthsX were generated
using the formula

X5@r 21/b#, ~14!

wherer was a uniform random number between 0 and 1 a
the brackets denote the closest integer. It is easy to show
in this case Eq.~14! implies thatP(X);X2(b11) for largeX,
while the minimum hop length is equal to 1. We note th
since in our two-dimensional simulations the hopping dir
tions were restricted to the four nearest-neighbor directi
of a square lattice, in this case the resulting Le´vy flights
actually corresponded to two independent one-dimensio
Lévy flights/walks rather than the usual two-dimension
Lévy flight for which the direction chosen is completely ra
dom and continuous. Accordingly the use of Eq. 14~without
any modification for substrate dimensionality! in both one
and two dimensions led to the appropriate scaling of
form of Eq. ~4! for the mean-square displacement.

In our simulations four different cases were studied: o
dimensional Le´vy walks, one-dimensional Le´vy flights, two-
dimensional Le´vy walks, and two-dimensional Le´vy flights.
In the case of the one-dimensional Le´vy flight a diffusing
monomer was allowed to jump up to a distanceX in one
diffusion step~whereX>1) but must first visit all sites in
between. By visiting all interim lattice sites, the flight ma
n
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be terminated short of its designated total hop distance du
an existing island or monomer occupying a site in the diffu
er’s path or nearest neighbor to the path.

For the Lévy walks, the situation was similar to that fo
Lévy flights. However, in this case the adatoms are assum
to diffuse with a finite velocity that allows for only one ho
for each diffusion step. Accordingly, a list of each diffusin
adatom’s direction of jump and distance left to jump w
kept along with the diffuser list. As in the flight case, in th
case of Le´vy walks the diffuser is capable of being stopp
short of its jump length if it encounters other adatoms
islands along the way. In this case it is removed from
monomer list and either creates an island by nucleation w
another monomer or is added to an existing island.

For one-dimensional walks and flights, the system sizL
was varied from 80 000 to 100 000, while for two
dimensional walks and flightsL varied from 300 to 1000. In
particular the larger values ofL were used for the case o
small b in two dimensions in order to avoid finite-size e
fects due to the large hopping length. Averages were ta
over of the order of 30 runs. For each run, data was collec
for twenty coverages ranging fromu50.04 to 0.8. The pa-
rameterD/F corresponding to the ratio of the diffusion~hop!
rate to the deposition flux ranged fromD/F5105 to 109.
These are typical values for molecular beam epitaxy.

V. RESULTS

A. One-dimensional Lévy walks

Figure 1 shows typical simulation results for the depe
dence of the island densityN as a function of the coverageu
for values of the Le´vy exponentb ranging from 0.67~bal-
listic regime! to 4 ~Brownian diffusion! @23# for the case of
deposition with diffusion via a one-dimensional Le´vy walk.
As shown in Fig. 1, the overall island density decreases w
decreasingb due to the increased hopping length. Similar
the range of coverage over which the island density is
proximately constant appears to be increasing with decr

FIG. 1. Island densityN as a function of coverage for the case
submonolayer deposition with diffusion via one-dimensional Le´vy
walks for D/F5106 and b54.0 ~Brownian diffusion!, b51.33
~enhanced diffusion!, andb50.67 ~ballistic diffusion!.
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ing b. This behavior is similar to what has previously be
observed@8# for normal diffusion asD/F is increased. Simi-
larly, Fig. 2 shows typical results for the dependence of
peak island-density on the ratioD/F of the diffusion to the
deposition rate for the same values ofb as in Fig. 1, along
with power-law fits to determinex. As expected, forb.2
the value ofx is close to 1/4 while forb,2 the value ofx
is larger than 1/4.

Figure 3 summarizes our simulation results for the dep
dence of the scaling exponentx on the Lévy exponentb for
the case of one-dimensional Le´vy walks. For largeb, the
value ofx is close to the expected value of 1/4 while asb
decreases belowbc52 the value ofx increases and appea
to saturate at a value close to 1/3. Also shown for comp
son is the rate-equation prediction~9! for x as a function of
b ~dashed line!. As can be seen, there is reasonably go

FIG. 2. Maximum island densityNmax as a function ofD/F for
deposition with diffusion via one-dimensional Le´vy walks for same
values ofb as in Fig. 1. Dashed lines correspond to power-law fi

FIG. 3. Island-density scaling exponentx as a function of the
Lévy exponentb for the case of one-dimensional Le´vy walks and
flights. The symbols correspond to simulation results while the s
curve@Eq. ~9!# and dashed curve@Eq. ~12!# correspond to the rate
equation predictions.
e

-

i-

d

agreement between the simulation results and the r
equation prediction. However, the simulation results tend
be consistently slightly lower~about 0.01) than the rate
equation prediction for both large and smallb. This may be
due in part to finite-size effects as well as to the fact that
are not in the fully asymptotic~largeD/F) limit.

B. One-dimensional Lévy flights

We have also carried out simulations for the case of de
sition with diffusion via one-dimensional Le´vy flights. As
already mentioned, in this case the simulations were
same as for the walks, except that the diffusing adatoms w
allowed to hop instantaneously the length of the selected
rather than at a finite velocity.

Figure 3 shows a summary of our results forx(b) for this
case. As can be seen, forb.2 there is very little difference
between the results for Le´vy flights and Lévy walks. How-
ever, forb,2 the value ofx is significantly higher for Le´vy
flights than for Lévy walks as expected due to the large h
length. Also shown in Fig. 3 is the rate-equation predicti
~12! for x(b) for one-dimensional Le´vy flights. As can be
seen, there is very good agreement between our simula
results and the prediction of the scaling theory.

C. Two-dimensional Lévy walks

Figure 4 shows typical pictures of the clusters formed
Lévy walks in two dimensions at coverageu50.2 both for

.

d

FIG. 4. Pictures of clusters formed during submonolayer de
sition with two-dimensional Le´vy diffusion at coverageu50.2 with
D/F5109 ~picture sizeL5300). ~a! b54.0 ~b! b50.5.
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7134 PRE 58AMAR, FAMILY, AND HUGHES
b54.0 corresponding to Brownian diffusion as well as f
b51/2 corresponding to enhanced or ballistic diffusion. F
large b the clusters look dendritic and similar to those o
tained in previous simulations@6,8# of deposition with short-
range diffusion and irreversible attachment and without cl
ter relaxation. In this case, the fractal dimensiondf of such
clusters is less than 2 but is close to that obtained in ordin
diffusion-limited aggregation~DLA ! @24# for which df.1.7
in two dimensions. However, as Fig. 4~b! shows, forb,2
the clusters formed are significantly more compact and
pear to have a fractal dimension which approaches 2
small b. This is due to the ‘‘persistence’’ of the walks fo
b,2, which allows particles to penetrate more deeply int
cluster than for the case of short-range diffusion. We n
that the dependence of the fractal dimension ofsingleDLA
clusters grown via Le´vy walks on the walk exponentb has
been previously studied@25,26#, and found to be in qualita
tive agreement with the results above.

Figure 5 shows typical results for the dependence of
island density on coverage for three different values ofb for
the case of two-dimensional Le´vy walks. As for the case o
one-dimensional walks, the overall island density decrea
with decreasingb due to the increase of the diffusion lengt
Similarly, the coverage corresponding to the peak island d
sity is significantly lower in two dimensions than in on
dimension. Typical results for the peak island density a
function ofD/F are shown in Fig. 6. As expected, the val
of x is close to 1/3 forb.2 but increases above this valu
for b,2.

Figure 7 shows a summary of our simulation results
x(b) for two-dimensional Le´vy walks along with the rate-
equation prediction, Eq.~10!. As can be seen, there is re
sonable agreement with Eq.~10!. However, for very smallb
as well as forb.2 the simulation results are slightly highe
This may be due in part to the effects of logarithmic corre
tions that are known to occur in two-dimensions@6,7#. The
‘‘fractal’’ dimension of the clusters discussed above m
also play a role in the slightly increased values ofx, since it
has been shown@4,10# that for submonolayer deposition wit

FIG. 5. Island densityN as a function of coverage for the case
submonolayer deposition with diffusion via two-dimensional Le´vy
walks for D/F5106 and b54.0 ~Brownian diffusion!, b51.33
~enhanced diffusion!, andb50.67 ~ballistic diffusion!.
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ordinary~Brownian! diffusion (d52) and clusters with frac-
tal dimensiondf,2, the asymptotic value ofx is larger than
1/3 and is instead given byx52/(41df). This gives x
.0.35 rather thanx51/3 in the low-coverage, largeD/F,
largeb ~Brownian diffusion! limit for which df.1.7. How-
ever, for smallb (b,2) this effect should be reduced sinc
one expectsdf52 for b<1.

D. Two-dimensional Lévy flights

We have also carried out simulations for the case of tw
dimensional Le´vy flights. Figure 7 shows our simulation re
sults forx(b) for this case along with the rate-equation pr
diction Eq.~12!. As for the one-dimensional case, forb.1
the results for two-dimensional flights are relatively clo
to—although slightly higher than—those for two

FIG. 6. Maximum island densityNmax as a function ofD/F for
deposition with diffusion via two-dimensional Le´vy walks for the
same values ofb as in Fig. 5. Dashed lines correspond to pow
law fits.

FIG. 7. Island-density scaling exponentx as a function of the
Lévy exponentb for the case of two-dimensional Le´vy walks and
flights. The symbols correspond to simulation results while the s
curve @Eq. ~10!# and dashed curve@Eq. ~12!# correspond to the
rate-equation predictions.
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dimensional walks. However, forb<1—for which the aver-
age hop length diverges—the exponentx is significantly
larger for Lévy flights than for Lévy walks. Over this range
there appears to be reasonably good agreement betwee
simulation results forx(b) for the case of two-dimensiona
Lévy flights and the rate-equation prediction~12!, although
the simulation values are still a little bit higher than the ra
equation prediction. This may be due in part to the existe
of logarithmic corrections in two dimensions, as well as
the fractal cluster dimensiondf,2 for b.1.

E. Scaling of the island-size distribution

In addition to the scaling of the island densityN, we have
also studied the island-size distributionNs(u) @whereNs(u)
is the density per site of islands of sizes at coverageu# as a
function of coverage and the Le´vy exponentb. In particular,
we have measured the scaled island-size distribu
@9,10,27,28#

f ~s/S!5Ns~u!S2/u, ~15!

whereS is the average island size, for both one- and tw

FIG. 8. Island-size distribution scaling functionsf (s/S)
5NsS

2/u for the case of one-dimensional Le´vy walks. ~a! b54.0.
~b! b54/3.
our

-
e

n

-

dimensional Le´vy walks and flights. Over a range of cove
age in the precoalescence scaling regime, the scaled isl
size distribution is expected to be independent of both
ratio D/F and the coverageu @7–11#.

Figures 8 and 9 show typical results for the scaled isla
size distribution for the case of Le´vy walks in one and two
dimensions. As can be seen from Fig. 8, there is little diff
ence between the scaled island-size distribution for the c
of Brownian diffusion (b54) and long-range Le´vy diffusion
(b54/3) for the case of one-dimensional Le´vy walks. How-
ever, for the case of two-dimensional Le´vy walks ~Fig. 9!,
there is a small but noticeable difference between the Bro
ian diffusion (b54) case and long-range Le´vy diffusion
(b54/3) case. In particular, for the case of long-range d
fusion the peak of the scaled distribution appears to be so
what lower, while there are relatively more small-size clu
ters. This is most likely due to the increased compactnes
two-dimensional clusters for smallb,2, which leads to de-
creased island-island coalescence in the case of long-r
diffusion. Similar results for the scaled-island-size distrib
tion have been obtained for the case of one-dimensional
two-dimensional Le´vy flights.

FIG. 9. Island-size distribution scaling functionsf (s/S)
5NsS

2/u for the case of two-dimensional Le´vy walks ~a! b54.0.
~b! b54/3.
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VI. CONCLUSIONS

We have presented the results of kinetic Monte Ca
simulations for the scaling of the island-density and isla
size distribution in the case of submonolayer deposition w
long-range Le´vy diffusion in one and two dimensions. Re
sults were presented for both Le´vy walks and Le´vy flights
and were restricted to the case of a critical island size o
corresponding to stable clusters of size 2 or greater. Us
scaling arguments and a rate-equation analysis, an analy
prediction for the dependence of the island-density sca
exponentx on the diffusion exponentb was also derived and
compared with our simulation results.

For the case of submonolayer deposition with adatom
fusion with a Lévy exponentb.2, we found good agree
ment in both one and two dimensions between the stan
~short-range hopping! rate-equation predictions for the sca
ing exponentx relating the dependence of the island dens
on the ratioD/F of the diffusion rate to the deposition rat
However, for the case of submonolayer deposition with lo
range Lévy diffusion (b,2) the scaling exponentx(b) was
found to be significantly larger than for the case of Brown
diffusion and to increase with decreasingb. Reasonable
agreement was found between our simulations and our r
equation predictions forx(b) for the case of Le´vy walks in
both one and two dimensions. In particular, while our sim
og
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cal
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te-
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lation results forx for b.2 were close to the standard va
ues of 1/4~1/3! in one~two! dimensions, forb,2 the value
of x was found to increase with decreasingb and to ap-
proach our rate-equation prediction of 1/3~2/5! for small b
in one ~two! dimensions. We also found good agreeme
with our rate-equation predictions forx(b) for Lévy flights
in one and two dimensions, for whichx was somewhat
higher than for walks.

In contrast, the scaled island-size distribution was fou
to be almost the same for the case of long-range diffusion
for short-range diffusion. This indicates that the main effe
of long-range diffusion is to increase the scaling exponenx
rather than to alter the island-size distribution. Consequen
in experiments~such as in liquid-phase epitaxy and/or ele
trochemical deposition! in which long-range diffusion may
play a role, the principal observable effect may be the
creased sensitivity of the island density to the deposition
due to the increased value ofx.
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