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Abstract

We study both submonolayer and multilayer growth in a model of thin-film growth appropriate
for the case in which the deposited material is “incompatible” with the substrate in the sense that
the deposited atoms do not wet the substrate. We find that the scaling behavior of the monomer
and island densities, when considered as functions of the first layer coverage f; and the ratio D/F
of monomer diffusion rate D to the deposition flux F' is similar to that for ordinary submonolayer
growth. However, the surface morphology is very different. In particular, the substrate remains
incompletely covered, with large grooves between the three-dimensional islands up to fairly large
coverage. On the other hand, the nonwetting (hopping-up) process and the step barrier yield dimer
and trimer mobilities which lead to a three-dimensional island-size-distribution scaling function
which is dependent on the values of D/F. For D/F =107 and low coverage, the scaling function
was found to be similar to that for submonolayer growth with critical island size i =2, while
for D/F = 10%, it appears to be similar to that for i =3.

1. Introduction

Molecular-beam epitaxy (MBE) is an important technological process for the fabrica-
tion of nanostructures of high-purity crystals [ 1-3]. The fundamental physical processes
in MBE involve nucleation of adatoms, aggregation of atoms on an island, and coa-
lescence of two or more islands on a substrate. These processes lead to the formation
of a distribution of islands with various sizes.

In many growth processes ranging from examples of homoepitaxial growth [4-6]
such as Fe/Fe(100), Ni/Ni(100) and Cu/Cu(100) to heteroepitaxial growth processes
[7-9] such as Pb/Cu(001), Au/Ru(0001) and Ag/Si(111), adatoms wet the sub-
strate and the morphology of islands varies from fractal to compact structures depending
on the temperature of the substrate. At low temperature, the island morphology may
be fractal [ 11~13] (with fractal dimension about 1.7, similar to that of DLA in two
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dimensions [10]). As the temperature increases, islands tend to become compact and
the surface yields layer-by-layer growth. It is recognized that such a morphological
change of islands is attributed to the diffusion of atoms along the edges of islands
due to thermal activation. Detailed studies of such a change in both the island mor-
phology and the island size distribution have been carried out by various experimental
techniques such as scanning tunneling microscopy, transmission electron microscopy
and high-resolution diffraction and scattering techniques [14] and also by computer
simulations [15,16].

It is also known that there are nonepitaxial growth processes in which adatoms
do not wet the substrate and yield multilayer islands. Deposition of metal atoms
on a nonwetting glass or silicon substrates yields compact islands at low coverages
and, as coverage increases, islands grow, coalesce and sinter, yielding elongated is-
lands [2,17-21]. Aggregation and coalescence processes of islands for nonepitaxial
growth are similar to those of the droplet of liquids which has been studied some time
ago by Family and Meakin [22,23]. During the aggregation process, they found that
the island size distribution is self-similar in time and the density of islands of
size s (or equivalently the mean number of islands of size s per site), N,, scales
as [22-24]

NS(G)N%f(S/S), (H

where S and 0 are, respectively, the mean size of islands and the coverage or num-
ber of layers deposited. This dynamic scaling approach has now become the standard
mathematical tool for describing growing surfaces and has been applied to investigate
thin film formation by MBE growth processes. A great deal of effort has also been
devoted to the study of the analytical form of the scaling functions [15,16,25,26].

It should also be recognized that there are cases of heterogeneous MBE growth in
which adatoms do not wet the substrate and form three-dimensional islands even at
low coverage. In the multilayer growth process, the morphology of the surface and its
evolution in time depend on the details of the microscopic growth mechanism. There-
fore, studies of growing surfaces provide fundamental information regarding various
kinetic phenomena and different growth modes in epitaxial processes.

In this paper, we study the surface morphology of such incompatible growth pro-
cesses via kinetic Monte-Carlo simulations of a solid-on-solid model. In our model,
adatoms are deposited on a flat substrate and diffuse until they incorporate another
adatom or island. When an adatom encounters another adatom, they cannot dissociate
and constitute an island of two atoms. This implies that the critical island size 7 in our
model is equal to one, i.e., clusters of size two or larger are stable against dissociation.
When an adatom encounters an island of size s, it sticks to the island and forms a
larger island of size s+ 1. Since we assume that adatoms do not wet the substrate, the
substrate-adatom bond is assumed to be weak. Accordingly, adatoms can hop up on
top of nearby adatoms with a rate of hopping which depends on the activation energy
and temperature. When an adatom is deposited on an existing island, it is assumed
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to diffuse until it encounters another adatom or a step edge on which adatoms can
stick with one or more lateral bonds. A step barrier [27,28] is also assumed when
a diffusing adatom jumps a step down to a lower terrace or to the substrate.

In order to study the submonolayer and multilayer scaling properties of our model,
we have calculated the first-layer monomer density N; and first-layer island density N
as a function of both the first-layer coverage 6, and the total coverage 6 and also as a
function of the ratio R =D/F of the monomer hopping rate D to the deposition flux F.
We have also studied the scaling of the island size distribution N;(0) in the first through
third layers as a function of 0 and R. In order to study the multilayer properties of our
model, we have also studied the dependence of the coverage 0, in each layer (where
0, corresponds to the coverage in the xth layer) on the total coverage. The dependence
of the surface width on the coverage was also studied and compared with previous
results obtained for models without non-wetting properties. Finally, the dependence of
the first-layer percolation coverage (). and total percolation coverage 6. on R was also
studied.

2. Rate equation analysis

In the mean-field approximation, the monomer density N, and density N; of islands
of size s can be written as

dN,

L =F 2KN? — KsNiNs 2
A N SZ; N, (2)
dN,

dtx =N (Ko 1Ny — KNy, )

where we have ignored direct deposition on top of existing monomers and islands,
and the K correspond to “cross-sections” for the capture of monomers by islands of
size s. The physical meaning of each term can be recognized from its own expression;
the second and third terms on the right-hand side in Eq. (2) are, respectively, due to
nucleation and aggregation, and both terms in Eq. (3) are due to aggregation. Since
density fluctuations have been ignored in obtaining both equations, they are expected
to hold in the low coverage regime. Dividing both sides of both equations by F, one
can recast the equations in terms of the total coverage 0 = Ft. It has been known that
they can be solved assuming that the rate of adsorption K; depends on the size of
islands [29] via K, ~ Ds”, with the parameter p given as p=1/d, for fractal islands
and p:% for compact islands. Thus, the rate equations become after taking a sum
over all islands,

fﬂv_()‘:} —2RN{ — R s"NiN,, (4)
d sz2
dN — RN, ©)

do
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where N =} _, N, has been used in the second equality. It should be emphasized
that since nucleation and aggregation events among adatoms occur only on the first
layer, these equations are expected to hold for the coverage in the first layer 6, rather
than for the total coverage 0.

For the point island model, i.e. for p=0, the solutions for N, and N are anwn
to give Ny~ 0 and N ~R@} at early time and N, NR‘MQI_]B and NwR'WG]]"/3 at
late time [30,31]. On the other hand, for the compact island model, i.e. for p= %, the
solutions are at late time, N, ~R‘3”'491_'”"2 and N ~R~'"2(In0)) [15,16,32].

3. Monte-Carlo procedure

Our model was studied using the usual kinetic Monte-Carlo method. At each simu-
lation step, one of the following transition steps was selected.

(i) Deposition — Atoms are deposited on a random site of a L x L square lattice
with a deposition rate F (monomers per unit time).

(31) Diffusion — A diffusion candidate (isolated monomer with no lateral bonds or
walker) is selected randomly and diffuses with a diffusion rate D= Dye £0*s7 (hops
per unit time per adatom), where £y is the thermal activation energy. When a walker
encounters another adatom as its nearest neighbor, both atoms stick together and form
an island of two atoms. Similarly, when a walker encounters the edge of an existing
island, it is attached to the island and forms a larger island. A walker on top of an
existing island also diffuses with the same diffusion rate.

(i1) Edge diffusion — An atom with one lateral bond is selected randomly and diffuses
along the edge of an island with diffusion rate D, = Dye Fe/sT

(iv) Hopping up — Atoms on the substrate attached to an island with a single lateral
bond are allowed to jump a step up on top of the neighboring atom, with a hopping
rate given by D, = Dye %7 However, no hopping up is permitted for atoms in the
second layer or above.

(v) Hopping down — Atoms without a lateral bond near a step edge can jump a
step down to a lower terrace or to the substrate after overcoming a step barrier Eg
[27]. However, only single-step hops are permitted. A transition candidate is selected
randomly from the list of such atoms and the new position is updated.

At each simulation step one of the allowed transition steps is selected, with the
probability distribution proportional to F, NoDge E/kT  N,Dge EcksT N, Dye=Eu/ksT
and NyDge Es/%sT  where Ny, N, N, and N; are the numbers of candidates per site
for the corresponding transitions. The normalized transition probabilities thus become

pr=1/4 Po=RNy/ A, Pe=RN,1,/A";
Pu=RN, 1, JN; Pa =RNyrg /A",

where A = 1 +R(No+Nor.+N,r,+Nyry) is the normalization constant and r, = e 2£c/ksT
(AE,=E, — Ey), is the hopping rate for edge diffusion relative to the diffusion rate.
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The relative rates of hopping-up r, and hopping-down r; are also defined similarly.
In order to properly keep track of the competing rates of each transition, the list of the
candidates for each transition is continuously updated after each transition is carried
out,

It should be noted that although all islands are assumed to be immobile, islands
of sizes smaller than four atoms (dimers and trimers) can effectively move around on
the substrate by continuous transitions of edge diffusion, hopping-up and hopping-down
processes. Similar diffusion of dimers and trimers can be recognized to occur in physical
systems in a similar way to our model. Thus, our model also enables us to study the
influence of dimer and trimer mobilities. We note that the influence of dimer mobility
has previously been studied using rate equations by Bartelt et al. [33]. However, our
model directly takes into account the actual excluded volume of adatoms while this
effect was absent in their point-island model.

Typical system sizes used in our simulations ranged from L =200 to L= 1000, with
periodic boundary conditions and results were averaged over 10~1000 runs. Simulations
were carried out for various values of R. Once the desired coverage was achieved,
the island-size distributions N; in the first, second and third layers were determined
using the well-known cluster labeling algorithm [34]. The monomer density N, island
density N = 3" __, N, and mean island size S== ) _,sN;/>  _, N; were then readily
determined from the distribution N,. We have also studied the dependence of N, and
N on R for the sake of comparison with previously investigated models. Finally, the
dependence of the total coverage and first-layer coverage percolation thresholds 6, and
6i, on R were also studied as well as the dependence of the surface width, and partial
coverage in each layer as a function of total coverage.

4. Results and discussions

In most of our simulations, we used the hopping rates , = 0.01, », = 0.1 and r; = 0.02.
These parameters correspond to the activation energies AF,~0.12eV, AE, >~
0.06eV and AEg~0.10eV at room temperature. As tests, we have also carried out
simulations for other values of the parameters; however, we found that the results were
qualitatively similar to those we present here.

4.1. Multilayer growth

Fig. 1 shows typical pictures of the surface morphology at different coverages ob-
tained using our model for R=10% As can be seen, the islands are relatively com-
pact and three-dimensional and exhibit true multilayer behavior. In particular, due to
the non-wetting behavior (up-hopping) second-layer growth occurs well before the
first-layer is complete, and at higher coverages large three-dimensional islands, with
deep grooves between the islands which travel all the way down to the substrate, are
observed. In contrast, for the corresponding model without upward hopping (r, = 0.0)
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Fig. 1. Surface morphology obtained at 3 different coverages: (a) 0=1 ML; (b) 6=3 ML; and (c) 0=5
ML. System size is L =200 and R = 108
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Fig. 2. Log-log plot of partial coverages 0y in layers 1 through 6 as a function of total coverage ¢ in the
first 10 layers of growth. From the left to the right the lines correspond to ¢ through 6, respectively.

and without a step barrier, there is significantly more layer-by-layer growth and the
substrate is completely covered at much lower coverages.

These results are more quantitatively presented in Fig. 2 which shows the partial
coverage 6, in the xth layer (for x=1-6) as a function of the total coverage 6.
As can be seen, significant second-layer growth occurs at very low coverage so that
beyond 0=0.01 the first and second layer coverages are almost identical. Fig. 2 also
shows that growth in the third layer begins at coverages as small as #~0.2 and then
rapidly reaches a much larger value near one monolayer (0 =1). In general, as shown
in Fig. 2, after each full layer n of coverage is completed (with n=1,2,3, etc.) there is
substantial coverage in all layers up to layer n + 2, due to the non-wetting behavior of
the substrate. The fact that the substrate is still not completely covered (8, <1) even at
5 ML total coverage, is in agreement with the 3d island morphology and deep grooves
shown in Fig. lec.

In order to investigate the kinetics of surface growth, we have also measured the
surface width as a function of average height (4) (which is the same as the total
coverage 0), defined by

w(0)=\/((h(r) — h)*) ~ 0", (6)

where the angular bracket and the overbar denote the average over all sites. Fig. 3
shows a log-log plot of w versus coverage. As can be seen, there is nearly lin-
ear power-law behavior up to #=1, while the width continues to increase, although
more slowly, at higher coverage. This should be contrasted with the typical oscilla-
tory layer-by-layer growth observed in models in which there is no enhanced upward
hopping due to the substrate. A power-law fit for 0<8<1.0 gives a slope § which
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Fig. 3. Log-log plot of surface width w as a function of coverage 6. The two dashed lines represent the
largest and smallest possible slopes which fits the data at early time.

lies between 0.49 (lower dotted line) and 0.53 (upper dotted line) for all three cases
of R. This value of f is close to the random deposition value fi = %, indicating that the
surface width of our model grows in time in a similar way to the random deposition
model. For 62>1.0, w(8#) appears to grow significantly more slowly, and a fit to the
short amount of data we have gives ~0.2-0.25 from 1 to 5 layers. We note that
this latter result is similar to that obtained in recent studies of multilayer growth with
a step barrier and with angle selection [35]. However, it is difficult to determine the
behavior for larger coverages due to the prohibitively long computing time.

4.2. Percolation coverages

As another measure of the non-wetting behavior, we have also estimated the threshold
for first layer percolation as a function of R, using a method similar to the Monte-Carlo
renormalization group transformation [36]. We estimate the first spanning coverage
0*, the coverage at which the system begins to span, for each given size of system L:
L =50, 70, 100, 150, 250, and 400. We then extrapolate the results to the L — oc limit,
using the scaling relation of |0, — 0%| ~L~'", v being the correlation length exponent
of the ordinary lattice percolation, i.e., v:% [371-

Fig. 4 shows the first-layer coverage at percolation 0,. (circles) and the total coverage
at percolation 6. (triangles) as a function of R. Clearly, 6, is much larger than 0,. for
large R, indicating that the islands are multilayered at the percolation coverage. The
percolation coverage 6. also appears 1o be increasing significantly with increasing R.
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Fig. 4. Total coverage 0. (triangles) and first-layer coverage 0y, (circles) at percolation as a function of
R=DJF.

We note for large R that even at percolation, as shown in Fig. 1, there are still large
three-dimensional islands separated by deep grooves which penetrate all the way to the
substrate.

For small R, we obtain 6, nearly constant, 0,.~0.593, which is similar to the
ordinary percolation threshold on a square lattice. This is expected because our model
is equivalent to the random deposition model if no diffusion is allowed and in this case,
0, is just the percolation threshold. However, for R=10%, we obtain 0.~ 0.78 and
as R further increases, 0, appears to continuously increase. A reasonable extrapolation
indicates that as R — oo, 6, approaches the random close-packing volume fraction
of the hard disk model, i.e. 8, ~0.82 [38]. We expect this because the islands of
our model are compact and accordingly, the surface morphology near the percolation
point is similar to that for hard particles. For R =102, on the other hand, both 0, and
0. are similar indicating that islands become monolayered at percolation coverage.
This implies that the two nonwetting processes are irrelevant for small R and the
growth model becomes similar to the ordinary compact model for this value of R.
We now consider the scaling of the submonolayer island densities as well as the
submonolayer and three-dimensional multilayer island-size distributions as functions of
coverage and R.

4.3. Monomer and island densities versus coverage

Fig. 5 shows log—log plots of the monomer density N, and island density N as
functions of the total coverage and first-layer coverage 6, for four different values
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Fig. 5. Monomer density N| and first-layer island density N as functions of (a) total coverage 6 and (b)
first-layer coverage 0, for four different values of R. From below, R =108, 107, 10° (solid lines) and 10*
(dotted line).

of R. As can be seen, similar to previous work [15,16] the dynamical behavior of
N, and N can be divided into four regimes: a low coverage regime corresponding to
increasing monomer and island density, an intermediate regime in which the monomer
density is decreasing but the island densities is still slowly (logarithmically) increas-
ing, an aggregation regime in which the island density is constant and one expects
scaling behavior for the island-size distribution, and a coalescence regime in which the
first-layer island density is decreasing due to coalescence (e.g., for R=10%, 0 <0.0003,
0.0003 <0<0.04, 0.04 <0< 1.0, and 0> 1.0, respectively). Again as in previous work
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[15,16] as R increases, the low-coverage regime shifts to lower coverage, while the ag-
gregation regime becomes wider and extends to higher coverage. However, in contrast
to previous work [15,16] in which the aggregation regime ended at fairly low cover-
age (0=0.3-0.4) the aggregation regime in our model extends all the way to =1
for large R. This is due to the enhanced second-layer growth. Of course, Fig. 5b indi-
cates that in terms of first-layer coverage, the behavior is essentially the same as in
Ref. [15,16].

Similarly, fits to the coverage dependence of the monomer density and island den-
sity in the low-coverage regime, yield N ~ 0% and N ~ 0292 The latter exponent is
smaller by more than 10% than the rate equation prediction. This implies that there
are significant number of atoms above the first layer even at low coverage. In contrast,
fits in the same regime as a function of the first-layer coverage alone yield Ny ~ 699
and N ~ 0%, in good agreement with the point-island model predictions.

We have also studied the coverage dependence of the monomer and island densities
in the intermediate regime. As expected, semi-log plots of N against 6, for R =107 and
10* in the intermediate regime exhibit linear behavior, indicating logarithmic growth
of the island density in good agreement with the compact island prediction. However,
fits to the monomer density for R=10% in this regime as a function of 6 and 6,
respectively, gave Ny ~07%%5 and N, ~ ;%% While the former is similar to the
analytical prediction of the point island model for fixed R, i.e., N ~ 073 the latter
appears to be close to that of the compact island model, N; ~ 0, 12 Since the point
island model is expected to hold only in the low-coverage regime, we believe that
the former agreement is fortuitous being caused by writing N; as a function of total
coverage. The latter agreement is, on the other hand, expected to hold when writing
N, as a function of 6, as we claimed in Section 2.

In the coalescence regime, N decreases sharply, implying that more than one island
tend to merge and become a larger island. The monomer density also decreases sharply.
This is expected because in the high coverage regime the substrate is almost covered
with islands and no free space is left for adatoms to freely diffuse in the high coverage
regime. This observation is, however, different from that of the previous work, where
N, showed a sharp upturn. Such behavior, known to be due to the higher layer growth,
is artificial being caused by the different definition of the monomer. In the previous
work [15,16], all walkers on the substrate and on top of the existing islands (all atoms
with no lateral bond) are assumed monomers and, as second layer grows, the number
of walkers in the second layer increases, yielding a sharp upturn in N, in the high
coverage regime. In our work, on the other hand, walkers only on the substrate are
assumed to be monomers. We defined it as this to eliminate the ambiguity of the
terminology. Since in our model atoms with a single lateral bond (atoms on the edge
of islands) can hop up on top of the neighboring atom and diffuse on a second layer
(becoming walkers), atoms on an island can effectively be dissociated and become
monomers if we define the “monomer” in such a way as the previous work. However,
such atoms will always be considered to be a member of an island and can never be
dissociated in our definition.
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Fig. 6. First-layer island density N as a function of the ratio D/F of diffusion-to-deposition rates for various
coverages.

One interesting behavior we should point out from Fig. 5 is that the island density
for larger R is larger than that for smaller R in the coalescence regime. The curves for
different R crossing one another indicate this behavior. This appears to be due to the
increase in the width of the aggregation regime with increasing R combined with the
very steep decline in the island density in the coalescence regime.

4.4. Monomer and island densities versus D/F

Fig. 6 shows log—log plots of the first-layer island density N versus R for vari-
ous values of ), obtained for systems of size L=1000. In the low coverage region
(6<0.0001), the island density increases (up to R=10%) with a power-law N ~ R*
with ¢« ~0.8 (dotted line) close to the rate equation prediction N ~R. However, for
large coverage (0.01 <6<1.0) i.e. in the aggregation regime, the island density de-
creases with a power-law N ~ R™*, with the estimate of ¥ about % (dashed line with
negative slope) which is consistent with the analytical prediction y =i/(i +2) for i=1
as well as with previous work. As can be seen, with increasing coverage the crossover
from “low-coverage” behavior to “aggregation-regime” behavior occurs at smaller R.
Interestingly, however, at § = 2.0 the island density increases as R increases. But, again
we see a transition from “low-coverage” behavior to “aggregation-regime” behavior at
a relatively large value of R.

We have also studied the monomer density as a function of R as shown in Fig. 7.
At low coverage, i.c. for 8#<0.00005, the monomer density is nearly constant (dotted
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Fig. 7. Monomer density N| as a function of the ratio D/F of diffusion-to-deposition rates for various
coverages.

line), as expected. However, in the intermediate and aggregation regimes, the monomer
density decreases as N ~R™%, indicating that nucleation and aggregation events occur
more rapidly for larger R than for smaller R. The estimated value of y (y~0.6) is
close to but slightly smaller than the standard rate equation prediction y =2/(i +2)= %
for i=1.

4.5. Scaling of the island size distributions

The island size distribution Ng(f) is known to yield a self-similar structure in
the aggregation regime, as discussed in Section 1. However, since here, due to the
nonwetting of the substrate, there is multilayer growth even in the submonolayer
regime, we have measured the scaling of the island-size distribution for different layers
x (where x ranges from 1 to 3). Accordingly, the scaling relation (1) has been modified
using the form

No(0)S?/0,~ [ (5/S), (7

where 0, corresponds to the coverage in layer x rather than the total coverage, and the
island densities N; and average island size S correspond to the sizes of islands in the
corresponding layer.

Fig. 8 shows the scaled island size distribution in the first layer (x = 1) for R =107
for two selected ranges of the coverage: (a) 6 =0.4-0.6 (6; =0.2-0.3) corresponding
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Fig. 8 Scaling function for the first-layer island-size distribution (D/F = 107) for various coverages in the
aggregation (a) and early-coalescence (b) regimes. Symbols are the Monte-Carlo data while the solid curves
in (a) are the analytical calculation [23] for i=2 and those in (b) are for i=3 (upper curve) and i =2
(lower curve).

to the aggregation regime and (b) 8=0.7-0.9 (6; =0.34-0.41) corresponding to the
coalescence regime. The open symbols are the simulation data while the solid curves
are the analytical forms derived by Amar and Family [26] for the case without cluster
mobility for i=2 and i =3 (upper curve in Fig. 8b).

As can be seen in Fig. 8a, the data for three different values of @ collapse onto a
single curve within statistical errors, indicating that the island size distribution is indeed
self-similar. Interestingly the scaling function agrees with the analytical calculation for
i =2, rather than that for i=1. This appears to be due to the existence of dimer
mobility (caused by the consecutive hopping-up and hopping-down processes) in our
model, which appears to be sufficient to change the shape of the island-size distribution
although not the value of y. In particular, for R = 107 since the rate of diffusion is not so
high, the trimer mobility seems not to be sufficiently high to alter the scaling function,
while the dimer mobility is high enough. Our observation for this is consistent with
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Fig. 9. Scaling function for the first-layer island-size distribution (D/F = 10%) for various coverages in the
aggregation (a) and early-coalescence (b) regimes. The symbols are the Monte-Carlo data and the solid
curves in (a) are the analytical calculation for i =3 (upper curve) and i =2 (lower curve) and that in
(b) is for i =3.

an earlier observation for the point island model that the dimer mobility altered the
scaling function while the critical exponents were unchanged [33]. We note that at
higher coverage (Fig. 8b) the scaling function deviates from that shown in Fig. 8a.
In particular, the peak of the scaling function is somewhat higher and shifted to the
left. This is most likely due to the effects of coalescence, which leads to the presence
of a few very large islands in this regime.

Fig. 9a shows results similar to those for Fig. 8a for R = 10%. In this case, however,
the scaling function is now close to the analytical prediction of Amar and Family for
i=3. This is most likely due to the increased mobility of trimers at larger R, although
the effective value y is still close to % Thus, the scaling function appears to be more
sensitive to the mobilities of dimers and trimers than the overall island-density scaling
exponent. As shown in Fig. 9b, at higher coverage the scaling function again shifts
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Fig. 10. Second-layer (a) and third-layer (b) island-size distribution scaling functions for D/F = 107. The
solid curves are both for i =2.

slightly to the left (due to coalescence) so that the most probable island size is smaller
than the mean island size, similar to the case for R =10".

We have also measured the scaled island-size distribution on the second and third lay-
ers. Fig. 10 shows the scaling function obtained from (a) the second layer for § =0.4—
0.6 (0, =0.19-0.28) and (b) the third layer for 8§ =1.1-1.3 (65 =0.20-0.29), both for
R=107. The scaling function for both cases is similar to that on the first layer, ex-
cept with larger fluctuations, and agrees quite well with the analytical form of Amar
and Family [26] for i =2. Similar results were also observed for R = 10% (not shown).
Thus, the scaling in the first layer serves as a template for the scaling in higher layers.

5. Summary

We have studied the early stages of MBE growth in a model corresponding to growth
of one material on another nonwetting material. The nonwetting processes, added on
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the conventional simulation, appear to yield multilayered islands. In particular, the
incompatibility between the substrate and the first layer leads to the formation of large
three-dimensional islands with deep grooves between them which travel all the way
down to the substrate and significantly delays the onset of first-layer coalescence as
well as first-layer percolation. The nonwetting processes also modify the growth mode
in the first few layers from layer-by-layer oscillatory growth to a growth which looks
more like random deposition, and enhance the natural effect of the Ehrlich-Schwoebel
barrier to interlayer diffusion. Even at 5 ML total coverage, the substrate is still not
fully covered. We have also estimated the percolation coverages for various values
of R, In two extreme limits of R, R — 0 and R — oo, we found that the percolation
coverage on the first layer is similar to that of the ordinary lattice percolation and that
of the random close-packing volume fraction of hard disks, respectively.

We have also studied the scaling of the first-layer monomer and island densities as
well as the island-size distributions in the submonolayer and multilayer regime and the
results were compared with the rate equation analysis. We found that the monomer and
island densities exhibit exponents similar to that for the compact model with critical
island size i = 1, when considered as functions of the first layer coverage. On the other
hand, the scaling functions vary depending on the values of R. For R =107, the scaling
function is close to that of =2 for compatible model, while for R =10, it is close
to that of i =3. We believe that such a crossover behavior of the scaling function is
attributed to the dimer and trimer mobilities which are specific to our model.
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