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Abstract

The e/ects of deposition noise on two-dimensional mound coarsening with slope selection are
studied using both continuum and discrete models. Our continuum model may also be considered
as a model of two-dimensional polycrystalline growth with a preferred facet orientation. In
agreement with recent scaling arguments, we 3nd n = � = 1

3 , where n is the mound coarsening
exponent and � is the surface roughening exponent. We also 3nd � = 1

3 where � is the facet
length coarsening exponent. These results are compared with simulation results obtained using a
discrete model in which deposition noise and di/usion have been included, but island nucleation
and mass transfer between mounds are assumed to be negligible. In the presence of an interfacet
di/usion barrier, the surface exhibits a self-a6ne morphology and Edwards–Wilkinson scaling
behavior (� = 1

4 ) while the average facet length is constant (� = 0). However, in the absence
of a barrier to interfacet di/usion, we again 3nd a mound-like morphology and coarsening with
n = � = 1

3 , while the average facet length increases logarithmically with 3lm thickness. The
slow growth of the facet length in this case may also explain the absence of island nucleation in
polycrystalline growth. Our results may also be useful in the development of improved continuum
and discrete models of polycrystalline growth.
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1. Introduction

The growth and coarsening of mounds during homoepitaxial growth on singular sur-
faces has attracted considerable interest over the past several years [1,2]. In particular,
mound formation has been observed in homoepitaxial growth of materials ranging from
semiconductors [3–5] to metals and metal alloys [6–13]. One reason for the interest has
been the desire to control instabilities during the growth process in order to produce
either atomically Jat or nanostructured surfaces.
While the origin of the mound instability is understood to be the existence of dif-

fusion bias [14] (due, for example, to an Ehrlich–Schwoebel barrier to di/usion over
steps [15]) the asymptotic mound coarsening and surface roughening behavior are less
well understood. For example, simulations of mound coarsening with a selected slope
indicate that in three dimensions the coarsening behavior can depend on the strength
of the Ehrlich–Schwoebel barrier [16,17], surface symmetry [18,19], as well as on the
presence or absence of relaxation mechanisms such as corner di/usion [17].
Recently, Tang and co-workers [20,21] have presented scaling arguments for the

coarsening behavior corresponding to two particular mechanisms of mound
coalescence—bonding energy driven coalescence, and coalescence due to deposition
noise. For the case of bonding energy dominated coarsening in three dimensions the
value � = n = 1

4 was obtained while for the case of noise-driven coarsening in the
presence of slope selection, the result �= n=1=(d+1) (where d is the dimensionality
of the system) was obtained. The latter result implies �= n= 1

3 in two dimensions, in
agreement with continuum theories of isotropic mound coarsening [22,23] which take
into account both ‘equilibrium’ e/ects (such as surface curvature and detachment [24])
and kinetic e/ects such as di/usion bias. However, no direct tests of the e/ects of
deposition noise alone on the mound coarsening behavior have been carried out.
Here, we present the results of simulations of both continuum and discrete models of

two-dimensional mound growth with angle selection in which the coarsening is entirely
due to deposition noise while other e/ects such as mass transfer due to detachment and
island nucleation are assumed to be negligible. Our continuum and discrete models may
also be considered to be models of two-dimensional polycrystalline growth with a single
set of symmetric preferred facet orientations. In agreement with the scaling arguments
of Ref. [20] for noise-assisted coarsening in two dimensions, we 3nd n=�= 1

3 for the
continuum model. In order to better understand the connection between the coarsening
behavior and the microscopic dynamics, we have also carried out simulations of a
discrete model of mound coarsening in which again deposition noise plays a primary
role, and the e/ects of nucleation and surface relaxation due to detachment are not
included. In this case, we 3nd two di/erent universality classes. In the presence of an
interfacet di/usion barrier, the surface exhibits a self-a6ne morphology and Edwards–
Wilkinson [25] scaling behavior (�= 1

4) while the average facet length is constant and
no coarsening is observed. However, in the absence of a barrier to interfacet di/usion,
we again 3nd a mound-like morphology and coarsening with n= � = 1

3 . In this case,
the average facet length is found to increase logarithmically with the 3lm thickness.
Possible extensions of our models to the study of polycrystalline growth with random
orientations or shadowing are also discussed.
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2. Continuum model

In order to simulate the e/ects of deposition noise within a continuum model we
have developed the following ‘ghost-particle’ model. The surface is represented by a
set of lines with a 3xed mound or facet angle as shown in Fig. 1. At each stage of
the deposition process a random position along the substrate (see arrow in Fig. 1)
is selected for deposition of the next particle. This determines the facet upon which
deposition is to take place. The corresponding facet is then propagated in such a manner
as to ensure a 3xed growth ‘area’ at each growth step corresponding to the area of
each particle as shown in Fig. 1. In particular, at each deposition step, the 3lm gains
an area of one (in units of the particle area). Fig. 1(a) shows the results of a typical
particle deposition, while Fig. 1(b) shows a deposition in which a facet is overrun by
its neighbor.
As an initial surface con3guration, we assumed a sequence of equal-sized ‘mounds’

or triangles with facet length equal to one unit while the facet angle was assumed to
be 45◦. If we think of the deposited ‘ghost’ particle as a square of side one rotated
by 45◦, this makes the very early stages of growth similar to the single-step model
[26]. In order to study the resulting coarsening behavior, two measures of the average

(a)

(b)

Fig. 1. Diagram showing motion of facets after a single deposition event in ghost-particle model. Arrow
corresponds to position of deposited particle while shaded area shows growth of facet after a deposition
step: (a) a single facet is propagated, and (b) facet is overrun by its neighbor.
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Fig. 2. Sequence of con3gurations in ghost-particle model (bottom to top) corresponding to (a) starting
con3guration, (b) 1.25 layers, and (c) 3.75 layers.

mound size were used—the r.m.s. surface width w = 〈(h − 〈h〉)2〉1=2, and the average
facet length f. The surface width was used to obtain a ‘roughening’ exponent � where
w ∼ 〈h〉�, while the facet length f was used to obtain a coarsening exponent n,
where f ∼ 〈h〉n. Since a 3xed facet angle is assumed, one expects that � = n. In our
simulations, periodic boundary conditions were used.
Fig. 2 shows a typical sequence of con3gurations for a small system size with

increasing 3lm thickness. In the absence of deposition noise, one expects that the initial
surface con3guration will propagate essentially unchanged. However, as can be seen,
due to the presence of deposition noise there is signi3cant mound coarsening. Also, as
shown by the top picture in Fig. 2, despite the ‘small area’ cuto/ corresponding to the
size of a particle, the facet length can be arbitrarily small.
In order to accurately measure the coarsening behavior, simulation of a large system

with an initial state of 2000 triangles was carried out. In this simulation, 21,000 ghost
particles were deposited corresponding to an average 3lm thickness of 10.5 layers.
Fig. 3 shows the corresponding results for the growth of the average facet size and
surface width as a function of 3lm thickness. As can be seen, in agreement with the
scaling arguments we 3nd � � n � 1

3 .

3. Discrete model

In order to better understand the results obtained in our continuum model we have
also studied a discrete model of mound coarsening in which both island nucleation and
mass transfer between mounds due to detachment are excluded but deposition noise is
included. One motivation for developing such a discrete model is the fact that in three
dimensions such a model is likely to be much easier to simulate than a continuum
model. In particular, we have considered a variation of the single-step model [26] in
which di/usion along a facet to the nearest ‘kink’ site is allowed.
As in our continuum model, the starting con3guration corresponds to a sequence of

alternate heights (0,1), which may be represented by a sequence of rotated squares
on a lattice (see Fig. 4(a)). At each deposition step, a deposition column is randomly
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Fig. 3. Feature size as a function of 3lm thickness obtained from continuum ghost-particle model.
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Fig. 4. Diagram showing (a) initial con3guration and deposition sites (circles) and (b) di/usion in single-step
model.

selected and a particle is deposited in that column. While in the original single-step
model [26], deposition in columns which are not local minima was rejected since they
do not satisfy the single-step restriction |hi+1 − hi| 6 1, in our model particles not
deposited at kink sites are allowed to di/use to a nearby local minimum or kink site.
In particular, we considered two versions of this single-step model. In the 3rst ver-

sion, particles may only di/use downhill to the nearest local minimum, i.e., there is an
in3nite barrier to interfacet di/usion. In this version, if a particle is deposited at a site
corresponding to a local maximum (e.g. the column to the left of the particle being
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Fig. 5. Single-step model with barrier.

deposited in Fig. 4(b)), then it is assumed to di/use with equal probability to the local
minimum on the right or on the left. In the second version, particles may di/use to
local minima on either side of the nearest local maximum, i.e., there is no barrier to
interfacet di/usion. Rather than actually carry out the di/usion, we have calculated the
probability � = nR=(nL + nR)(1 − � = nL=(nL + nR)) of going to the kink site to the
right (left) as a function of the number of hops nR (nL) to the nearest kink sites on
the right (left), respectively [27,28]. For the example shown in Fig. 4(b), �=1 in the
presence of an interfacet di/usion barrier while � = 1

3 in the absence of an interfacet
di/usion barrier.
In order to characterize the surface morphology, the height–height correlation func-

tion G(x) = 〈h̃(0)h̃(x)〉 (where h̃(x) = h(x) − 〈h〉) and the r.m.s. surface width w =
[G(0)]1=2 were calculated as a function of 3lm thickness. The lateral feature size rc
was also calculated by determining the zero-crossing of G(x) in order to determine
the lateral coarsening exponent (rc ∼ 〈h〉n) while the average facet length f was also
calculated. The average facet length f (corresponding to the mean distance between
kinks) was also calculated using the expression f=L=Npk (where L is the system size
and Npk is the number of local maxima) as a function of thickness for both discrete
models in order to obtain the facet coarsening exponent �, where f ∼ 〈h〉�. In order to
obtain good statistics, simulations were carried out with large system sizes (L=65536).
Fig. 5 shows our results for the surface width as a function of 3lm thickness 〈h〉

for both discrete models. Although the surface is signi3cantly rougher than in the
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Fig. 6. Surface morphology obtained from single-step model after 1000 layers have been deposited (system
size L = 256).

continuum model due to the presence of kinks along the sides of the mounds (see
Fig. 6), in the absence of a barrier to interfacet di/usion we obtain �= 1

3 , in agreement
with our continuum model results and the scaling argument prediction [20]. Similar
results for the lateral coarsening behavior (not shown), i.e., a well-de3ned lateral feature
size rc and a coarsening exponent n � 1

3 , were also obtained. Thus, in the absence of
an interfacet di/usion barrier, well-de3ned mounds are formed, while the coarsening
behavior is in agreement with the scaling arguments of Ref. [20]. In contrast, as shown
in Fig. 5, in the presence of a barrier to interfacet di/usion we 3nd � � 1

4 . In this
case, there is no well-de3ned lateral feature size and the surface is self-a6ne as shown
in Fig. 6. Such behavior may be explained by the presence of a downhill current [29]
due to the combination of the interfacet di/usion barrier and the single-step restriction.
Such a downhill current leads to a positive surface tension and Edwards–Wilkinson
scaling behavior [25].
Fig. 7 shows our results for the facet length f as a function of 3lm thickness. As

can be seen, in the presence of a barrier to interfacet di/usion, the average facet length
is essentially constant. The value in this case (f � 3) is close to that expected for
a random walk of up and down steps, which is consistent with Edwards–Wilkinson
scaling behavior in two dimensions. In contrast, in the absence of a barrier to interfacet
di/usion, the average facet length f increases logarithmically with 3lm thickness. The
slow growth of the facet length in this case justi3es our assumption of negligible island
nucleation and may also help to explain why, even if the nucleation length is relatively
short compared to the mound size, relatively well-de3ned facets are typically observed
in polycrystalline growth. We note that if single kinks (corresponding to an up step in
a sequence of down steps or a down step in a sequence of up steps) are neglected, then
the average facet length becomes much larger (see Fig. 6) and increases as f ∼ 〈h〉1=3
which is consistent with the observed mound coarsening behavior.
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Fig. 7. Semilogarithmic plot of average facet length f as a function of 3lm thickness.

4. Discussion

We have developed and implemented both discrete and continuum models in order to
study the e/ects of deposition noise on two-dimensional mound coarsening. Using our
continuum ghost-particle model, we have demonstrated, in agreement with the scaling
arguments put forward by Tang [20], that in the presence of deposition noise and angle
selection but in the absence of thermal detachment and island nucleation, the coarsening
exponent for two-dimensional mound coarsening is n = 1

3 . Our ‘ghost-particle’ model
may also be viewed as a model of polycrystalline growth for the case in which there
is only one preferred facet angle.
In order to better understand the relationship between microscopic growth mecha-

nisms and the overall coarsening behavior, we have also studied two discrete models
corresponding to a ‘conserved’ single-step model with surface di/usion. These models
may also be thought of as two-dimensional models of facetted growth. Our results
indicate that relatively subtle changes in the di/usion dynamics can lead to very large
di/erences in the morphology and coarsening behavior. In particular, we found that
in the presence of a strong barrier to interfacet di/usion, the surface is self-a6ne and
Edwards–Wilkinson behavior (� = 1

4) is obtained. In contrast, in the absence of such
a barrier, well-de3ned mounds are observed and the mound coarsening behavior is the
same as in the continuum model. Since even a relatively weak barrier to interfacet
di/usion will lead to a net downhill current, we expect that in general, well-de3ned
mounds will only occur asymptotically in the absence of such a barrier. However, the
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crossover thickness before the self-a6ne behavior becomes manifest may be relatively
large. Exploring the dependence of such a crossover on the strength of the interfacet
barrier is a challenge for future work.
Interestingly, we also found that in the absence of an interfacet di/usion barrier,

the mean facet length, corresponding to the mean distance between kinks, increases
logarithmically with 3lm thickness. This behavior is most likely related to the known
logarithmic coarsening which occurs for one-dimensional phase separation [30] and
two-dimensional mound coarsening [23] in the absence of noise. In particular, while
deposition noise leads to an initially random distribution of kinks, in the limit of large
3lm thickness and facet length, the deposition noise becomes increasingly irrelevant as
far as the microscopic kink motion is concerned. However, the remaining Juctuations
play an important role in mound coalescence and lead to mound coarsening with n= 1

3 .
It is also interesting to compare our continuum model with the discrete model in

the presence of a strong interfacet di/usion barrier. As can be seen by comparing the
growth mechanisms for both models (Figs. 1 and 4), the di/erences are relatively small,
despite the large di/erence in the coarsening behavior. In particular, while both models
allow mass redistribution along facets, for su6ciently large facets growth only occurs
on the facet on which deposition takes place or on a neighboring facet ‘in the same
valley’. However, in the continuum model arbitrarily small facets may occur as shown
in Fig. 2(b). Deposition on such facets may lead to ‘overrunning’ of the neighboring
facets as shown in Fig. 1(b), just as in the discrete model without a barrier. The
existence of such events may thus explain the large coarsening exponent observed in
the continuum model.
Finally, we note that our results may lead to the development of improved continuum

and discrete models of polycrystalline growth. For example, the van der Drift model
[31], has been used to study the deterministic evolution of polycrystalline thin 3lms
with random crystalline orientation in two and three dimensions [32–35]. In the future,
it may be possible to extend these results to include the e/ects of deposition noise
and/or shadowing on the coarsening behavior.
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