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We compare the results of kinetic Monte Carlo �KMC� simulations of a point-island model of irreversible
nucleation and growth in four dimensions �4D� with the corresponding mean-field �MF� rate-equation predic-
tions for the monomer density, island density, island-size distribution �ISD�, capture-number distribution
�CND�, and capture-zone distribution �CZD�, in order to determine the critical dimension dc for mean-field
behavior. The asymptotic behavior is studied as a function of the fraction of occupied sites �coverage� and the
ratio D /F of the monomer hopping rate D to the �per site� monomer creation rate F. Excellent agreement is
found between our KMC simulation results and the MF rate equation results for the average island and
monomer densities. For large D /F, the scaled CND and CZD do not depend on island size, in good agreement
with the MF prediction, while the scaled ISD also agrees well with the MF prediction except for a slight
difference at the peak values. Coupled with previous results obtained in d=3, these results indicate that for
growth in the point-island regime, the upper critical dimension for irreversible cluster nucleation and growth is
equal to 4.
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I. INTRODUCTION

Due to its broad technological importance a great deal of
experimental �1–10� and theoretical �11–30� effort has been
carried out toward obtaining a better understanding of cluster
nucleation in submonolayer epitaxial growth. In particular,
the scaling properties of the island-size distribution Ns���
�where Ns is the number of islands of size s at coverage ��
have drawn much attention �11–30�. In the precoalescence
regime the island-size distribution satisfies the scaling form
�14,15�

Ns��� =
�

S2 f� s

S
� , �1�

where S is the average island size, and the scaling function
f�u� depends on the critical island size and island morphol-
ogy �18�.

A standard approach to nucleation and growth is provided
by the use of rate equations �REs� �11,12,31�. Such an ap-
proach has also been applied to a variety of other diffusion-
mediated processes including coagulation and chemical reac-
tions �32�. For the case of irreversible growth, rate equations
valid in the precoalescence regime may be written in the
form

dN1

d�
= 1 − 2R�1N1

2 − RN1�
s=2

�

�sNs − �1N1 − �
s=1

�

�sNs, �2�

dNs

d�
= R�s−1N1Ns−1 − R�sN1Ns + �s−1Ns−1 − �sNs �s � 2� ,

�3�

where R=D /F is the ratio of the monomer diffusion rate D
to the �per site� deposition rate F, the terms with �s corre-
spond to direct impingement, and the capture numbers �s
��1� correspond to the average capture rate of diffusing
monomers by islands of size s �monomers�. Using this ap-
proach and assuming scaling, Bartelt and Evans have shown
�19� that in the asymptotic limit of infinite D /F, the scaled
island-size distribution �ISD� is related to the scaled capture-
number distribution �CND� as

f�u� = f�0�exp��
0

u

dx
2z − 1 − C��x�

C�x� − zx � , �4�

where C�s /S�=�s /�av is the scaled CND, z is the dynamical
exponent describing the dependence of the average island
size on coverage �S	�z�, and f�0� is determined by the nor-
malization condition 
0

�du f�u�=1. We note that for the case
of irreversible growth of point islands as is considered here,
one has z=2/3.

The simplest possible assumption for the CND is the
mean-field �MF� assumption that the capture number is inde-
pendent of island size, i.e., �s=�av��� or C�u�=1. Using Eq.
�4�, for the case of irreversible growth �z=2/3� this leads to
the MF prediction for the asymptotic scaled ISD fMF�u�
= �1/3��1−2u /3�−1/2 for 0�u�3/2 which diverges at uc

MF

=3/2. However, for the case of irreversible submonolayer
growth on a two-dimensional �2D� substrate �d=2� it has
been shown �19� that, even for point islands, due to correla-
tions between the island size and the size of its surrounding
capture zone, the MF assumption does not hold, i.e., the
asymptotic CND depends strongly on island size. As a result,
the asymptotic scaled ISD does not diverge in d=2. Since
with increasing dimension d one expects that the effects of
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such correlations will decrease, the question then arises, what
happens for d�2, and in particular what is the critical di-
mension dc for MF behavior in irreversible nucleation and
growth?

In order to address these questions, we have recently car-
ried out kinetic Monte Carlo �KMC� simulations of a point-
island model of irreversible growth in three dimensions �3D�
�d=3� �33�. We note that this model may also be thought of
as a simplified model of vacancy formation and vacancy
cluster nucleation during irradiation. Surprisingly, we found
that while the scaled capture number distribution C�u� is
close to the MF prediction �and as a result the asymptotic
ISD diverges with increasing D /F� for large D /F both the
scaled ISD and CND differ from the MF predictions. In par-
ticular, due to geometric effects in 3D, the scaled ISD di-
verges more slowly than the MF prediction while the
asymptotic divergence occurs at a value of the scaled island
size, which is somewhat larger than the MF prediction. These
results suggest that the critical dimension dc for MF behavior
is larger than 3.

Here we present the results of KMC simulations of a
point-island model of irreversible growth carried out in d
=4 in order to compare with MF predictions. For compari-
son, the results of a self-consistent MF RE calculation are
also presented and compared with the corresponding simula-
tion results for the average island density N, monomer den-
sity N1, island-size distribution, and capture-number distribu-
tion. Our results indicate that, due to the decreased role of
correlations in 4D, the asymptotic scaled CND, capture-zone
distribution �CZD�, and ISD are in good agreement with the
MF prediction in d=4. These results indicate that the upper
critical dimension for irreversible nucleation and growth is
dc=4.

This paper is organized as follows. In Sec. II we first
describe our simulations. In Sec. III we present our self-
consistent MF rate-equation approach. In Sec. IV, we present
a comparison between our self-consistent MF RE calcula-
tions and KMC results for the average island and monomer
densities. We then present our KMC results for the scaled
ISD, CND, and CZD along with a comparison with MF
theory. Finally, we discuss and summarize our results in
Sec. V.

II. MODEL AND SIMULATIONS

In order to study the scaling behavior of the ISD, CND,
and CZD in 4D, we have used a simple point-island model of
irreversible nucleation and growth. Our model is a straight-
forward analog of the corresponding point-island model pre-
viously studied in two dimensions �19�. In our model, mono-
mers are created at random sites on a 4D cubic lattice with
rate F per site per unit time, and then hop randomly in each
of the eight nearest-neighbor directions with hopping rate
Dh. If a monomer lands on a site already occupied by another
monomer or is created at such a site, then a dimer island is
nucleated. Similarly, if a monomer lands on or is created at a
site already occupied by an island then that monomer is cap-
tured by that island and the island size increases by 1. The
key parameter in this model is the ratio Rh=Dh /F of the

monomer hopping rate to the �per site� monomer creation
rate, or equivalently the ratio R=D /F=Rh /8.

In order to study the asymptotic scaling behavior, we have
carried out simulations over a range of values of Rh ranging
from 105 to 1010 and with system sizes ranging from L=40 to
100. Our results were typically averaged over 200 runs to
obtain good statistics. For each set of parameters the scaled
ISD, CND, and CZD were obtained for coverages ranging
from �=0.1 to 0.4, while the average island density N��� and
monomer density N1��� were also measured. We note that in
order to measure the capture-number distribution, the
method outlined in Ref. �19� was used. In particular, the
capture number �s��� was calculated using the expression
�s���=ns

c / �R��N1NsL
4� where ns

c is the number of monomer
capture events corresponding to an island of size s during a
very small coverage interval ����0.001�. As in Ref. �19�
the island size s at the beginning of the coverage interval was
used when incrementing the counter ns

c in order to obtain
good statistics. We also note that in our capture-zone distri-
bution calculations, the capture zone v of an island was de-
fined as corresponding to all monomer sites or empty sites
which are closer to that island than any other island. If such
a site was equally close to several islands, then that site’s
contribution to the capture zone was equally distributed be-
tween the islands.

III. SELF-CONSISTENT RATE-EQUATION APPROACH

For the point-island model the island radius Rs is indepen-
dent of island size s, i.e., Rs=R0. Accordingly, within the MF
RE approach the capture numbers are assumed to be inde-
pendent of island size s and may be written as �s=����. The
coupled rate equations for the average monomer density N1
and island density N �where N=�s=2

� Ns� may then be written

dN1

d�
= 1 − 2N1 − N − 2�D/F��N1

2 − �D/F��N1N , �5�

dN

d�
= N1 + 2�D/F��N1

2. �6�

In order to solve Eqs. �5� and �6�, one has to obtain an ex-
pression for the capture numbers ����. As in Ref. �17� in
which a self-consistent RE approach to 2D irreversible
nucleation and growth is discussed, we consider a quasistatic
diffusion equation for the monomer density n1�r ,� ,	� sur-
rounding an island of size s of the form

�2n1�r,�,	� − 
−2�n1 − N1� = 0, �7�

where N1 is the average monomer density and


−2 = ��N + 2N1� . �8�

Assuming spherical symmetry Eq. �7� may be written in
4D,

1

r3

d

dr
�r3dñ1

dr
� − 
−2ñ1�r� = 0 �9�

where ñ1�r�=n1�r�−N1. The general solution is given by
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ñ1�r� = � 


r
� d

d�r/
�
�b1I0�r/
� + b2K0�r/
�� , �10�

where b1 and b2 are constants. Since ñ1�r�→0 as r→�, one
has b1=0 which implies that ñ1�r�	� 1

r
�
K1�r /
�. The irre-

versible growth boundary condition n1�Rs�=0 then leads to

n1�r� = N1�1 −
Rs

r

K1�r/
�
K1�Rs/
�� . �11�

Equating the microscopic flux of atoms near the island
SvD��n1 /�r�r=Rs

�where Sv=2�2Rs
3 is the surface area of a

sphere of radius Rs in 4D� to the corresponding macroscopic
RE-like term DN1�s, we obtain an equation for the capture
number,

�s =
Sv

N1
� �n1

�r
�

r=Rs

= 4�2Rs
2�1 +

Rs

2


K0�Rs/
�
K1�Rs/
�� . �12�

Since for the point-island model considered here Rs=R0, the
corresponding capture numbers may be written

�s = � = 4�2R0
2�1 +

R0

2


K0�R0/
�
K1�R0/
�� �13�

where R0 is a model-dependent constant of order 1 and 
 is
defined in Eq. �8�. In the limit of infinite D /F one has
R0 /
=0, which implies �=4�2R0

2, i.e., the capture numbers
have no coverage dependence.

IV. RESULTS

Figure 1 shows a comparison between our KMC simula-
tion results for the average monomer and island densities and
the corresponding self-consistent MF RE results obtained by

numerically solving Eqs. �5� and �6� along with Eqs. �8� and
�13�. Results are shown for Dh /F=105 ,107, and 109, while
the value of R0 �R0=0.407� was chosen to give the best fit to
the KMC data. As can be seen, there is excellent agreement
between the RE and KMC results over all coverages and for
all values of Dh /F. Thus, as was previously found in d=2
�17� and 3 �33�, the self-consistent RE approach provides an
accurate description for average quantities such as the mono-
mer and island density. We note that these results also imply
that the standard MF expressions for the dependence of the
island density and monomer density on coverage and D /F
apply, i.e., N1�� ,N	�D /F��3 for ���x and N1

	�D /F�−2/3�−1/3 ,N	�D /F�−1/3�1/3 for �
�x, where �x

	�D /F�−1/2 is the crossover coverage at which the island
density exceeds the monomer density. We now compare our
simulation results for the CND, ISD, and CZD with the cor-
responding MF rate-equation results.

Figure 2 shows the scaled capture number distribution
C�s /S� obtained in our KMC simulations at coverage �
=0.2 for Dh /F=105–1010. The MF prediction C�u�=1 is also
shown �horizontal dashed line�. As can be seen, in contrast to
the significant deviations between the KMC results and the
MF prediction observed in d=1 �23�, d=2 �19�, and d=3
�33�, the KMC results in 4D approach the MF prediction
with increasing Dh /F. In particular, C�u� for Dh /F=1010 is
approximately equal to 1 for u�1.5 while it increases
slightly with u for u�1.5. As already noted �see Eq. �4��, the
MF prediction implies the existence of an asymptotic diver-
gence in the scaled ISD at the point uc

MF=3/2 where the MF
CND crosses the line 2u /3. In order to find the correspond-
ing asymptotic crossing point in our simulations, we have
examined the point uc

KMC�D /F� at which the scaled CND
crosses the MF prediction C�u�=1 for u�3/2 as a function
of D /F. We find that the crossing point is well fitted by the
form uc

KMC�D /F�=uc
KMC���+c�D /F�−� with uc

KMC����1.50

FIG. 1. Comparison between KMC results �symbols� and the
corresponding self-consistent MF RE results �solid lines� for the
monomer density N1 and island density N as a function of coverage
for Dh /F=105 �circles�, 107 �squares�, and 109 �diamonds�.

FIG. 2. KMC simulation results for scaled CND for Dh /F
=105−1010. Horizontal dashed line corresponds to MF prediction.
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and �=0.22. This result indicates that the scaled CND exhib-
its pure MF behavior �i.e., C�u�=1 for 0�u�3/2� in the
asymptotic limit of infinite D /F.

As shown in Fig. 3, we have also studied the dependence
of the scaled CND on coverage � at fixed Dh /F=107. As can
be seen, for fixed D /F the CND distribution also appears to
gradually approach the MF prediction with increasing cover-
age. We note, however, that the asymptotic limit of very
large coverage corresponds to an “unphysical” limit of large
island density and small distance between islands and so is
of less interest than the limit of large D /F.

We now consider the behavior of the scaled ISD as a
function of D /F. Figure 4 shows a comparison between our
KMC results �symbols� and the corresponding self-consistent
MF RE results �solid curves� for the scaled ISD as a function
of D /F at coverage �=0.2. The asymptotic MF result f�u�
= 1

3 �1−2u /3�−1/2 �13,18� corresponding to infinite D /F is
also shown �dashed curve�. As expected, the scaled ISD be-
comes sharper and the peak of the scaled ISD increases with
increasing D /F, thus indicating a divergence in the
asymptotic limit of infinite D /F. In contrast to the 3D case
�33�, for the 4D case considered here, the KMC results are in
very good agreement with the corresponding self-consistent
MF RE results and approach the asymptotic MF prediction
with increasing D /F. However, for large D /F there is a
small difference of about 3.3% between the KMC peak val-
ues and the corresponding MF RE predictions. This differ-
ence may be explained by the fact that, while the scaled
CND approaches the MF prediction in the limit of infinite
D /F, for finite D /F there are still small deviations from the
MF prediction. While such deviations become smaller for
large D /F they are also more strongly amplified for large
D /F. As a result, the relative differences between the MF RE

prediction and the KMC results are essentially independent
of D /F for large D /F. Similar results have been obtained at
lower coverage ��=0.1� as well as at higher coverage ��
=0.4�.

In order to understand this difference, in Fig. 5 we plot the
peak values of the scaled ISD obtained from both KMC
simulations and MF RE calculations as a function of D /F for
two different coverages ��=0.2 and 0.4�. As can be seen, in

FIG. 3. KMC simulation results for scaled CND as a function of
coverage for Dh /F=107. Horizontal dashed line corresponds to MF
prediction.

FIG. 4. Scaled ISDs for Dh /F=105 ,107, 109, and 1010. KMC
simulation results �symbols�, RE results �solid lines�, and
asymptotic MF limit �dashed curve�.

FIG. 5. Log-log plot of peak value of scaled ISD as function of
Dh /F at different coverages.
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both cases the peak value fpk�D /F� of the scaled ISD in-
creases as a power law with fpk	�D /F�	, thus indicating a
divergent ISD in the asymptotic limit. However, in contrast
to our previous results in d=3 �33�, the value of 	 obtained
from the KMC simulations �	=0.081±0.005� for Dh /F
�107 is in excellent agreement with that obtained from our
MF RE calculations �	=0.083±0.005�. Thus, in the
asymptotic limit the scaled ISD obtained from KMC simula-
tions is essentially the same as the MF prediction.

The asymptotic position upk of the ISD peak is also ex-
amined in Fig. 6 for two different coverages ��=0.2 and 0.4�.
In order to extrapolate the asymptotic behavior, the peak po-
sition was fitted to the form upk�D /F�=upk���+c�D /F�−�

while the value of �=1/5 was used for the best fit. The
results obtained from KMC simulations �open circles� as
well from the MF RE predictions �filled circles� are shown.
As can be seen, there is excellent agreement between the
KMC and MF RE results at both coverages. In particular, for
the MF RE and KMC results we find upk

MF���=1.502 and
upk

KMC���=1.50±0.02, respectively. Thus, in contrast to the
corresponding KMC simulation results in 3D �33�, the
asymptotic peak position in 4D is in excellent agreement
with the MF RE result.

We note that for finite D /F the peak of the ISD increases
with increasing coverage as indicated in Fig. 5, and also
shifts to the right �see Fig. 6�. This is in agreement with the
MF RE prediction �19� that the scaled ISD depends on both
D /F and coverage. Accordingly, for the point-island model
in 4D there is no true scaling of the ISD with coverage and
D /F except in the limit of infinite D /F for which the result-
ing ISD diverges.

In order to further understand the observed MF behavior,
we have also measured the scaled CZD vs /vav=B�s /S� for
Dh /F=105–109, where vs is the size of the capture zone

corresponding to an island of size s, and vav is the size of the
average capture zone. Figure 7 shows typical results obtained
at coverage �=0.2 with D /F ranging from 105 to 109. The
MF prediction B�u�=1 is also shown �horizontal dashed
line�. As can be seen, the shape of the scaled CZD is similar
to that of the scaled CND. In particular, B�u��1 for u
�3/2 while near u=3/2 it increases rapidly with island size
for large D /F. In addition, for large D /F the scaled CZD
curves obtained from the KMC simulation appear to “pivot”
with increasing D /F around a fixed point at uc�1.5 which is
also the point at which they cross. Similar results have been
obtained at other coverages. In order to further understand
the asymptotic behavior, and also exhibit the coverage de-
pendence, in Fig. 8 we show the slope of each of the curves
at the crossing point u=3/2 as a function of D /F for cover-
ages ranging from �=0.1 to 0.4. As shown in Fig. 8, the
corresponding slope increases as a power law, i.e.,
mc�D /F�	�D /F�	�, while the value of the exponent �	�
�0.2� is essentially independent of coverage. This indicates
that in the asymptotic limit of infinite D /F, the scaled CZD
approaches the MF prediction.

V. DISCUSSION

In our previous study of irreversible nucleation and
growth in 3D �33�, we found that due to the existence of
�weak� correlations, the asymptotic scaled CND depends
weakly on the island size and accordingly the asymptotic
scaled ISD also differs somewhat from the MF prediction. In
particular, we found that the scaled ISD diverges more
slowly than the MF prediction while the asymptotic diver-
gence occurs at a value of the scaled island size which is
somewhat larger than the MF prediction. Based on these re-
sults we concluded that the critical dimension for MF behav-

FIG. 6. Plot of upk�D /F� as a function of �Dh /F�−� for Dh /F
ranging from 105 to 1010. Solid line is a fit as described in text with
�=1/5, and error bars are given for the KMC results.

FIG. 7. KMC simulation results for scaled CZD for Dh /F
=105−109. Horizontal dashed line corresponds to MF CZD.
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ior is higher than 3, and is possibly equal to 4.
The results presented here appear to confirm this predic-

tion since in general we have found excellent agreement be-
tween our KMC results and our self-consistent MF RE cal-
culations in d=4. In particular, our results for the exponent
describing the divergence of the peak height of the scaled
ISD as a function of D /F are in excellent agreement with the
MF RE results, while an analysis of the D /F dependence of
the peak position indicates an asymptotic divergence at a
scaled island size u=3/2 in good agreement with the MF
prediction. Our KMC results also indicate that at finite cov-
erage the scaled CND approaches the MF result C�u�=1 for
0�u�3/2 in the asymptotic limit of large D /F. Thus, we
conclude that the critical dimension for irreversible nucle-
ation and growth of point islands is equal to 4.

In this connection it is interesting to compare our results
with previous results obtained for the case of irreversible
aggregation �34–36� in which it was found that the upper
critical dimension is 2. This implies that fluctuations play an
important role for d�2 while there are logarithmic correc-
tions in 2D. If one only considers average quantities such as
the average island and monomer density, then in the
asymptotic limit of large D /F the same is true for the irre-
versible nucleation and growth of point islands. In particular,

for d=3 �33� and 4 the asymptotic average capture number
�av is a dimension-dependent constant which is independent
of island size s, coverage or D /F. �In contrast, for d=2 the
asymptotic average capture number may be written �17� as
�av	1/ ln��D /F�N1� where N1 decreases with increasing
D /F and coverage.� However, if one considers the island-
size and/or CND, then the results of Ref. �19� �d=2� and
Ref. �33� �d=3� indicate that due to correlations, for d�4
the scaled ISD and CND do not agree with the MF predic-
tion even in the asymptotic limit of large D /F. Thus, as
indicated by the results presented here, the critical dimension
for irreversible nucleation and growth is d=4.

We note that, recently, somewhat similar results have also
been obtained in simulations of coalescence and coarsening
of adlayer clusters �37�. In this particular case, it was found
that in d=2 there were significant deviations from MF theory
for the scaled cluster-size distribution and the cluster-cluster
correlation function. Thus, one may conclude that, as for
irreversible nucleation and growth, for the case of irrevers-
ible aggregation via cluster diffusion and coalescence, the
critical dimension may also be larger than 2. We note, how-
ever, that, due to the fact that all clusters diffuse in cluster-
cluster aggregation, the correlations are significantly weaker
than for the case of irreversible nucleation and growth.

Finally, we note that it would also be interesting to com-
pare our results with those obtained for a more realistic ex-
tended island model in d=4. For such a model, the corre-
sponding explicit size dependence of the capture number and
direct impingement terms is likely to lead to modified scaling
behavior for the ISD and CND. In this connection we note
that the ratio of the average island radius R	S1/d �where d
=4� to the average island distance l	N−1/d may be written
R / l	�1/d. Thus, for coverages significantly larger than 10−4

the point-island model is not a good approximation. How-
ever, in the asymptotic limit of large D /F, there will still be
a significant range of coverage �x���10−4 beyond the
“nucleation coverage” �x	�D /F�−1/2, such that the mean is-
land distance is significantly larger than the mean island ra-
dius, and the point-island model is still a good approxima-
tion. Accordingly, we expect that for such a more realistic
model the scaled ISD will still diverge in the asymptotic
limit of large D /F.
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