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Dynamical scaling behavior in two-dimensional ballistic deposition with shadowing
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The dynamical scaling behavior in two-dimensional ballistic deposition with shadowing is studied as a
function of the angular distribution of incoming particles and of the underlying lattice structure. Using a
dynamical scaling form for the surface box number, results for the scaling of the surface fractal dimension are
also presented. Our results indicate that, in addition to the usual self-affine universality class corresponding to
vertical deposition, there exist at least two additional universality classes characterized by distinct values of the
coarsening and roughening exponentand 8 describing the evolution of the lateral feature size and surface
roughness with film thickness, as well as the surface fractal dimelsior-or the case of a uniform angular
distribution corresponding to an anisotropic flux, we fime 3=1 andD;=1.7. However, for ballistic depo-
sition with an isotropic fluxcorresponding to a “cosine” angular distributigrwe find p=2/3 andD;=1.5
while the effective roughening exponefit=0.52-0.64 was found to be slightly lattice dependent. In both
cases, anomalous scaling of the height-height correlation function is also observed. In contrast, vertical depo-
sition leads to a self-affine surface with=2/3, 8=1/3, andD;=1. The asymptotic scaling behavior appears
to depend on the behavior of the angular distribution at large angles but does not depend on other details. An
analysis that clarifies the relationship between the launch angle distribution used in the simulations and the flux
distribution is also presented.
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[. INTRODUCTION tion with particles launchedsequentially from a “fixed”
height above the surface with a uniform angular distribution,
The evolution of the surface morphology during thediscrete off-lattice simulations by Tang and Liari@9]
growth and deposition of thin films has been a subject ofyielded an effective value of the roughening expongnt
intense interest for the last few yedrk,2]. As a result, a =0.7, whose value appeared to be approaching 1. However,
variety of simple models have been studied. One example ias shown in the Appendix and discussed in Se¢sék also
the ballistic deposition moddR,3] that corresponds to the Ref.[23]) such a uniform “launch angle” distribution does
irreversible “sticking” of particles to the growing film. Bal- not correspond to an uniform flux of particles above the sur-
listic deposition with vertical deposition has been extensivelyface but rather to a nonuniform flux distributiod(8)
studied[2], and is known to lead to a self-affine surface ~1/cos@), where 6 is the angle between the direction of
morphology whose scaling behavior corresponds to théncidence and the substrate normal. Similar res(lss, p
Kardar-Parisi-ZhangKPZ) equation[4]. In two dimensions, =pg=1) have also been obtained by Yatal. [17] from
the corresponding scaling exponents are known exactly to beumerical integration of the two-dimensional KPZ equation
a=1/2, 3=1/3, andp=2/3, wherea is the roughness ex- (which includes the effects of surface tension, noise, and
ponent corresponding to the dependence of the surfacsideways growthin the presence of shadowing with a simi-
roughness or rms surface width on lateral length scale  lar flux distribution[24].
(i.e., w~L%), the exponen{B describes the growth of the We note, however, that for sputter deposition, the angular
surface roughnesw with time (i.e., w~t?), andp is the distribution of atoms sputtered from the target is not typi-
coarsening exponent corresponding to the growth of the lateally uniform but in many cases may be approximated by a
eral surface correlation length or feature sizé.e., £é~tP). “cosine” distribution [22,25. Assuming a low gas/plasma
While vertical deposition leads to a self-affine surface,pressure, so that collisions with the gas can be neglected,
deposition with a distributio? () of deposition angles with  such a distribution implies aisotropic flux of particles ar-
respect to the substrate normal leads to an instability knownving at the surfacegsee the Appendjx Such an isotropic
as the shadow instabilifys,6]. The shadow instability is due flux distribution is also expected in the case of low-pressure
to the fact that parts of the surface that “stick out” may chemical vapor depositiofi23], as well as in the case of
shadow nearby points, thus retarding their growth. In thesputter deposition at high gas pressure due to the collisions
case of low-temperature sputter deposition of amorphous anof particles with the gas. However, the scaling behavior of
polycrystalline thin films, the shadow instability is known to ballistic deposition in the presence of such an isotropic flux
play a significant role in determining the surface morphologyhas not been studied.
[7-10Q. As a result, the effects of the shadow instability on  In this paper we present results for the scaling behavior of
the surface morphology have been extensively studied in the surface morphology for the case of two-dimensional bal-
variety of continuum and discrete modgls,6,11-23. In listic deposition with an isotropic flux distribution, as well as
particular, for the case of two-dimensional ballistic deposi-for an anisotropic flu§ J(6)~1/cos@)] corresponding to a
uniform launch angle distribution above the surface. In addi-
tion, using a dynamical scaling form, we present results for
*Electronic address: jamar@physics.utoledo.edu the dynamical scaling of the surface fractal dimension. Our
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! the square-lattice disk model, the particles are assumed to be
/é disks of uniform radius and again follow a ballistic off-lattice

\ trajectory until contacting the surface. The depositing par-
ticle is then moved to the lattice position nearest to the point
of contact. In the triangular lattice simulations a disk model
was also used but after reaching the surface the particles
were moved to the nearest unoccupied site on a triangular
lattice [see Fig. 1c)] corresponding to a site with one or

(a) (b) (e) more occupied nearest neighbors. In this case, two different

FIG. 1. Schematic showing ballistic deposition models studied:Models, a “one-bond” model and a “two-bond” model were
(a) square-lattice box modelp) square-lattice disk model, ar(d) studied. In the one-bond model the depositing particle was
triangular-lattice disk model. Arrows indicate particle trajectory andmoved to the nearest lattice site regardless of the number of
shaded squardsircles indicate final sticking sites. Open circles in bonds, while in the two-bond model the particle was moved
(b) and(c) indicate potential sticking sites. to the nearest lattice site with at least two nearest-neighbor
bonds. In all cases, the initial condition was a flat substrate.

results indicate that, in addition to the usual self-affine uni- In order to study the dependence of the surface morphol-
versality class corresponding to vertical deposition, in theogy on the angular distribution a variety of quantities were
presence of shadowing there exist at least two additional digneasured as a function of average film heighj. These
tinct universality classes. The scaling behavior in each uniincluded the root-mean-squafems) height fluctuations of
versality class is independent of the lattice microstructure othe surface or surface widthi=((h—(h))?)2 [whereh(x)

other details but depends on the angular distribution. is the maximum height of the surface at positioalong the
substratg¢ as well as the height-height correlation function
Il. MODEL G(x)=(h(0)h(x)), whereh(x)=h(x) — (h) and the height-

difference correlation functionG,(x)={(h(x)—h(0))?)

In order to study the dependence of the surface morpholwere calculated. The typical lateral surface correlation length
ogy and scaling behavior on the lattice geometry, we have was determined by calculating the valuexaforresponding
studied ballistic deposition on two different lattices, a squareg the first zero crossing @(x) [26]. From the dependence
lattice and a triangular lattice. In both cases, the depositingf the correlation length on film thickness the coarsening
particles were released from a random position along a lin@xponentp, where é~(h)P, was determined. Similarly the
of the same length as the substrate, which was parallel to g;rface widthw was used to determine the roughening expo-
the substrate but above the highest point of the surface, Withemﬁ wherew~ (h).

the appropriate angular distributioR(6) where 6 is the |5 order to characterize the surface morphology the
angle between the substrate normal and the direction of Ioughness exponent, where G(r)~r2 and the surface
cidence(see Fig. 1. As shown in the Appendix, the angular fractal dimensiorD; were also determined. In addition, the
dependence of the resulting fluxé) may be simply related  cjyster size or “tree” distributioi27] n(s) corresponding to

to the launch angle distributioR(6) using the relation the number of clusters of sizéwas also measured. As in
previous work on related mode[27,30, we identify all
J(0)~P(6)/cog 0). (D newly deposited particles that attach to the substrate in the

first layer and which have no neighbors in that layer, as cor-
Thus a uniform launch angle distributid?(#)~ const cor-  responding to seed particles for a new cluster. Any particle
responds to an anisotropic flux distributidiif) ~1/cos¢)  attaching to a given seed or cluster is assigned to that cluster.
while a cosine launch angle distributiét{ 6) ~cos@) corre-  |n the case in which a newly deposited particle simulta-
sponds to an isotropic flux. For the case of a uniform angulaneously attaches to two or more different clusters, then the
distribution, one hasP(¢)=1/m for —w/2<f<m/2 and cluster to which it is assigned is randomly chosen.
P(#)=0 otherwise, and the deposition angle was randomly |n order to minimize finite-size effects, which are particu-
selected with the appropriate weight using the expression |arly strong due to shadowing for the case of a uniform an-
=m(r—1/2), wherer is a uniform random number between gular distribution, both periodic boundary conditions and
0 and 1. For the case of an isotropic flux corresponding to &ery large system sizes were used, while typically 1000 lay-
cosine launch angle distribution, one Hagd)=3cosé for  ers were deposited. To allow simulations of such large sys-
—ml2<6<m/2 andP(6) =0 otherwise, and the deposition tem sizes and film thicknesses, a “bit” packing technidine
angle ¢ was determined using the expressiésarcsin(2  which one 16-bit word represented 16 different lattice gites
—1) where agaim is a uniform random number between O was used in order to conserve memory.
and 1.

In the case of a square lattice, two different models were

studied—a “box” model[see Fig. 1a)] and a square-lattice Ill. RESULTS
“disk” model [see Fig. b)]. In the box model, particles are
assumed to travel ballisticallfoff lattice) until they enter a
box that is a nearest neighbor to an occupied site. Once this Figure 2 shows our results for the surface coarsening and
occurs the corresponding box is occupjede Fig. 1a)]. In roughening behavior as a function of film thickness for the

A. Uniform launch angle distribution
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FIG. 2. Surface widthw and lateral feature siz&as functions of FIG. 3. Same as Fig. 2 but for cosine distribution.
average film thickneséh) for the square-lattice box model with a
uniform angular distributionl{=32 768). although in this case the effective roughening exporngnt
=0.64 appears to be somewhat lower than the coarsening
exponentp.

case of ballistic deposition with a uniform angular distribu-
tion P(#) using the square-lattice box model. As can be
seen, in this case both the roughening exporgr@ind the

In order to investigate the lattice dependence of the coars-
ening and roughening behavior in the case of a cosine distri-
: . bution, we have also carried out simulations using the trian-
coarsening exponent are approximately equal to 1. These a1 atice disk model for both the one-bond and two-bond
results are consistent with the off-lattice simulation results of. ;565 As can be seen in Fig. 6, in both cases we again find
Tang and Liang19] who found=0.7 but which seemed to |, 5/3 that is in good agreement with our results for the
be increasing with increasing film thickness. Interestingly,square-lattice box and disk models. However, the corre-
the resulipp=1 also agrees with recent theoretical predictionssponding values for the roughening exponeft=0.55
for the “grass” model[18] corresponding to growth of a +0.03 are somewhat smaller. While this may indicate that
random substrate with a uniform angular distribution in thethe asymptotic growth exponegk is weakly lattice depen-
absence of noise, even though there is no sideways growth igfent, it is more likely due to a significantly slower crossover
this model. As already noted, this result is also in agreemerto the asymptotic value for the triangular lattice.
with numerical integration resulfd7] for the KPZ equation
with shadowing and a uniform angular distributi@¥]. The C. Cluster-size distribution exponent
large values of3 andp obtained in these models are clearly
due to the very large flukJ(6) ~ 1/cos@)] at large angles of
incidence with respect to the substrate normal.

In order to determine the cluster-size distribution expo-
nentr [wheren(s)~s~ " is the number of clusters of sizgd
for the case of an isotropic flux, we have measured the
cluster-size distribution for a cosine angular distributibax
B. Cosine launch angle distribution mode). As can be seen in Fig. 7, the value of(i.e., 7
We now consider the scaling behavior of the surface mor=7/5) is the same as for the case of vertical deposit&8)
phology for the case of ballistic deposition with a cosine@nd is consistent with the scaling predictifi?8,29, 7=2
angular distribution which corresponds to an isotropic flux—[1/(1+p)] with p=2/3. We note that the resuit=3/2
J(6) = const for— m/2< §<=/2 andJ(8) =0 otherwise. As obtained in Ref[19] for a uniform angular distribution is

shown in Flg 3 for the box model. in this case we find also consistent with this Scaling relation Wlth:]. as ob-

significantly smaller values for the corresponding exponentst,"’“ned in our simulations.

i.e., p=B=2/3. As an independent estimate of the coarsen-
ing exponentp, we have also measured the dependence of
the densityp of “surface” clusters on the average film height ~ Figure 8 shows typical morphologies for small system
(h), where a surface cluster is a nearest-neighbor connectasize (L=256) obtained for thétwo-bond triangular-lattice
cluster (as defined in Sec. )llwhich contains at least one disk model for the cases df) vertical ballistic deposition,
particle at the surface of the film. Sinceplis the average (b) deposition with a cosine distribution corresponding to an
lateral surface cluster size, we expect tpat1/£~(h)P. isotropic flux, andc) deposition with a uniform angular dis-
As can be seen in Fig. 4, the resulting value for the coarsertribution after 40 ML have been deposited. Similar pictures
ing exponenp=0.69 agrees well with that obtained in Fig. 3 have also been obtained for the square-lattice disk model and
using the height-height correlation function. Similar resultsthe box model. In all cases the resulting films are “com-
(i.e. p=B=2/3) have also been obtainéske Fig. 5for the pact,” as indicated by the linear relation between the number
square-lattice disk model with a cosine angular distributiorof deposited layers and the average film heidint [31].

D. Dynamic scaling of the surface-fractal dimension
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FIG. 4. Surface cluster densityas a function of film thickness
for the square-lattice “box model” and a cosine distribution.
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FIG. 6. Surface width and lateral feature size as functions of
film thickness for the triangular-lattice model with a cosine angular
distribution (L=262144). Open symbols correspond to the one-
However, as can be seen in Fig. 8, as the “width” of the bond model(1b) while filled symbols correspond to the two-bond
angular distribution increases, the resulting films becomenodel (2b).

“rougher” and more “open” in structure. In particular, the

many “valleys” and “fiords” of different sizes in the case of N(I,t) as a function of box sizé and film thickness or
an cosine or a uniform distribution suggest that in the presgme t:
ence of shadowing the film surface itself may be fractal.

In order to quantitatively characterize the surface mor-
phology as a function of film thickness, we have calculate
the surface fractal dimensidd; for both a uniform angular

ﬂzttrr'&;t['(l)g%n;:; Coviiltnhetﬁleftz;fsuljlr?]n tili)sr:ngf ?engﬁqxi:;(fig?.g Figure 9 shows our results for the dynamic scaling func-
! g P y tion f(u) obtained using the square-lattice box model for

ing [33]. For a surface that is roughening during growth, one S L

expects that the range of length scales over which fracta}soglcﬁunjlu lirhglsétwkt,lg:l%?cggigstg? Eilgesdisidagg ]l;(N(tll‘?e

behavior may be observed should increase with film thick- y . = . y
; L system sizeL where eitherL=65536 orL=131072] In

ness as the typical lateral feature size, i.e&-asP. If N(I,t) both h . I i For th f .

corresponds to the number of boxes of dizmd dimension oth cases t ere Is exce ent_ scaling. For _t € case of a uni-

d+ 1 containing a surface particle at tihiéhen one expects form angular distribution we fin®;=1.7, while for the case

N(l 1)~ Di fogr | < £(t ar?d N(L ) ~1-9 ( heredflp s of a cosine distribution corresponding to a uniform flux

(.9 , ¢() (1,0 whered=" 1 above the surface we find;=1.5.
the dimension of a flat surfagéor | > £(t). Combining these In contrast, for the case of vertical depositiorot shown
observations with the assumption of scaling leads to the fol- '

lowing dynamical scaling form for the surface box numberWhile the surface appears to be fractal over short length
g dy 9 scales, the range of box sizes over which fractal scaling may

be observed does not increase with film thickness, and so the

N(I,t)=t~9Pf(1/tP), (2

there the dynamic scaling functiof(u) satisfies f(u)
~u~9for u>1 andf(u)~u~Pr for u<1.
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FIG. 5. Surface widthw and lateral feature siz&as functions of FIG. 7. Cluster-size distribution(s) for the square-lattice box
film thickness(h) for the square-lattice disk model with a cosine model with cosine distribution after 1000 layers have been depos-
angular distribution Il =131 072). ited (L=16 384, 40 runs
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surface is self-affing¢2]. Thus, even though the value of the
coarsening exponent is essentially_the :_sarpez:_e/:%) for E p=1.0
both vertical deposition and the cosine distribution, the co- B I
sine distribution leads to a fractal surface while vertical 1075

deposition does not. Figure 10 shows similar results for the /t?

case of a triangular lattice with a cosine distribution for both

the one-bond model and the two-bond model. In this case, FIG. 9. Surface-fractal-dimension dynamic scaling function
one again ha®;=1.5 for a cosine distribution. This sug- f(I/tP) for the square-lattice box model witte) cosine angular
gests that the surface-fractal dimensDpis in fact univer-  distribution and(b) uniform angular distribution.

sal, i.e., independent of the lattice geometry for a given an-

gular distributionP(6). square-lattice box model with a cosine distribution. As can
be seen in Fig. 12, the strong dependencepbn n indi-
cates strong multiscaling behavior that is again due to the

) ] fractal nature of the surface.
In order to further investigate the surface morphology we

E. Anomalous dynamical scaling and multiscaling

have also .mea.surgd the surface rpughngss_ expaméqt IV DISCUSSION
both a cosine distribution and a uniform distribution. Figure
11 shows the height-difference correlation funct®y(r) at We have studied the dynamic scaling behavior of the sur-

two different coverages for both the square-lattice box modeface in two-dimensional ballistic deposition with shadowing
and the triangular-lattice model for both distributions. As canas a function of both the angular distributi®{#) and the
be seen, the effective roughness exponertl/2 [34] is  underlying lattice structure. Our results demonstrate the ex-
significantly smaller than the value=1 predicted by the istence of at least two distinct universality classes in addition
usual Family-Vicsek scaling relatid83] = 8/p, thus indi-  to the usual self-affine universality clasa<1/2,3=1/3p
cating anomalous scalin@®5—37. The existence of anoma- =2/3) corresponding to vertical deposition. In particular for
lous scaling is further confirmed by the dependence of th¢he case of a uniform angular distribution, we foupe g
height-height correlation functio,(r) on film thickness =1 (square-lattice box modelThis result is consistent with
even for small and is likely due to the fractal nature of the earlier off-lattice simulations by Tang and Liaf@9]. The
surface, which leads to overhangs and results in large discomesultp=1 also agrees with recent theoretical predictions for
tinuities in the maximum surface height as a function ofthe “grass” model[18] corresponding to growth with a uni-
position. form angular distribution in the absence of noise, even
The existence of anomalous scaling also suggests the pogtough there is no sideways growth in this model. Thus it
sibility of multiscaling[38]. In order to investigate this pos- appears that for the case of a uniform distribution in two
sibility, we have also calculated the generalized roughnesdimensions, the scaling exponeptand 3 are universal, i.e.,
exponenta,, where G,(r)=([h(r)—h(0)]"y~r"* for the independent of the underlying lattice structure. As already
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FIG. 10. Surface-fractal-dimension dynamic scaling function
f(1/tP) for the triangular-lattice disk model with a cosine angular  fig. 11. Height-difference correlation functid@,(r) for the
distribution for(a) the one-bond model an®) the two-bond model. square-lattice box modéfilled symbol$ and two-bond triangular-

o . ) lattice model(solid lineg at 100 ML and 400 ML coveragel(
noted, such a distribution corresponds to an anisotropic flux 131 072) for(a) uniform distribution andb) cosine distribution.

distribution J(#) ~1/cos@) and the large values @ andp
are due to the large flux at high angles of incidence. We noteéetails do not affect the lateral coarsening behavior. How-
that these results do not agree with the dimensionever, this leaves open the question of how the coarsening
independent predictiop=3/4 obtained by Tan@t al. [11]  exponent depends on the angular distribution. We note that
for coarsening in the presence of noise. The discrepancy iKrug and Meakin{ 18] have shown that for the deterministic
most likely due to the neglect of shadowing in these argu~grass” model with random initial conditions, one hags
ments. =1 for V(7— 0)~(7— 0)* if x<1 whereV(0) is the local

In contrast, for a cosine angular distribution, correspondgrowth rate as a function of exposure anglen analogy to
ing to a uniform flux above the surface, we foupe2/3  this work, we conjecture that depending on the behavior of
independent of the lattice studied. These results indicate th@®(6) for large 0, either the KPZ universality classp(
for a given angular distributio?( ), the coarsening expo- =2/3D;=1) or the cosine universality clasp2/3D;
nent is universal and does not depend on the details of the 3/2) or the uniform universality clasp&E B8=1D;=1.7)
system. Similarly, the measured values for the effective surwill be selected. As a test of this conjecture, we have also
face roughening exponeit were found to be significantly carried out simulations for the triangular-latti¢ene-bondl
different than for a uniform distribution. For the square- disk model with an angular distributioR(#) that decays
lattice box model and disk models, we foumd=p=2/3. linearly to zero at 6===/2 [i.e., P(6)=(2/7)(1
However, for the triangular-lattice models the effective —2|6|/m)] and obtained scaling exponentp=£2/3, D;
roughening exponeng was found to be slightly lower, i.e., =3/2) in good agreement with our results for a cosine dis-
B=0.52—-0.57. While this may indicate that the asymptotictribution. The simulations of Tang and Liadd9] using a
growth exponent is weakly lattice dependent, it is moreuniform distribution up to some maximum anglg,, which
likely due to a significantly slower crossover to the indicated a transition from KPZ behavior to the uniform dis-
asymptotic value for the triangular lattice. tribution universality class at a critical value 6f,=80, are

We note that the existence of distinct universality classeslso consistent with this conjecture. However, further work
for coarsening is consistent with the “Huygen’s principle” will be needed to study more carefully the dependence of the
picture of Tanget al.[11], which indicates that microscopic universality class on the distribution.
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0.2(; L L L - In conclusion, our results show that while shadowing
1 4

plays a significant role in determining the surface morphol-
ogy in two-dimensional ballistic deposition, there appear to
FIG. 12. Generalized roughness exponeptas a function oh  be only a finite number of distinct universality classes. For
for the square-lattice box model with a cosine distribution. the case of a uniform angular distribution corresponding to
an anisotropic flux, our results confirm thgg=pg=1
[17,19, while the surface-fractal dimensidh;=1.7 is the

We have also used a dynamical scaling form for the sur e T ,
face box numbeN(1 1) to study the fractal-surface morphol- same as for Q|ffu3|on—llm|ted aggregation. In contrast,'for. the
’ case of a uniform flux above the surface, our results indicate

ogy in the presence of shadowing. Using this dynamical scalg,q eyistence of a new universality class witk 8= 2/3 and

ing form, we have shown that even though the resulting filmp —3/2 * although a slight dependence of the effective

is compact, for both a cosine and a uniform angular distribuyrowth exponenp on the lattice was observed. We have also

tion, the surface itself is fractal. In addition, the surface frac-presented an analysis that clarifies the connection between

tal dimensionD; appears to be independent of the latticethe launch angle distributio”R(#) and the flux distribution

geometry for a given angular distributié( ). In particular,  J(#8). In the future we plan to investigate the dependence of

we foundD¢=1.7 for the case of a uniform distribution and the surface morphology on the angular distribution in three-

D;=1.5 for the case of a cosine distribution. These resultglimensional models of ballistic deposition in order to obtain

are in contrast to the case of vertical deposition for which@ better understanding of the role of shadowing in low-

D;=1. As a consequence of the fractal morphology of the€mperature sputter deposition.

surface, anomalous scaling for the height-difference correla-

tion function G,(r) as well as multiscaling of the general-

ized local roughness exponedy} were observed. This research was supported by the Petroleum Research
It is interesting to note that the surface fractal dimensionFund of the American Chemical Society. Part of this work

D;=1.7 obtained for a uniform angular distribution is very was carried out using the computational facilities of the Ohio

close to that obtained for diffusion-limited aggregati@®]  Supercomputer Center.

in two dimensions. That this is the case may not be surpris-

ing since ballistic deposition with a uniform angular distri- APPENDIX: CONNECTION BETWEEN LAUNCH ANGLE

bution is essentially equivalent to a diffusion-limited aggre- DISTRIBUTION P(6) AND FLUX DISTRIBUTION

gation process for which the diffusion length is significantly (0)

larger than the feature size. Due to this difference, diffusion- As shown in Fig. 13, particles are sequentially launched

limited aggregation leads to clusters that are mass fractals &&om a random position €x<L along the “target” line of

well as surface fractals. Similarly, we note that the valuelength L above the substrate with an angular distribution

D¢=1.5 obtained for a cosine distribution is identical to theP(#). Consider a flux “tube” of cross-sectional “area¥

“local” fractal dimensionD,,.=2— a=23/2 for the case of which makes an anglé with respect to the substrate normal

ordinary (vertical) ballistic deposition. Thus, one may think as shown in Fig. 13. The total fluX ) of particles passing

of the effect of shadowing in this case as converting a locathrough such a tube is proportional to the target or launch

surface-fractal dimension into a global surface-fractal dimenareaAx= o/cos(), divided by the flux-tube cross-sectional

sion. Such a connection is consistent with the fact that thareao, times the probability?(6) that particles are launched

“coarsening” exponenp=2/3 is the same in both cases.  at angled. Thus, one had(6)~ P(6)/cos().
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