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Abstract

We have generalized and implemented the hybrid asynchronous algorithm, originally proposed for parallel simula-
tions of the spin-flip Ising model, in order to carry out parallel kinetic Monte Carlo (KMC) simulations. The parallel
performance has been tested using a simple model of thin-film growth in both 1D and 2D. We also briefly describe how
the data collection must be modified as compared to the case of the spin-flip Ising model in order to carry out rigorous
data collection. Due to the presence of a wide range of rates in the simulations, this algorithm turns out to be very inef-
ficient. The poor parallel performance results from three factors: (1) the high probability of selecting a Metropolis
Monte Carlo (MMC) move, (2) the low acceptance probability of boundary moves and (3) the high cost of communi-
cations which is required before every MMC move. We also find that the parallel efficiency in two dimensions is lower
than in one-dimension due to the higher probability of selecting an MMC attempt, suggesting that this algorithm may
not be suitable for KMC simulations of two-dimensional thin-film growth.
� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Recently there has been considerable interest [1–14] in the development of parallel algorithms for
dynamical simulations of stochastic processes. One of the primary motivations is the desire to carry out
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simulations over larger length and time scales. For example, recently it has been shown that rigorous par-
allel Metropolis [15] Monte Carlo (MC) simulations may be carried out using a conservative asynchronous
algorithm [1,2,9,11]. In such an algorithm, a �local time condition� is used such that only processors whose
next attempt time is less than their neighbor�s next attempt times may proceed. Since in Metropolis Monte
Carlo (MMC) the time of an attempt does not depend on the system configuration, this algorithm guaran-
tees a rigorously correct evolution. In a series of interesting papers [9–11,13], Korniss and co-workers have
applied this algorithm to spin-flip MMC simulations and investigated the connections between the scaling
behavior of such an algorithm and the KPZ (Kardar–Parisi–Zhang) [16] and Edwards-Wilkinson [17] equa-
tions. They also showed that the use of additional �local-time restrictions� in the form of a small-world net-
work [10,11,13] can efficiently enhance the processor synchronization and thus reduce the memory
requirements involved with data-taking.

In contrast to Metropolis Monte Carlo simulations, in kinetic Monte Carlo (KMC) simulations the time
for an event depends on the system configuration. In particular, the time for an event executed by a pro-
cessor may be affected by events in neighboring processors. As a result, the local time condition is not suf-
ficient to guarantee an accurate parallel evolution. However, Lubachevsky [2] has developed, and Korniss
et al. [3] have implemented a ‘‘hybrid’’ algorithm for parallel dynamical Monte Carlo simulations of the
spin-flip Ising model. The basic idea is to apply Metropolis Monte Carlo dynamics to events on the bound-
ary of a processor, but to accelerate interior moves by using the n-fold way [18] which is equivalent to ki-
netic Monte Carlo. While all KMC moves are immediately accepted, all Metropolis attempts must satisfy
the �local time restriction�, i.e. wait until the neighboring processor�s attempt time is later before being either
accepted or rejected. Due to the presence of the Metropolis Monte Carlo region on the processor boundary,
the propagation of fast events over several processors is prohibited, thus resulting in a correct time evolu-
tion. Since such an algorithm is equivalent to the conservative asynchronous algorithm for parallel MC, it is
generally scalable [9,11,19]. In addition, it has been found to be relatively efficient in the context of kinetic
Ising model simulations at intermediate temperatures in the metastable regime [3,20,21].

Here, we first discuss how such a ‘‘hybrid’’ algorithm may be used to carry out parallel KMC simulations
of thin-film growth. In addition, we discuss the implementation and performance of this algorithm in sim-
ulations of a simple model of epitaxial growth in one- and two-dimensions. We note that although the hy-
brid algorithm is asynchronous, due to the fact that MPI-2 is not widely available, most of our results have
been obtained by carrying out ‘‘quasi-synchronous’’ simulations using MPI-1. However, for comparison we
also present the results of purely asynchronous simulations carried out using MPI-2 for the 1D case. In
addition, we briefly discuss how the data collection algorithm used in parallel simulations of the spin-flip
Ising model must be modified in order to guarantee rigorous data collection in parallel KMC simulations.

Our results may be summarized as follows. We find that, except for 1D simulations in which relatively
large system sizes are typically used, for the typical parameters and processor and system sizes in epitaxial
growth simulations, the parallel efficiency of the ‘‘hybrid’’ algorithm is significantly limited by three main
effects: (1) the high probability of selecting a boundary MMC move which is due to the large range of rates
in thin-film growth; (2) the low acceptance probability of boundary MMC moves (also due to the large
range of rates in thin-film growth); and (3) the requirement of interprocessor communication before each
boundary MMC move. As a result, the hybrid algorithm does not appear to offer an efficient simulation
method for parallel KMC simulations of epitaxial growth except at relatively low temperatures. However,
our results also indicate that if the interprocessor communication speed can be significantly increased, then
reasonable parallel efficiencies may be obtained.

The organization of this paper is as follows. In Section 2, we first describe the epitaxial growth model
that was used in our simulations. Section 3 contains a detailed description of the algorithm as well as a gen-
eral description of the mapping that converts KMC to MMC in one- and two-dimensions. In Section 4, we
present results for the parallel performance obtained using this algorithm for a simple model of thin-film
growth. Finally, Section 5 contains a brief summary and discussion.
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2. Growth model and spatial decomposition

In order to test the efficiency of the hybrid asynchronous algorithm in parallel kinetic Monte Carlo sim-
ulations, we have considered a simple model of epitaxial growth in which monomer deposition and diffu-
sion are included but no island relaxation or detachment is allowed. We note that such a model is
appropriate for low-temperature epitaxial growth. In this model, atoms (monomers) are deposited onto lat-
tice sites with a (per site) deposition rate F, diffuse (hop) to nearest-neighbor sites with hopping rate D, and
attach irreversibly to other monomers or clusters via a nearest-neighbor bond (critical island size of 1).
Thus, the key parameter is the ratio D/F of the monomer hopping or diffusion rate D to the deposition rate
F. We note that in typical simulations of epitaxial growth, D/F � 1 and for this reason KMC simulations
are typically computationally demanding. In our simulations, the lattice configuration is represented by an
array of heights (i.e., a solid-on-solid condition is assumed) while periodic boundary conditions are used.

In order to carry out parallel simulations of a 2D (1D) system of size Lx · Ly (Lx · 1), domain decom-
position using quasi-1D ‘‘strips’’ is used. As shown in Fig. 1, the system is divided along the x-direction into
Np subdomains of width Nx = Lx/Np and height Ly where Np is the number of processors. The sites labelled
1 through Nx correspond to those belonging to processor i, while the sites whose numbers are in parenthe-
ses (i.e., sites 0 and Nx + 1) are in the ‘‘ghost region’’ of processor i, i.e., those sites belong to neighboring
processors but must be updated by processor i through communication with the appropriate neighbor be-
fore carrying out any boundary moves. Because the range of interaction in our model is one lattice site, two
ghost-sites are required in 1D while 2Ly ghost-sites are required in 2D. The arrows in Fig. 1 indicate the
possible directions for a monomer to hop on a 2D lattice.

In our simulations the hybrid asynchronous algorithm was implemented using two different methods.
Since MPI-1 is easily available and relatively easy to implement, in most of our simulations MPI-1 was
used. However, since only two-way communications are allowed in MPI-1, in these simulations a quasi-
synchronous method was used in which every processor must communicate with its two-neighboring pro-
cessors before its next attempt or move regardless of whether or not it is a Metropolis attempt or a KMC
move. Since this can lead to a large communication cost when KMC events dominate over MMC attempts,
for comparison we also carried out some simulations using a purely asynchronous implementation via
MPI-2. In these simulations only processors doing an MMC attempt must �communicate� by accessing
the open memory area of the relevant neighboring processor to get the necessary boundary information.

Our simulations were carried out on the SunFire 6800 cluster at the Ohio Supercomputer Center (OSC)
which is a shared memory machine with 44 64-bit 900 MHz UltraSparc III processors. This machine was
chosen because both MPI-1 and MPI-2 were available on this machine. We note that previous studies of
the efficiency of parallel MMC algorithms [9–11] along with parallel simulations of the spin-flip Ising model
using the hybrid algorithm [3] indicate that for the case of asynchronous communication the parallel efficiency
is only weakly dependent on the number of processors. Accordingly, since typically only a few processors were
available on this machine, most of our simulations were carried out using a relatively small value of Np, i.e.
Np = 4. However, for our 1D simulations carried out using MPI-1 (two-way) communications, the depen-
dence of the parallel efficiency on the number of processors was also studied using the Itanium cluster at OSC.
Fig. 1. Schematic diagram of quasi-1D strip decomposition for a 2D system. The sites 0 and Nx + 1 are in the ‘‘ghost region’’ of
processor i and the arrows indicate the four possible directions for a monomer to hop on a 2D lattice.
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Most of our simulations were carried out using a moderate value of D/F, i.e. D/F = 105. However, in
order to determine the dependence of the parallel efficiency on D/F, some simulations were also carried
out using a smaller value, i.e. D/F = 103 corresponding to lower temperature growth. We have also carried
out simulations for a variety of different values of Nx in order to determine the dependence of the parallel
efficiency on processor size.

As already noted, since the hybrid algorithm is asynchronous, at any given moment in real time the �vir-
tual time� of each processor may be slightly different. In simulations of the spin-flip Ising model using the
hybrid asynchronous algorithm [3], this does not pose a problem for data-taking because each processor
may save its configuration whenever its next-event time has just exceeded the desired data-collection time.
Accordingly, the corresponding configurations may be re-grouped either during or after the run in order to
collect data. However, due to the presence of diffusion in the models studied here, the boundary sites of a
given processor (see Fig. 1) may be modified by a neighboring processor whose �virtual time� is earlier.
Thus, when a processor�s next-event time exceeds the data-collection time, its boundary sites may not be
up-to-date. This error may be corrected by keeping track of the �last time� before the data-collection time
at which each processor modifies its boundary or ghost sites. However, we note that in our MPI-1 simu-
lations the possibility of such errors is relatively low since all processors communicate every cycle. In addi-
tion, in our purely asynchronous MPI-2 simulations the time fluctuations between processors is still
relatively low due to the large fraction of MMC attempts. As a result, no significant errors were detected
and for simplicity we have not included such a correction.

We note that to measure the parallel efficiency all our simulations corresponded to the deposition of 1
monolayer (ML). We also tested the accuracy of our parallel simulations by comparing results for the
monomer and island densities with serial simulations. In order to ensure the independence of the random
number sequences in each processor, each processor�s random number generator was supplied with a dif-
ferent seed which was determined by the processor�s identification number, at the beginning of each simu-
lation. We now discuss how the hybrid asynchronous algorithm described in [3] for the case of the spin-flip
Ising model may be generalized to apply to more general KMC models.
3. Hybrid asynchronous conservative algorithm

In the hybrid asynchronous algorithm each processor�s domain is divided into two separate regions-a
boundary or Metropolis Monte Carlo (MMC) region and an interior KMC region (see Figs. 2 and 3). Since
the interior KMC moves are not affected by and do not affect the neighboring processors, all KMC moves
are immediately accepted. However, since moves in the boundary region are affected by or can affect the
neighboring processor, all MMC attempts must wait until the �local time condition� that the next event time
of the corresponding neighboring processor is later is satisfied, before being either rejected or accepted with
Fig. 2. Schematic diagram showing MMC region and interior KMC region in 1D. The sites 0 and Nx + 1 are in the ‘‘ghost region’’ of
processor i. The horizontal arrows indicate the two possible directions for a monomer to hop on an 1D lattice and the vertical arrows
indicate possible deposition at the sites 1 and N.



Fig. 3. Schematic diagram showing MMC region and interior KMC region in 2D. The sites 0 and Nx + 1 are in the ‘‘ghost region’’ of
processor i. Filled circles denote actual particles in each region. Periodic boundary conditions are applied to along the Ny direction.
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the appropriate acceptance probability. The choice of either a KMC or an MMCmove is determined by the
current configuration of each processor�s domain.

In order to extend the hybrid asynchronous approach used in parallel Ising spin-flip simulations [3] to
the case of parallel KMC simulations, we first carry out a mapping to Metropolis Monte Carlo. In the sim-
plest approach, the KMC event rates Ri may be mapped to Metropolis acceptance probabilities P i

acc by
dividing the rate Ri for each possible event by the maximum possible single event rate Rmax in our model,
i.e., P i

acc ¼ Ri=Rmax. We note that Rmax is a fixed rate which is independent of the configuration and depends
only on the model. The KMC simulation can then be replaced by a Metropolis simulation in which at each
step one of the NMMC possible MMC moves is selected randomly and then accepted with a probability gi-
ven by P i

acc. We note that in the KMC simulation, the time interval between events is given by
Dt ¼ � lnðrÞ=RKMC

tot , where r is a uniform random number between 0 and 1 and RKMC
tot ¼

P
Ri corresponds

to the sum of the rates of all possible events for a given system configuration. Accordingly, the average time
before the next event for a given configuration is given by hDti ¼ 1=RKMC

tot . Since the acceptance probability
is one, the average event rate (i.e., the number of events per unit of simulated time) is given by
ERKMC ¼ 1=hDti ¼ RKMC

tot as expected. Similarly, in the corresponding MMC simulation the time interval
between events is given by Dt = �ln(r)/(NMMCRmax) while a particular Metropolis event is selected with
probability 1/NMMC and accepted with probability Pacc = Ri/Rmax. Accordingly, the average event rate
for the Metropolis simulation is the same as for the KMC simulation.

To reduce the rate of rejection due to MMC moves and thus improve the efficiency, the hybrid asynchro-
nous algorithm is used, i.e., Metropolis moves in the interior are replaced by KMC moves. In the simplest
possible implementation, the total rate for boundary MMC attempts is given by
Rbdy ¼ NbdyRmax; ð1Þ

where Nbdy is a fixed number equal to the total number of possible different moves which may occur in the
boundary region. As an example, for the 1D model considered here, Nbdy = 10 since there are 8 possible
boundary hops to the left or right and 2 possible deposition moves at the boundaries (see Fig. 2) while
Rmax = D/2 corresponding to either a leftward or rightward hop. The probability of selecting a KMC event
is then given by,
PKMC ¼ RKMC=ðRKMC þ RbdyÞ; ð2Þ

where RKMC is the total rate of KMC moves in the interior region, and the probability of selecting a bound-
ary MMC event is Pbdy = 1�PKMC. If a KMC event is chosen, the particular move carried out is selected
with a probability proportional to its rate. In contrast, if a boundary event is chosen, the particular MMC
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move is selected randomly from all possible boundary moves while the acceptance probability is given by
P i
acc ¼ Ri=Rmax [22]. If a KMC move is selected then that move is performed immediately since it is not af-

fected by neighboring processors. However, if a boundary MMC event is selected, then the move cannot be
attempted until the time of the neighboring processor�s next move is later. Since the time interval between
events is given by
Dt ¼ � lnðrÞ=ðRKMC þ RbdyÞ; ð3Þ

where r is a uniform random number between 0 and 1, one may show that the average event rate ER is the
same as for the pure KMC or MMC algorithms.

While such an implementation of the hybrid asynchronous algorithm is more efficient than the pure
Metropolis asynchronous algorithm, it has the disadvantage that for parallel KMC simulations in which
there are many possible types of events, Nbdy will be large, and thus a boundary move will be selected with
a high probability even though the acceptance probability will be low. A more efficient approach is to divide
the boundary events into different types so that the total rate for boundary events is given by
Rbdy ¼
X
t

N tRt; ð4Þ
where Rt is the rate for a single boundary event of type t and Nt is the number of possible boundary events
of that type. We note that for each event type t, Nt is a fixed number which is independent of the config-
uration and depends only on the model and boundary geometry. If a boundary event is chosen, the type t of
event is selected with a probability proportional to the total rate NtRt for that type while the selected
boundary move (chosen randomly from among the Nt moves of that type) is either accepted if it corre-
sponds to an actual move or rejected if it does not, once the �local time condition� is satisfied. The expres-
sions for the probability of selecting a KMC or boundary event and for the time interval between events are
the same as in Eqs. (2) and (3), but using this expression for Rbdy. The advantage of this method is that even
if there are a large number of different types of events, as long as these events have low rates compared to
the maximum single event rate Rmax they will only contribute weakly to the total rate Rbdy and thus the
MMC rejection rate will be reduced. As an example in our 1D model, if the selected boundary move cor-
responds to a a hop of a monomer at site Nx�1 to the right, then once the �local time condition� is satisfied,
that move is accepted if there is a monomer present at site Nx�1, and is rejected if there is no monomer at
site Nx�1. On the other hand if the selected boundary move corresponds to deposition at site Nx, then that
move is immediately accepted. In contrast, using the simpler hybrid method described above, such a depo-
sition move would only be accepted with probability Ri/Rmax = 2F/D.

For the 1D model considered here with D/F� 1, we have Rmax = D/2 corresponding to either a leftward
or rightward hop, ND = 8 since there eight possible boundary diffusion moves with rate RD = D/2, and
NF = 2 since there are 2 possible boundary deposition moves with rate RF = F. In this case Rbdy = 4D + 2F
and RKMC = (Nx�2)F + n1D where n1 is the number of monomers in the interior region of the processor
and Nx is the processor size. The probability of selecting a boundary move is then given by,
P bdy ¼
4Dþ 2F

4Dþ NxF þ n1D
. ð5Þ
Similarly, for the 2D model we have Rmax = D/4 corresponding to either a hop to the east, west, south, or
north, ND = 16Ny since there are 16Ny possible boundary diffusion moves with rate RD = D/4, and
NF = 2Ny since there are 2Ny possible boundary deposition moves with rate RF = F. In this case
Rbdy = (4D + 2 F)Ny and RKMC = [(Nx�2)F + n1D]Ny and the probability of selecting a boundary move
is again given by Eq. (5).

We note that the results presented here were all carried out using the basic hybrid algorithm Eq. (1) and
as expected, no difference was found between the parallel and serial KMC results. Simulations were also
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carried out using the more efficient approach (Eq. (4)). However, the parallel efficiency was found to be only
slightly higher than obtained using the basic hybrid algorithm.
4. Parallel efficiency

Before presenting our results, we first discuss the factors which determine the parallel efficiency. We de-
fine the parallel efficiency PE as equal to the ratio of the execution time t01p for an ordinary KMC serial
simulation of one processor�s domain to the parallel execution time tNp of Np domains using Np processors,
i.e.
PE ¼
t01p
tNp

. ð6Þ
Thus, the total speedup is equal to the PE multiplied by the number of processors Np. We now discuss the
different factors which may affect the PE.

We first note that the parallel execution time tNp for Np processors can be written as
tNp ¼ tMMC
p þ tKMC

p þ tcom; ð7Þ
where tMMC
p is the average calculation time per processor taken for all MMC attempts, tKMC

p is the average
execution time per processor for all KMC events in the interior region, and tcom is the average communi-
cation time per processor. If we define the ratios j ¼ htMMC

p i=htKMC
p i and g ¼ htKMC

p i=ht01pi then the theoret-
ical parallel efficiency may be written as
PE ¼
ht01pi
htNpi

’ 1þ hDðj; gÞi þ tcom
ht01pi

" #�1

; ð8Þ
where ÆD(j, g)æ = jg + g�1. If we assume that the communication time is negligible compared to ht01pi, then
the ideal parallel efficiency can be written as
PEideal ¼ ½1þ hDðj; gÞi��1. ð9Þ

We note that the ratio g may be conveniently calculated in terms of the numbers of different types of events
in a parallel simulation, i.e., g ¼ NKMC

p =NKMC
1p , where NKMC

p is the average number of KMC events per pro-
cessor in a parallel simulation and NKMC

1p is the number of events in a one-processor KMC simulation of a
single processor�s domain, or equivalently, the total number of actual events per processor in a parallel sim-
ulation. In our parallel simulations we have found that this ratio is close to 1 (i.e., almost all real events are
KMC events) and as a result g . 1 and ÆD(j,g)æ.j.

In order to further understand the parallel performance of the algorithm, we have measured a variety of
other quantities as defined in Table 1. In particular, in our parallel simulations we have measured the ratio
qMMC of the total number of MMC attempts NMMC (where each check of the �local time condition� corre-
sponds to an MMC attempt regardless of whether or not it is satisfied) to the total number Ntot of MMC
and KMC attempts, as well as the ratio qKMC = 1�qMMC corresponding to the ratio of the total number of
KMC attempts to Ntot. Defining the ratio c � htMMC

1 i=htKMC
1 iÞ of the average calculation time, including all

attempts and waiting time, to carry out a single MMC event to the average calculation time to carry out a
single KMC event, then we may write j.cqMMC/qKMC. Thus assuming g.1 as in our simulations, for
small values of qMMC/qKMC corresponding to a small fraction of MMC attempts, the ideal PE will be close
to 1 while for large values of this ratio the ideal PE will be small.

We note that the ratio c is a function of the processor width Nx and D/F and is determined by
the balance between the quantities related to the MMC attempts defined in Table 1. For example,



Table 1
Quantities measured for parallel performance

Quantity Definition

Ntot Total number of MMC and KMC attempts
NMMC Total number of MMC attempts
NKMC Total number of KMC events carried out
qMMC NMMC/Ntot

qKMC NKMC/Ntot

qwait Nwait/NMMC

qempty Nempty/NMMC

qreal Nreal/NMMC
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for D/F = 105 we find c.0.33 for 1D simulations with Nx = 103 and c . 0.12 in 2D with Nx = 256,
Ny = 8. In order to better understand the efficiency of the MMC attempts one may also define the
probabilities qwait = Nwait/NMMC, qempty = Nempty/NMMC, qreal = Nreal/NMMC, where qwait + qempty + q-
real = 1 and where Nwait corresponds to the number of times the �local time constraint� was checked
and not satisfied, Nempty corresponds to the number of times an attempted Metropolis diffusion move
which satisfied the local time constraint was rejected since no monomer was present, and Nreal corre-
sponds to the number of actual Metropolis events. Since the waiting time is the dominant time in the
MMC attempts, to a good approximation one may write c . cqwait, where c is only weakly dependent
on parameters such as D/F and the system size Nx. In particular, we find that c . 0.6 in 1D and
c . 0.2 in 2D.
5. Results

5.1. 1D Model

Fig. 4 shows the measured and ideal parallel efficiencies for this case as a function of the system size Nx

for D/F = 105. As can be seen, for small Nx the ideal PE is close to 0.1 since in this case the KMC rate
RKMC is small compared to the MMC rate Rbdy. As a result the probability of selecting an MMC attempt
(see Eq. (5)) is large. However, with increasing Nx the ideal PE increases, approaching 1 for Nx > 104. This
is consistent with the increase in the ratio qKMC/qMMC of KMC events to MMC attempts with increasing
processor size as shown in Fig. 4(a). We note that the ideal parallel efficiency was calculated using Eq. (9)
along with directly measured values for g and the approximate form j . 0.6(qMMC/qKMC)qwait. Also
shown in Fig. 4 is the measured PE using MPI-1 for a smaller value of D/F (D/F = 103). Due to the de-
creased probability of selecting an MMC attempt, the parallel efficiency is slightly higher for D/F = 103

than for D/F = 105.
For large Nx the ideal PE approaches 1. However, due to the cost of communications the measured par-

allel efficiencies shown in Fig. 4 (b) are significantly lower. In particular, for the MPI-1 simulations, in
which communications are required every cycle, the measured PE is significantly lower than the ideal PE
due to the cost of communications. For the MPI-2 case the PE is larger (especially for large Nx) since com-
munications are only required for MMC events. However, in this case the PE is still relatively small
(approximately 0.2) for Nx = 105 although it appears to be still increasing with increasing Nx. The relatively
slow increase in the measured PE with Nx for large Nx appears to be related to the fact that as Nx increases,
the number of MMC attempts also increases despite the decreased probability of selecting an MMC event.
In particular, the increased fraction of KMC attempts leads to decreased synchronization between neigh-
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Fig. 4. (a) Event-selection probabilities and (b) parallel efficiency as function of processor size Nx in 1D where Np = 4 and h = 1 ML.
In (b) solid line with open squares corresponds to measured PE using MPI-2 for D/F = 105.
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boring processors. As a result the value of qwait increases monotonically with Nx as shown in Fig. 4(a). We
note that such an effect might be reduced by using small-world communications to enhance synchronization
as described in [11]. However, such an implementation may also add significant communications overhead.

We have also measured the parallel efficiency for the 1D case as a function of D/F (Nx = 105) as shown in
Fig. 5. We note that this system size is typical of that usually used in KMC simulations of 1D epitaxial
growth models, since large system sizes are needed to obtain reasonable statistics. Since Nx is large, the ideal
PE remains close to 1 even for large D/F. However, as before, due to communication delays the measured
values of the parallel efficiency are significantly lower. In addition, the measured PE decreases with increas-
ing D/F since the decrease in the monomer density leads to an increase in the fraction of MMC attempts
(qMMC) as well as in the fraction (qempty) which are �rejected� (see Fig. 5(a)). Again the parallel efficiency
obtained using MPI-2 is significantly larger than that obtained using MPI-1.

Finally, we consider the dependence of the parallel efficiency on the number of processors. As already
noted, in previous work using asynchronous communication [3,9–11] the parallel efficiency was found to
depend only weakly on the number of processors. Thus we expect that the PE obtained in our MPI-2 sim-
ulations should decrease only slightly as the number of processors increases. However, for the MPI-1 sim-
ulations this is not necessarily the case. To illustrate this, Fig. 6 shows the Np-dependence of the parallel
efficiency obtained from MPI-1 simulations of the 1D model with D/F = 105. The processor size
Nx = 10,000 was chosen such that the probability of picking an interior KMC event is approximately equal
to the probability of selecting a Metropolis boundary event. As can be seen, the parallel efficiency decreases
from PE . 0.01 for Np = 4 to PE . 0.003 for Np = 100, although it appears to saturate for large Np. This
behavior is similar to that observed previously in simulations using the synchronous sublattice algorithm [6]
and is due to local fluctuations in the time horizon which can cause delays when using two-sided commu-
nication. While such fluctuations initially increase with Np they eventually saturate for large Np since only
local fluctuations are involved. Also shown in Fig. 6 is the ideal parallel efficiency which was calculated
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Fig. 5. (a) Probabilities and (b) parallel efficiency as a function of D/F in 1D with Np = 4, Nx = 105, and h = 1 ML.

Fig. 6. Dependence of parallel efficiency on Np for 1D model simulated using MPI-1. Parameters used areD/F = 105 and Nx = 10,000.
Solid line corresponds to ideal PE.
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assuming no communication delay. As can be seen the ideal PE is more than two orders of magnitude lar-
ger, saturating at a value PE . 0.7 for large Np.

5.2. 2D Model

Fig. 7 shows our MPI-1 results for the PE of the 2D model with D/F = 105, Np = 4 and fixed system
width Nx = 256 as a function of system height Ny. We note that the selected values of Nx and D/F corre-
spond to typical values used in KMC simulations of 2D epitaxial growth. As expected the parallel efficien-
cies and measured probabilities are essentially independent of Ny. However, because of the relatively small
value of Nx compared to the 1D case, the probability qMMC of selecting an MMC attempt is very close to 1.
As a result, the ratio qMMC/qKMC is large and since g.1 the ideal PE is significantly lower than 1. Due to
communication delays, the measured parallel efficiencies are even lower (of the order of 10�4–10�3).
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Fig. 7. (a) Probabilities and (b) parallel efficiency in 2D as a function of Ny. Here, Nx = 256, Np = 4, D/F = 105, and h = 1 ML.
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Fig. 8 shows the corresponding results for the parallel efficiency as a function of D/F with fixed processor
size Nx = 256. Here for convenience we have chosen a small value of Ny since the PE does not depend on
Ny. As for the 1D case we find that the measured PE decreases with increasing D/F since this leads to an
increased probability of selecting an MMC attempt and an increased probability of rejection. The
a

b

Fig. 8. (a) Probabilities and (b) parallel efficiency in 2D as a function of D/F. Here, Nx = 256, Ny = 8, Np = 4, and h = 1 ML.



316 Y. Shim, J.G. Amar / Journal of Computational Physics 212 (2006) 305–317
dependence of the ideal and measured PE�s on D/F (PE � (D/F)�0.6) may also be explained by the well
known result for a critical island size of 1 that the monomer density decays as N1 � (D/F)�2/3 thus leading
to an increase in the MMC �rejection� rate. We note that while somewhat larger parallel efficiencies are
likely to be obtained using MPI-2, we expect that due to the small values of Nx the resulting PE�s are still
likely to be relatively low. As a result, we did not carry out 2D simulations using MPI-2.
6. Summary and discussion

We have generalized and implemented the hybrid asynchronous algorithm in order to carry out parallel
kinetic Monte Carlo (KMC) simulations and tested the parallel performance using a simple model of thin-
film growth in both 1D and 2D. In particular, we have described how the hybrid asynchronous algorithm
for parallel dynamic Monte Carlo described in [3] for the spin-flip Ising model may be generalized to apply
to parallel KMC simulations of thin-film growth. In addition, we have shown that there exist two possible
implementations, one corresponding to a ‘‘simple’’ approach in which the probability of selecting a bound-
ary event is proportional to the number of different types of moves in the model, and a somewhat more
efficient approach in which the probability depends on the rates of each type of move. We have also briefly
described how the data collection must be modified as compared to the case of the spin-flip Ising model [3]
in order to carry out rigorous data collection using such an asynchronous algorithm.

In general, for the case of 1D simulations with a typical, large system size, we find that the parallel effi-
ciency is reasonably high, since the probability of selecting an MMC move is relatively low. In addition, we
find that the use of MPI-2 (pure asynchronous dynamics) significantly increases the PE due to the fact that
communications are only required when an MMC attempt is made. In contrast, in our 2D simulations we
find that the parallel efficiency is quite low. In particular, due to the relatively small system sizes used in
typical 2D KMC simulations, along with the relatively high range of rates in KMC simulation models,
there is a high probability of selecting an MMC move. Due to the �local time condition� as well as the fact
that the probability for a selected MMC move to correspond to an actual event is relatively low, the ideal
PE is significantly less than 1. In addition, since every MMC move requires communications, the actual PE
is even further reduced. These results suggest that in general this algorithm is not suitable for parallel
kinetic Monte Carlo simulations of two-dimensional thin-film growth.
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