
Surface Science 616 (2013) 120–124

Contents lists available at SciVerse ScienceDirect

Surface Science

j ourna l homepage: www.e lsev ie r .com/ locate /susc
Critical island size for a shape transition in strained Cu/Ni(100) islands

Jacques G. Amar ⁎, Yunsic Shim, Robert T. Deck
Department of Physics & Astronomy, University of Toledo, Toledo, OH 43606, USA
⁎ Corresponding author. Tel.: +1 419 530 2259; fax:
E-mail addresses: jamar@physics.utoledo.edu (J.G. A

yshim@physics.utoledo.edu (Y. Shim), rtd@physics.utol

0039-6028/$ – see front matter © 2013 Elsevier B.V. All
http://dx.doi.org/10.1016/j.susc.2013.06.011
a b s t r a c t
a r t i c l e i n f o
Article history:
Received 4 March 2013
Accepted 18 June 2013
Available online 29 June 2013

Keywords:
Strained islands
Shape instability
Critical island size
Continuum elasticity theory
We examine the shape instability of dislocation-free strained islands in heteroepitaxial growth, using
continuum elasticity theory. Using the dipole interaction approximation for the strain-energy proposed
by Pimpinelli and Villain, we have calculated the critical island size at which the shape instability may
occur, and found that our expressions for the strain-energy and corresponding critical island size are
very similar to those obtained by Li, Liu, and Lagally (Phys. Rev. Lett. 85 (2000) 1922). In addition, for
the case of Cu/Ni(100) submonolayer islands we have carried out a direct comparison between the con-
tinuum elasticity predictions for the force monopole density and dipole interaction energy and atomistic
calculations. Our results indicate that while the continuum elasticity expressions significantly underesti-
mate both the force monopole density and the dipole interaction energy, the use of atomistic calculations
leads to reasonable agreement between the two approaches. Our results also confirm that the experimen-
tally observed ramified islands in Cu/Ni(100) submonolayer growth cannot be explained by equilibrium
energetics arguments.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

The evolution of the island morphology in heteroepitaxial growth
is a topic of significant experimental [1–11] and theoretical [12–18]
interest due to its fundamental importance as well as its implica-
tions for nanostructure formation and stability. Unlike the case of
homoepitaxial growth for which short-range interactions typically
dominate, in the case of heteroepitaxial growth long-range elastic
interactionsmay also play an important role. As a result, the equilibrium
island-shape is expected to be determined by a competition between
strain and surface and/or edge energies [1,4–7,10,11,13,19–21]. In par-
ticular, as shown by Tersoff and Tromp [12], strained 3D islands may
undergo a spontaneous shape transition as a function of island-size
[7,19,20].

More recently Li, Liu, and Lagally (LLL) [14] have used continuum
elasticity theory to investigate the effect of strain on the stability of a
square submonolayer island under biaxial isotropic stress. In particu-
lar, by expressing the finite-size correction δEstrain(s,t) to the strain
energy of a rectangular submonolayer island of width s and length t
(see Fig. 1) in terms of an integral involving the interactions between
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“force-monopoles” of magnitude F at the island step-edges, they
obtained the result,

δELLLstrain s; tð Þ=Eu ¼ 4 sþ tð Þ þ 2 1−νsð Þ½−4
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where b is a cutoff length, νs and μs are the Poisson ratio and Young's
modulus of the substrate, and Eu is the “unit strain energy” given by,

Eu ¼ 1þ νs

2πμs
F2: ð2Þ

By combining this contribution to the island-energy with the contribu-
tion γP due to the step free-energy (where P = 2(s + t) is the island
perimeter and γ is the step free-energy per unit length) LLL obtained
an expression for the critical island-width Lc above which there is a
transition from a square to a rectangular island shape of the form,

LLLLc ¼ b exp
α þ 2

2 1−νsð Þ þ 1:3
� �

ð3Þ
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Fig. 1. Schematic diagram of 2D strained island of size s × t on a substrate. F represents
the force monopole exerted along the island periphery due to the lattice mismatch.
Here h is the height of the 2D island.
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where α = γ/Eu. These results have also been extended and applied to
the case of anisotropic islands on an anisotropic or reconstructed (100)
surface [5,17] for which both the step free energy γ and the sign of the
force monopole F depend on the step orientation.

While Eq. (3) may be used to estimate the critical island-width for
strained islands on isotropic (100) surfaces once the step free-energy
γ and force-monopole density F are known, the analysis of LLL does
not provide an estimate for F nor does it provide a prediction for
the asymptotic strain-energy density. As a result, while this approach
takes into account the step–step interaction, e.g. the interaction be-
tween the force monopole at a given position along the island
step-edge and the substrate displacement due to the strain induced
by the force monopoles at other points along the step, it does not
take into account the contributions to the elastic energy away from
the step-edge. In addition, it is based on the assumption that the
force-monopole is constant along the island-edge and does not de-
pend on the distance from the corner. Furthermore, while it has pre-
viously been suggested that the experimentally observed armwidth
of the ramified islands observed in Cu/Ni(100) submonolayer growth
might correspond to the critical island-width Lc for the equilibrium
island-shape due to strain, this approach leads to a predicted value
[22] which is several orders of magnitude larger than the experimen-
tally observed armwidth. Accordingly, it is of interest to determine if
this result can be confirmed using an alternative approach, in which
the continuum expressions are directly “fit” to the asymptotic strain
energy density (which can be directly calculated) rather than to the
force monopole density.

We note that in previous work [23–25] it has been shown that
for the case of biaxial (isotropic) strain the total strain energy of a
submonolayer island may be approximately written in terms of a
dipole interaction of the form,

Estrain ¼ E ′
u

2
∫d2r∫d2r′ 1

r−r′
�� ��3 ð4Þ

where the integrals are over the portion of the substrate below the
island and the continuum elasticity prediction for the dipole interac-
tion energy E ′

u is,

E ′
u ¼

2 1−v2s
� �

μ2
f ε

2h2

πμs 1−νf

� �2 ð5Þ

where νf and μf are the Poisson ratio and Young's modulus of the film,
h is the height of the island and the strain ε = (as − af)/as where
af (as) is the lattice constant of the film (substrate). While the dipole
interaction is only exact for large length-scales [25], one of the advan-
tages of this formulation is that it leads to an analytical expression
for the asymptotic strain energy density corresponding to the strain
energy per unit area for an infinite island. As a result, atomistic
calculations of the dipole interaction strength E ′
u may be used to de-

termine the critical island-width for a particular system. We also
note that while Eq. (4) has been previously used [16] to derive an
expression for the critical island-radius of a circular island under
isotropic stress, no direct comparison between the continuum ex-
pression (Eq. (5)) for E ′

u and atomistic calculations has previously
been carried out, while the corresponding calculation for a transition
from a square to a rectangular island has also not previously been
carried out.

Here we present the results of such a calculation which we have
carried out in order to obtain explicit expressions for the asymptotic
strain energy density as well as the finite-size corrections to the
island strain-energy for a rectangular island of width s and length t.
Somewhat surprisingly, we find that our results for the finite-size
corrections to the island strain-energy are very similar to the LLL ex-
pression (Eq. (1)), and thus lead to similar expressions for the depen-
dence of the critical island-width Lc on the ratio α′ ¼ γ=E ′

u.
We then consider the implications of our results on the stability

of Cu/Ni(100) islands [1,2]. We find that if E ′
u is calculated using the

continuum elasticity expression (Eq. (5)) then a value of the critical
island-width which is even larger than that previously obtained
using Eqs. (2) and (3) is obtained. On the other hand, if the value
of E′u is directly and more accurately determined based on the asymp-
totic strain-energy density obtained from density-functional-theory
(DFT) calculations [26], a significantly smaller value of Lc is obtained.
However, in both cases we find that the critical island-width is signif-
icantly larger than the typical arm-width (approximately 22a1 where
a1 is the nearest-neighbor distance) observed in experiments on
submonolayer Cu/Ni(100) growth. These results confirm our previ-
ous conclusion [22] that the experimentally observed shape transi-
tion cannot be explained by equilibrium energetics calculations
based on continuum elasticity theory. However, they also indicate
that since the critical width is very sensitive to the ratio α′ ¼ γ=E ′

u,
care should be taken when determining this value, and if possible
this should be done based on values calculated directly from atomis-
tic calculations.

This paper is organized as follows. In Section 2 we first derive
general expressions for the strain-energy of a rectangular submonolayer
island using Eq. (4). In Section 3 these results are then used to calculate
the critical island-width Lc for Cu/Ni(100) islands. Finally, in Section 4
we summarize and discuss our results.

2. Strain-energy for a rectangular island

In order to calculate the island strain energy for a rectangular
island of width s and length t, we first note that Eq. (4) may be rewrit-
ten in the form, Estrain ¼ E ′

u � I s; tð Þ where,

I s; tð Þ ¼ 1
2
∬d2rd2r′

1

r−r′
�� ��3 ð6Þ

and where r and r′ are two-dimensional vectors with r ¼ x x̂ þ yŷ and
r′ ¼ x′ x̂ þ y′ ŷ and 0 ≤ x, x′ ≤ s and 0 ≤ y, y′ ≤ t. In order to remove
the factor of 1

2 and avoid double-counting we then modify the integral
so that it satisfies the restriction x′ ≥ x,

I s; tð Þ ¼ ∫s
0dx∫

t
0dy∫

s
xdx′∫

t
0dy′

1

x′−x
�� ��2 þ y′−y

�� ��2� �3=2 : ð7Þ

We note that although not explicitly indicated, due to discreteness ef-
fects a cutoff b in the minimum distance |r − r′| which is of the order
of the lattice-spacing is assumed. As in Refs. [14] and [15] we assume
a square cutoff which matches the lattice. In particular, due to the
cutoff we exclude from integration over r′ a 2b × 2b square area
centered on the point with coordinate vector r, where b is a cutoff
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length. Using this exclusion, the integral I(s,t) may be written as the
sum of 3 integrals corresponding to different “exclusion regions”,
e.g. I(s,t) = I1 + 2I2 + 2I3. The first integral,

I1 ¼ ∫s−b
0 dx∫t

0dy∫
s
xþbdx′∫

t
0dy′

1

u2 þ v2
� 	3=2 ð8Þ

(where u = x′ − x and v = y′ − y) corresponds to “exclusion via
x”, e.g. to the contribution in which x ranges from 0 to s − b
while x′ ranges from x + b to s and y and y′ range from 0 to t.
Converting variables from x′, y′ to u = x′ − x and v = y′ − y this
may be rewritten,

I1 ¼ ∫s−b
0 dx∫t

0dy∫
s−x
b du∫t−y

−y
dv

u2 þ v2
� 	3=2: ð9Þ

In contrast, the 2nd integral,

I2 ¼ ∫s−b
0 dx∫t

bdy∫
xþb
x dx′∫y−b

0 dy′
1

u2 þ v2
� 	3=2 ð10Þ

corresponds to “exclusion via y”, e.g. to the contribution in which
y′ remains below y − b while x′ ranges between x and x + b
and x again ranges from 0 to s − b. There is an equivalent contri-
bution in which y′ ranges from y + b to t while y ranges from 0 to
t − b and therefore this integral is multiplied by two. Again,
converting variables from x′, y′ to u = x′ − x and v = y′ − y this
may be rewritten,

I2 ¼ ∫s−b
0 dx∫t

bdy∫
b
0du∫

−b
−y

dv

u2 þ v2
� 	3=2: ð11Þ

Finally, the 3rd integral,

I3 ¼ ∫s
s−bdx∫

t
bdy∫

s
xdx

′∫y−b
0 dy′

1

u2 þ v2
� 	3=2 ð12Þ

is similar to I2 except that it includes the previously neglected contri-
bution in which x ranges from s − b to s while x′ ranges from x to s.
Again, there is an equivalent contribution in which y′ ranges from
y + b to t while y ranges from 0 to t − b and therefore this integral
is multiplied by two. Converting variables from x′, y′ to u = x′ − x
and v = y′ − y this may be rewritten,

I3 ¼ ∫s
s−bdx∫

t
bdy∫

s−x
0 du∫−b

−y
dv

u2 þ v2
� 	3=2: ð13Þ

Carrying out the 3 integrals in Eqs. (9), (11) and (13) and combining
we obtain,

I s; tð Þ ¼ −2 2−
ffiffiffi
2

p� �
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Removing the first (constant) term and exchanging factors of s and
t between the third term and the last two terms, and using the
identity,

ln
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−s
ð15Þ
we obtain the dipole-interaction expression for the total island
strain energy,

Estrain
E ′
u

¼ 2
ffiffiffi
2
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We note that, ignoring the first area-dependent term, Eq. (16) is
very similar to the LLL result (Eq. (1)). However, in the limit of
large s and t the first term dominates. Multiplying this term by E ′

u

and dividing by the island area st we obtain the asymptotic strain
energy density,

ρ0 bð Þ ¼ 2
ffiffiffi
2

p
E ′
u=b: ð17Þ

In addition, multiplying Eq. (16) by E ′
u and adding the perimeter

energy 2γ(s + t) to obtain an expression for the total island energy
Etotal(c,D) (where D ¼ ffiffiffiffi

st
p

is the island diameter and c ¼ ffiffiffiffiffiffiffi
s=t

p
is the

aspect ratio) and setting the 2nd partial derivative with respect to c
(at c = 1) equal to zero, the critical length for a transition from a
square island to a rectangular island may be obtained,

Lc ¼ b exp α′ þ 1:3−ln 1þ
ffiffiffi
2

p� �h i
≃b exp α′ þ 0:42


 �
: ð18Þ

3. Comparisonwith LLL result and application to Cu/Ni(100) islands

We first carry out a qualitative comparison between our results for
the critical island-width Lc with the LLL result Eq. (3). In particular, we
note that the predicted critical island-width Lc will exceed the LLL
prediction if α′Nα′

c, where α′
c ¼ αþ2

2 1−νsð Þ þ 0:88. We now consider the
case of Cu/Ni(100) which is of interest since previous experiments
[1,2] over a temperature range from 250 to 345 K have indicated the
formation of ramified submonolayer islands with a typical armwidth
of approximately 22a1 (where a1 is the nearest-neighbor distance).
As noted in Section 1, while it has previously been assumed [1,2] that
the experimentally observed island ramification may be explained by
the use of equilibrium arguments [12], calculations which we have
carried out [22] using Eq. (3) indicate that the corresponding critical
island-width Lc is at least several orders of magnitude larger than the
typical armwidth, thus suggesting that kinetic effects mediated by
strain may play a role [22].

In particular, fromDFT calculations [22]wehave previously obtained
γ110(T = 0) = 0.044 eV/Å for this case. Similarly, fromDFT calculations
of the substrate and thin-film stresses σxx

s and σxx
f we have obtained

using the expression [14],

F ¼ σ f
xx−σ s

xx ð19Þ

the estimates F = −0.134 eV/Å2, Eu ¼ 1þ νs

2πμs
F2 ¼ 3:0� 10−3 eV=Å

and α = γ/Eu = 14.7. As discussed in Ref. [22], using Eq. (3) with
cutoff b = a1 then leads to an estimate of the critical island-width
Lc = 6.5 × 105a1 which is significantly larger than the experimen-
tally observed arm-width (see Table 1).

For comparison, we now consider the critical island-width
obtained using the dipole interaction expression Eq. (4). If the dipole
interaction E ′

u is estimated using the continuum elasticity expression
(Eq. (5)) then a significantly higher value for the critical island-width
Lc/a1 is obtained (see Table 1). This is perhaps not surprising since the
continuum elasticity expression [12,15] for the monopole density,

F ¼ μsεh ð20Þ



Table 1
Comparison of results for the critical island width Lc for Cu/Ni(100) submonolayer
islands calculated using Eq. (3) with results obtained using Eq. (18) for the case of a
square cutoff. Values with an * in front are based on DFT calculations as discussed in
the text, while those with a 2, 5, or 20 in front were calculated using the corresponding
continuum elasticity equations.

F (eV/Å2) Eu (eV/Å) α E ′
u (eV/Å) α′ Lc/a1

Eq. (3) ∗0.134 ∗,20.003 14.7 – – ∗6.5 × 105

Eq. (3) 200. 062 26. 4 × 10−4 68.7 – – 6.8 × 1022

Eq. (18) – – – ⁎0. 0039 11.3 ∗1.2 × 105

Eq. (18) – – – 50. 0014 31.4 6.8 × 1013
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also leads to a significantly larger estimate for the critical island-
width since it leads to an underestimate for the value of F compared
to DFT calculations (see Table 1).

However, since our results imply a direct relationship between the
asymptotic strain energy density ρ0 and E ′

u, it is possible to obtain a
more accurate value for Lc by using the asymptotic strain energy den-
sity to determine E′u. In particular, Eq. (16) implies that,

E′u ¼ ρ0b=2
ffiffiffi
2

p
ð21Þ

where b is a cutoff length. Accordingly, we have carried out DFT calcu-
lations of the asymptotic strain energy density ρ0 for a complete
monolayer of Cu on the Ni(100) surface, using the expression,

ρ0 ¼ EML;n−EML;m

� �
=A ð22Þ

where A is the unit-cell substrate area, and EML,n = Etotal,n − Esubstrate,n
is the energy (per unit cell) of a complete Cumonolayer (corresponding
to the difference between the total unit cell energy with a complete
Cu monolayer and without any Cu) for the case of a Ni(100) sub-
strate with a “normal” bulk lattice constant (aNi = 3.52 Å). Simi-
larly, EML,m = Etotal,m − Esubstrate,m is the corresponding quantity for a
“matched” Ni(100) substrate which has been expanded so that there
is no mismatch at the interface.

Our DFT total-energy calculations were carried out using the Vienna
ab initio simulation package (VASP) [27] with ultrasoft Vanderbilt
pseudopotentials [28] and the generalized gradient approximation
(GGA) using the Perdew–Wang functional (PW91) [29]. Bulk calcula-
tions resulted in lattice constants of 3.52 Å and 3.64 Å for Ni and Cu,
respectively. Methfessel–Paxton [30] smearing with σ = 0.2 was used
and for k-point sampling, the Monkhorst–Pack scheme [31] with
a 8 × 8 × 1 mesh was used along with a kinetic energy cutoff of
33.1 Ry.Weused supercells of size 2 × 2with a 20 ML thicknessNi sub-
strate and a vacuum spacing of 12 Å. For the Cu/Ni case, an additional
1 ML Cu layer was added to both the top and bottom of the 20 ML
Ni substrate. Full atomic relaxation of all atoms in the supercells was
allowed. All geometries were optimized until the remaining forces
were smaller than 10−4 eV/Å.

From our DFT calculations we obtain an asymptotic strain energy
density ρ0 = 4.4 × 10−3 eV/Å2. Assuming a cutoff b equal to the
nearest-neighbor distance a1, we obtain E ′

u ¼ 3:9� 10−3 eV=2Å while
using Eq. (18) this leads to an estimate for the critical island-width
Lc/a1 ≃ 1.2 × 105 which is much closer to the LLL prediction and is
also significantly larger than the typical arm-width observed in exper-
iments on submonolayer Cu/Ni(100) growth. We have also obtained
similarly good agreement between the LLL prediction and the dipole-
interaction prediction for the critical island-width by carrying out
atomistic calculations of the step free-energy γ and dipole-interaction
strength E′u for much larger systems using the Mishin, Voter, Bonney
[32–34] (MVB) embedded-atom method [35] potential, although in
this case the value of Lc is slightly smaller [36]. Thus our results confirm
that the experimentally observed shape transition cannot be explained
by equilibrium energetics arguments based on continuum elasticity
theory. However, they also indicate that since the critical width is
very sensitive to the ratio α′ ¼ γ=E′u, care should be taken when deter-
mining this value, and if possible this should be done based on values
calculated directly from atomistic calculations.

4. Discussion

Using the dipole-interaction expression (Eq. (4)) proposed by
Pimpinelli and Villain [24] we have derived expressions for the elastic
strain energy of a rectangular island and critical island-width Lc as a
function of the ratio α′ ¼ γ=E′u of the step free-energy per unit length
to the dipole interaction E′u. Somewhat surprisingly we have found
that the resulting expressions for the finite-size corrections to the
strain energy, as well as for the corresponding critical island-width,
are very similar to those previously obtained in Ref. [14] by Li, Liu, and
Lagally [14] using a somewhat different ‘force-monopole’ approach.
However, in contrast to this approach, our results also include the as-
ymptotic strain energy thus allowing a direct connection between the
value of the ‘dipole interaction strength’ E ′

u and the asymptotic strain
energy density.

In addition, we have applied our results to the case of Cu/Ni(100)
submonolayer growth for which ramified islands have been observed.
In particular, we find that using the continuum elasticity predictions
for the dipole interaction strength E′u and force monopole F leads
to values of the critical island-width which are significantly larger
than previously obtained using the value of F obtained from atomistic
calculations [22]. In contrast, an estimate of the dipole interaction
strength based on a DFT calculation of the asymptotic strain energy
density, leads to an estimate for the critical island-width Lc which is
close to—although somewhat smaller than—that obtained from DFT
calculations of the force monopole F. However, all of these values
are still significantly larger than the typical arm-width observed in
submonolayer Cu/Ni(100) growth.

While our calculations were carried out at zero temperature, it is
also of interest to estimate to what extent finite-temperature effects
might affect our results. Previously we have calculated the finite-
temperature corrections to the step free-energy for Cu/Ni(100)
islands and have found [22] that this leads to a relatively small reduc-
tion in the step free energy and thus a relatively small reduction
in the critical island-size. In addition, we have carried out atomistic
simulations of rectangular islands with rough step-edges which indi-
cate that roughness along the step-edge leads to island relaxation,
thus slightly reducing the strain-energy and further increasing the
critical island-width. Thus our results confirm that the experimen-
tally observed shape transition in this case cannot be explained by
equilibrium energetics arguments based on continuum elasticity
theory. This is consistent with recent studies of mesoscopic relaxa-
tion in Cu/Cu(111) and Co/Cu(100) [37,38] as well as experiments
on Co/N/Cu(001) [39] which indicate that for small islands, the island
relaxation cannot be explained by continuum elasticity theory. This is
also supported by kinetic Monte Carlo simulations [22] which indicate
that kinetic effects (mediated by strain) may explain the ramified
island shapes observed at T = 250 and 300 K.

In conclusion, we have used the dipole-interaction expression
proposed by Pimpinelli and Villain [24] to obtain an expression for
the strain energy of rectangular islands on an isotropic substrate. In
addition, we have carried out a direct comparison between the con-
tinuum expressions for the force monopole density and dipole inter-
action energy and atomistic calculations. While our results indicate
that the continuum elasticity expressions significantly underestimate
both the force monopole density and the dipole interaction energy
(thus leading to estimates for the critical island-width which differ
by 9 orders of magnitude) our results also indicate that the use of
atomistic calculations leads to reasonable agreement between the
force-monopole and dipole interaction approaches. In addition, our re-
sults also confirm that the experimentally observed ramified islands in
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Cu/Ni(100) submonolayer growth cannot be explained by equilibrium
energetics arguments. In the future it would be of interest to carry out
a more detailed comparison between atomistic predictions for the
strain energy and the continuum predictions.

Acknowledgments

This work was supported by NSF grant DMR-0907399. We would
also like to acknowledge a grant of computer time from the Ohio
Supercomputer Center.

References

[1] B. Müller, L. Nedelmann, B. Fischer, H. Brune, J.V. Barth, K. Kern, Phys. Rev. Lett. 8
(1998) 2642.

[2] B. Müller, L.P. Nedelmann, B. Fischer, H. Brune, J.V. Barth, K. Kern, D. Erdös, J.
Wollschlager, Surf. Rev. Lett. 5 (1998) 769.

[3] B. Müller, Surf. Rev. Lett. 8 (2001) 169.
[4] H. Brune, M. Giovannini, K. Bromann, K. Kern, Nature 394 (1998) 451.
[5] Y. Li, M. Liu, D. Ma, D. Yu, X. Chen, X.-C. Ma, Q.-K. Xue, K. Xu, J.-F. Jia, F. Liu, Phys.

Rev. Lett. 103 (2009) 076102.
[6] V. Fournée, J. Ledieu, T. Cai, P.A. Thiel, Phys. Rev. B 67 (2003) 155401.
[7] M.S.J. Marshall, M.R. Castell, Phys. Rev. Lett. 102 (2009) 146102.
[8] A. Rastelli, M. Stoffel, J. Tersoff, G.S. Kar, O.G. Schmidt, Phys. Rev. Lett. 95 (2005)

026103.
[9] O. Mironets, H.L. Meyerheim, C. Tusche, V.S. Stepanyuk, E. Soyka, P. Zschack,

H. Hong, N. Jeutter, R. Felici, J. Kirschner, Phys. Rev. Lett. 100 (2008) 096103.
[10] A. Brodde, G.Wilhelmi, D. Badt, H.Wengelnik, H. Neddermeyer, J. Vac. Sci. Technol. B

9 (1991) 920.
[11] Y. Lu, M. Przybylski, O. Trushin, W.H. Wang, J. Barthel, E. Granato, S.C. Ying, T.

Ala-Nissila, Phys. Rev. Lett. 94 (2005) 146105.
[12] J. Tersoff, R.M. Tromp, Phys. Rev. Lett. 70 (1993) 2782.
[13] G.-H. Lu, F. Liu, Phys. Rev. Lett. 94 (2005) 176103.
[14] A. Li, F. Liu, M.G. Lagally, Phys. Rev. Lett. 85 (2000) 1922.
[15] F. Liu, in: M. Rieth, W. Schommers (Eds.), Handbook of Theoretical and Computa-
tional Nanotechnology, American Scientific Publishers, 2006, p. 577.

[16] M. Li, Y. Yao, B. Wu, Z. Zhang, E. Wang, Europhys. Lett. 86 (2009) 1601.
[17] H.J.W. Zandvliet, R. van Gastel, Phys. Rev. Lett. 99 (2007) 136103.
[18] H. Hu, H. Gao, F. Liu, Phys. Rev. Lett. 109 (2012) 106103.
[19] W. Ma, R. Nötzel, H.-P. Schönher, K.H. Ploog, Appl. Phys. Lett. 79 (2001) 4219.
[20] S.H. Brongersma, M.R. Castell, D.D. Perovic, M. Zinke-Allmang, Phys. Rev. Lett. 80

(1998) 3795.
[21] N.V. Medhekar, V.B. Shenoy, J.B. Hannon, R.M. Tromp, Phys. Rev. Lett. 99 (2007)

156102.
[22] Y. Shim, J.G. Amar, Phys. Rev. Lett. 108 (2012) 076102.
[23] V.I. Marchenko, A. Ya, Sov. Phys. - JETP 52 (1980) 129.
[24] A. Pimpinelli, J. Villain, Physics of Crystal Growth, Cambridge University Press,

United Kingdom, 1998.
[25] J.-N. Aqua, T. Frisch, Phys. Rev. B 78 (2008) 121305(R).
[26] P. Hohenberg, W. Kohn, Phys. Rev. 136 (1964) B864.

W. Kohn and L. J. Sham, ibid. 140 (1965) A1133.
[27] G. Kresse, J. Hafner, Phys. Rev. B 47 (1993) 558, (ibid. 49 (1994) 14251).
[28] D. Vanderbilt, Phys. Rev. B 41 (1990) 7892;

G. Kresse, J. Hafner, J. Phys. Condens. Matter 6 (1994) 8245.
[29] J.P. Perdew, Y. Wang, Phys. Rev. B 45 (1992) 13244.
[30] M. Methfessel, A.T. Paxton, Phys. Rev. B 40 (1989) 3616.
[31] H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13 (1976) 5188.
[32] Y. Mishin, M.J. Mehl, D.A. Papaconstantopoulos, A.F. Voter, J.D. Kress, Phys. Rev. B

63 (2001) 224106.
[33] A.F. Voter, S.P. Chen, Mater. Res. Soc. Symp. Proc. 82 (1987) 175;

A.F. Voter, in: J.H. Westbrook, R.L. Fleischer (Eds.), Intermetallic Compounds:
Principles and Practice, Vol. 1, Wiley and Sons, Ltd, New York, 1995, p. 77.

[34] For the Ni (Cu) EAM potential see Ref. [33] (Ref. [32]). For the Cu-Ni cross poten-
tial, see. G. Bonny, R.C. Pasianot, N. Castin, L. Malerba, Philos. Mag. 89 (2009) 3531.

[35] M.S. Daw, M.I. Baskes, Phys. Rev. B 29 (1984) 6443.
[36] In this case we find L − c/a − 1 = 3.5 × 104(6.4 × 104) using the force-monopole

(dipole) results Eq. (3) (Eq. (18)).
[37] O.V. Lysenko, V.S. Stepanyuk, W. Hergert, J. Kirschner, Phys. Rev. Lett. 89 (2002)

126102.
[38] V.S. Stepanyuk, D.I. Bazhanov, A.N. Baranov, W. Hergert, P.H. Dederichs, J. Kirschner,

Phys. Rev. B 62 (2000) 15398.
[39] D. Sekiba, S. Doi, K. Nakatsuji, F. Komori, Surf. Sci. 590 (2005) 138.

http://refhub.elsevier.com/S0039-6028(13)00183-0/rf0005
http://refhub.elsevier.com/S0039-6028(13)00183-0/rf0005
http://refhub.elsevier.com/S0039-6028(13)00183-0/rf0010
http://refhub.elsevier.com/S0039-6028(13)00183-0/rf0010
http://refhub.elsevier.com/S0039-6028(13)00183-0/rf0015
http://refhub.elsevier.com/S0039-6028(13)00183-0/rf0020
http://refhub.elsevier.com/S0039-6028(13)00183-0/rf0025
http://refhub.elsevier.com/S0039-6028(13)00183-0/rf0025
http://refhub.elsevier.com/S0039-6028(13)00183-0/rf0030
http://refhub.elsevier.com/S0039-6028(13)00183-0/rf0035
http://refhub.elsevier.com/S0039-6028(13)00183-0/rf0040
http://refhub.elsevier.com/S0039-6028(13)00183-0/rf0040
http://refhub.elsevier.com/S0039-6028(13)00183-0/rf0045
http://refhub.elsevier.com/S0039-6028(13)00183-0/rf0045
http://refhub.elsevier.com/S0039-6028(13)00183-0/rf0050
http://refhub.elsevier.com/S0039-6028(13)00183-0/rf0050
http://refhub.elsevier.com/S0039-6028(13)00183-0/rf0055
http://refhub.elsevier.com/S0039-6028(13)00183-0/rf0055
http://refhub.elsevier.com/S0039-6028(13)00183-0/rf0060
http://refhub.elsevier.com/S0039-6028(13)00183-0/rf0065
http://refhub.elsevier.com/S0039-6028(13)00183-0/rf0070
http://refhub.elsevier.com/S0039-6028(13)00183-0/rf0180
http://refhub.elsevier.com/S0039-6028(13)00183-0/rf0180
http://refhub.elsevier.com/S0039-6028(13)00183-0/rf0075
http://refhub.elsevier.com/S0039-6028(13)00183-0/rf0080
http://refhub.elsevier.com/S0039-6028(13)00183-0/rf0085
http://refhub.elsevier.com/S0039-6028(13)00183-0/rf0090
http://refhub.elsevier.com/S0039-6028(13)00183-0/rf0095
http://refhub.elsevier.com/S0039-6028(13)00183-0/rf0095
http://refhub.elsevier.com/S0039-6028(13)00183-0/rf0100
http://refhub.elsevier.com/S0039-6028(13)00183-0/rf0100
http://refhub.elsevier.com/S0039-6028(13)00183-0/rf0105
http://refhub.elsevier.com/S0039-6028(13)00183-0/rf0110
http://refhub.elsevier.com/S0039-6028(13)00183-0/rf0115
http://refhub.elsevier.com/S0039-6028(13)00183-0/rf0115
http://refhub.elsevier.com/S0039-6028(13)00183-0/rf0185
http://refhub.elsevier.com/S0039-6028(13)00183-0/rf0120
http://refhub.elsevier.com/S0039-6028(13)00183-0/rf0190
http://refhub.elsevier.com/S0039-6028(13)00183-0/rf0125
http://refhub.elsevier.com/S0039-6028(13)00183-0/rf0130
http://refhub.elsevier.com/S0039-6028(13)00183-0/rf0135
http://refhub.elsevier.com/S0039-6028(13)00183-0/rf0140
http://refhub.elsevier.com/S0039-6028(13)00183-0/rf0145
http://refhub.elsevier.com/S0039-6028(13)00183-0/rf0150
http://refhub.elsevier.com/S0039-6028(13)00183-0/rf0150
http://refhub.elsevier.com/S0039-6028(13)00183-0/rf0155
http://refhub.elsevier.com/S0039-6028(13)00183-0/rf0195
http://refhub.elsevier.com/S0039-6028(13)00183-0/rf0195
http://refhub.elsevier.com/S0039-6028(13)00183-0/rf0200
http://refhub.elsevier.com/S0039-6028(13)00183-0/rf0200
http://refhub.elsevier.com/S0039-6028(13)00183-0/rf0160
http://refhub.elsevier.com/S0039-6028(13)00183-0/rf0165
http://refhub.elsevier.com/S0039-6028(13)00183-0/rf0165
http://refhub.elsevier.com/S0039-6028(13)00183-0/rf0170
http://refhub.elsevier.com/S0039-6028(13)00183-0/rf0170
http://refhub.elsevier.com/S0039-6028(13)00183-0/rf0175

	Critical island size for a shape transition in strained Cu/Ni(100) islands
	1. Introduction
	2. Strain-energy for a rectangular island
	3. Comparison with LLL result and application to Cu/Ni(100) islands
	4. Discussion
	Acknowledgments
	References


