
Motion by Mean Curvature:
The Phase-field Method

Dante Amoroso
Worcester Polytechnic Institute

August 6, 2008

Abstract

The phase-field method is applied to the problem of motion by
mean curvature. Simulations are performed doing motion by mean
curvature explicitly on an initial sine wave, and analytical calcula-
tions are done for the effect of mean curvature governed evolution on
an initial circle. The phase-field method is then used to solve the
same situations and excellent agreement is found. The computation
time of the phase-field method is then investigated, and a method in-
volving Fourier transforms is implemented to speed up this computa-
tion. Error is introduced by this procedure, but two possible solutions
are proposed. Due to time constraints, unfortunately, neither solu-
tion could be investigated. Lastly, the Fourier transform phase-field
method is applied to a random initial condition and is seen to reliably
produce domains which become more homogeneous with time, a result
expected for any interface governed by mean curvature.

1 Introduction

Motion by mean curvature refers to studying an interface whose evolution in
time is governed by Eq. 1.1, where v is the normal velocity of the interface, κ
is the curvature at that point, and ν is a constant. It is used to model many
phenomena involving separate non-conserved phases which evolve to reduce
local surface area at an interface. Its applicability can be seen from the fact
that the minimum local surface area is achieved by a perfectly straight line.

1

This also corresponds to zero curvature. Any small instances of curvature
beyond this will go away with time as the materials seek to minimize the
surface area at which they contact, thus minimizing their energy. Clearly,
the more curved the surface, the faster this will occur.

v = νκ (1.1)

Equation 1.1 can also be thought of from a more atomic standpoint. If an
interface is perfectly flat, the atoms lying on the interface will have a certain
number of bonds with like atoms and a certain number with atoms on the
other side of the interface. As the straight line is at equilibrium, this con-
figuration is clearly preferred by the atoms. Should the interface contain a
bulge into one side, the atoms doing the bulging will be less bonded to like
atoms than normal, while the atoms being bulged into will be more bonded
than usual. Thus, both sides will move to reclaim the equilibrium number of
bonds, and the interface will level out.
In this paper I will discuss several aspects of solving Eq. 1.1 in two dimen-
sions (a one dimensional interface). In Section 2, the domain is discretized
along one dimension and a straightforward finite difference method is em-
ployed to solve for the motion of the interface. In Section 3, the domain is
discretized along both dimensions and an approach called the ‘Phase-field
method’ is used. This is seen to have the advantage of being able to handle
more complicated interfaces than the first case, but the disadvantage of tak-
ing much longer for each iteration to be computed. Lastly, in Section 4, the
phase-field computation is done in fourier space through the use of a method
involving the fourier transform of the differential equation which normally
governs the phase-field evolution. This removes an inherent constraint on
the time step for the straightforward phase-field method, thus allowing much
larger time steps and a much shorter total computation time.

2 Explicit Treatment

In this section, we begin by changing Eq. 1.1 into a form that is easily
computed. As we are dealing with a 2-D interface, we will henceforth refer
to the axis along which the interface extends as the x-axis, while the axis
along which the interface varies in location as the h-axis. In this way, our
interface is completely described by a single function h(x) at any desired
point in time. Of course, Eq. 1.1 contains neither an h nor an x, and thus

2

must be restated before computation may begin.
As the parameter ν is a constant, we may leave it as is, and proceed to
examine the κ term first. Were we dealing with a higher dimensional system,
this κ would represent the mean curvature, commonly given by the sum of
the principal curvatures. In the simple case of a 1-D interface, however,
it is just the curvature. For ordinary functions such as our interface, this
curvature is given by Eq. 2.1.

κ =
d2h
dx2(

1 +
(

dh
dx

)2
) 3

2

or
∇2h(

1 + (∇h)2) 3
2

(2.1)

However, the velocity v in Eq. 1.1 is normal to the interface, requiring the
relation in Eq. 2.2 to be established. From here it is straightforward to
simply plug Eq. 2.2 and Eq. 2.1 into Eq. 1.1, resulting in the final Equation
2.3 describing the motion of the interface as time goes on.

∂h

∂t
= v

√
1 + (∇h)2 (2.2)

∂h

∂t
= ν

∇2h

1 + (∇h)2 (2.3)

At this stage it is important to note that Eq. 2.3 is basically a nonlinear
diffusion equation. This is important as large curvatures decay towards flat-
ter surfaces, causing the gradient term in the equation to go to zero and
the nonlinearity to vanish. Thus, for small slopes we can expect Eq. 2.3
to behave just as the diffusion equation would. It is commonly known that
an initial condition of a sine wave in the diffusion equation produces a per-
fectly exponential decay in amplitude. Thus, if we utilize a sine wave as
the initial condition and track its amplitude over time, we expect a less-
than-exponential drop initially, gradually approaching an exponential drop.
Additionally, the decay constant should simply be ω2ν, where the initial state
is h(x) = A sin (ωx). We will use this simple fact to examine the accuracy of
numerical calculations.

2.1 Finite Difference Methods

As noted in Section 1, we solve Eq. 2.3 by discretizing along the x-axis and
employing the Euler method in time and using a finite difference approxima-
tion for the spatial derivatives. The general form of the Euler method can

3

be seen in Eq. 2.4. The derivation of finite difference formulae is slightly
longer, although equally straightforward. We begin by finding several Taylor
expansions, seen in Eq. 2.5.

f(t + ∆t) = f(t) + f ′(t) ·∆t (2.4)

f(x + 2∆x) =f(x) + 2(∆x)f ′(x) + 2(∆x)2f ′′(x) +
4(∆x)3

3
f ′′′(x)+

2(∆x)4

3
f (4)(x) +O(∆x5)

f(x + ∆x) =f(x) + (∆x)f ′(x) +
∆x2

2
f ′′(x) +

∆x3

6
f ′′′(x)+

∆x4

24
f (4)(x) +O(∆x5)

f(x + (1/2)∆x) =f(x) +
∆x

2
f ′(x)

∆x2

8
f ′′(x) +O(∆x3)

f(x− (1/2)∆x) =f(x)− ∆x

2
f ′(x)

∆x2

8
f ′′(x) +O(∆x3)

f(x−∆x) =f(x)− (∆x)f ′(x) +
∆x2

2
f ′′(x)− ∆x3

6
f ′′′(x)+

∆x4

24
f (4)(x) +O(∆x5)

f(x− 2∆x) =f(x)− 2(∆x)f ′(x) + 2(∆x)2f ′′(x)− 4(∆x)3

3
f ′′′(x)+

2(∆x)4

3
f (4)(x) +O(∆x5)

(2.5)

We can now experiment with these various equations to arrive at several ap-
proximations for f ′(x) and f ′′(x) to various orders of accuracy. The logical

starting place is clearly the expression f ′(x) = f(x+∆x)−f(x)
∆x

, called the ‘for-
ward difference’ approximation. A quick glance at the Taylor expansion for
f(x+∆x), however, indicates that this will only be accurate to O(∆x). The

backward difference, f ′(x) = f(x)−f(x−∆x)
∆x

, is the same. However, using the
central difference, seen in Eq. 2.6, we achieve accuracy to O(∆x2). This type
of reasoning gives us several finite difference formulae. The second derivative
f ′′(x) is given to O(∆x2) by Eq. 2.7. The first derivative to O(∆x4) is given

4

by Eq. 2.8, and the second derivative to O(∆x4) is shown in Eq. 2.9.

f ′(x) =
f

(
x + 1

2
∆x

)
− f

(
x− 1

2
∆x

)
∆x

(2.6)

f ′′(x) =
f(x + ∆x)− 2f(x) + f(x−∆x)

∆x2
(2.7)

f ′(x) =
−f(x + 2∆x) + 8f(x + ∆x)− 8f(x−∆x) + f(x− 2∆x)

12(∆x)
(2.8)

f ′′(x) =
−f(x + 2∆x) + 16f(x + ∆x)− 30f(x) + 16f(x−∆x)− f(x− 2∆x)

12(∆x)2

(2.9)
Once all these equations are derived, programming a solver for Eq. 2.3 is as
simple as applying Eq. 2.4 and plugging in Eqs. 2.8 and 2.9. The x-axis
is divided into a large number of subdivisions, usually N = 1024, and ∆x
becomes the natural division between these, i.e. 1. To ensure that terms like
h(x+2∆x) make sense when x = N , periodic boundary conditions are used.
Thus, rather than referring to h(x+2∆x) as h(i+2), a vector called ipp() is
created and defined as ipp(i)=i+2 except for the special cases of ipp(N-1)
and ipp(N). Thus, the main loop can be executed by the relatively simple
FORTRAN77 code:

do i=1,N

change(i)=dt*v*((-h(ipp(i))+16*h(ip(i))-30h(i)

+ +16*h(im(i))-h(imm(i)))/12)/(1+((-h(ipp(i))

+ +8*h(ip(i))-8*h(im(i))+h(imm(i)))/12)**2)

enddo

do i=1,N

h(i) = h(i)+change(i)

enddo

This code was run on a variety of sine waves, so as to compare with the
expected behavior as near-linear conditions were achieved. One of these
results, for the case of an initial condition of a sine wave with four periods and
an amplitude of 100 (N = 1024) is shown in Figure 1. It is clearly seen from
the graph that after the amplitude has decreased sufficiently, the nonlinear
equation does in fact have comparable slope to the linear expectation. This
is confirmed by fitting an exponential to the late data, also shown in the
figure.

5

Figure 1: Comparison of results of motion by mean curvature program with
expected results for linear diffusion equation. It can be plainly seen that for
later times, the program results do approach an exponential decay. When
these late points are fitted with an exponential curve (labeled ‘For Fit’ on
plot) it is seen that they are in fact strongly exponential and with a decay
constant very near the expected value.

3 The Phase-Field Method

The method just described has one major limitation, however. The function
h(x) must be a true function. That is, it can only take one value in a
given column. This prohibits interfaces from taking shapes such a circles, or
having multiple interfaces at once. Resolving this problem is the purpose of
the phase-field method.
In the phase-field method, we begin by discretizing both the x and the h
axes. For simplicity, we will now refer to the h-axis as the y-axis, as both
axes assume an equal role from now on, and x-y is standard terminology.
The x-axis still runs from 1 to N , while the y-axis runs from 1 to M . Typical
values for N and M are N = 1024 and M = 512, although M = 1024 is also

6

sometimes used. We then introduce the phase parameter φ, which takes a
value ranging from −1 to 1 at each point on the grid. These two extremes
correspond to opposite sides of the interface, with the interface itself residing
at φ = 0. This results in a large bulk at either −1 or 1, with interfaces near
0 surrounded by a width of values between 0 and the extremes.
Having established what the phase-field is, we now need to describe how it
changes to reflect the process of motion by mean curvature. We begin by
establishing a free energy functional, seen in Eq. 3.1. In this, the gradient
term represents the free energy cost associated with having interfaces between
the two phases, while the function f(φ) is a double well potential with zeroes
at −1 and 1 which serves to preference any given cell into choosing a phase
rather than staying at an intermediate value. The evolution of the phase-field
with this free energy is then given by Eq. 3.2.

F(φ) =

∫
dx2

[
1

2
V (∇φ)2 + f(φ)

]
, f(φ) = a

(
φ2 − 1

)2
(3.1)

∂φ

∂t
= −G

δF
δt

(3.2)

How to actually compute Eq. 3.2 is not immediately apparent, though, as
we still have the δF

δt
on the right hand side. This is known as a functional

derivative. Although the actual definition of a functional derivative can be
a bit cumbersome, for functionals of the form of Eq. 3.3 the functional
derivative can be expressed by Eq. 3.4. As our free energy functional from
Eq. 3.1 is of that form, we can simply apply Eq. 3.4 to it and arrive at Eq.
3.5.

F [φ (~x)] =

∫
d~x g

(
φ (~x) , ~∇φ (~x)

)
(3.3)

δF
δφ (~x)

=
∂g

∂φ (~x)
− ~∇ · ∂g

∂~∇φ (~x)
(3.4)

∂φ

∂t
= −G

[
−V∇2φ +

∂f

∂φ

]
(3.5)

Once this relation was obtained we utilize the same methods as Section 2,
namely Euler for time and finite difference for space, with the sole difference
that, as the Laplacian was now in two dimensions, we only employ the fi-
nite difference approximation which is good to O(∆x2) (Eqs. 2.6 and 2.7).
Again, a snippet of code detailing the main loop is presented below. Peri-
odic boundary conditions are still applied, and terms such as xp(i) refer to

7

the next point along the x-axis. A difference between xp(i) and yp(i) is
necessitated by the possibility of non-square domains (i.e. N 6= M).

do i=1,N

do j=1,M

change(i,j)=dt*-G*(-V*(p(xp(i),j)+p(i,yp(j))-4*p(i,j)+

+ p(xm(i),j)+p(i,ym(j)))+4*a*p(i,j)*p(i,j)**2-1))

enddo

enddo

do i=1,N

do j=1,M

p(i,j) = p(i,j)+change(i,j)

enddo

enddo

3.1 Results

One of the first things to note about Eq. 3.5 versus Eq. 2.3 is that in
the phase-field method we end up with two constants (G and V), while in
the original ‘dh/dt’ method we only had one (ν). According to Ref. [2],
however, these constants are related by Eq. 3.6. In fact, in both equations
the constants can be scaled out entirely. Without scaling, however, we first
want to test how changing the amount of ν in G versus in V might effect
the results. As the original sine wave results were obtained with ν = 100,
V was set to the values {1, 2, 4, 10, 100}, with the corresponding G in each
case such that G · V = 100. In all treatments of sine waves from here on,
a period of four was used for the initial conditions. Figure 2 shows how the
drop in amplitude changes for the different balances of constants, namely,
G = 1, V = 100 having perfect agreement, while G = 100, V = 1 never
changed at all.

ν = G · V (3.6)

Although initially confused by the data in Figure 2, we also looked at
the width of the interface for these cases. This data is shown in Figure
3. Although the data gets cluttered towards the bottom, each set of con-
stants has a maximum and minimum width at each measured timestep, and
each set shows the same trend with time. Thus, looking at the data for
G = 1, V = 100, we notice that as time goes on, the minimum width stays
constant while the maximum width slowly approaches it. However, this is

8

Figure 2: Comparison of different weighting between G and V for the case
G · V = 100. The ‘dh/dt’ results for a four period sine wave are presented
for reference, along with the linear prediction. From the graph it can be
seen that full weighting on V produced the most accurate results, while full
weighting on G produced absolutely no motion whatsoever.

completely explained by the method of determining width in the program.
The data is simply read in and scanned vertically for each column along the
x-axis. When φ = −0.8 (10% of the maximum range) it starts counting the
number of grid sections passed until surpassing φ = 0.8 (90% of the range).
If the slope is high, however, this does not give a good estimate of the width,
as a true width would be normal to the interface. Closer investigation con-
firmed that maxima were at high slope and minima were at zero slope, and
correcting the maxima for this effect results in a single width for all time.
Once this is taken into account, it is seen that weighing the constants more
towards G leads to thinner and thinner interfaces. With this in mind, we see
that the discrepancies between amplitude drops in Figure 2 is simply due to
numerical error as a result of having too thin an interface for the computer to
properly simulate the effects. This leads us to confirm that Eq. 3.6 is indeed

9

satisfied, and simply use values G = 1, V = 100 in future calculations. There
is one final important note to make about Figures 2 and 3. All values for
phase field results are given in integers. This is because the programs look
for the first cell to satisfy a certain criterion, and simply use the location
of that cell from then on. This leads to slightly inaccurate graphs, a point
which will be addressed later.
We now proceed to verify the accuracy of our phase field treatment in one

Figure 3: Plot of maximum and minimum width of interface for four period
sine waves with time for various combinations of G and V . The confusing
data at the bottom simply shows the same general trend visible at the top:
maxima approach minima with time, while minima are constant, and higher
G leads to a thinner interface.

other way: by using a circle as the initial condition. Although this situation
can’t be treated by our initial ‘dh/dt’ program, it is easily treated explicitly
by Eq. 1.1. For a circle, curvature is simply the inverse of the radius, and the
normal to the edge of a circle is always pointing along the radial axis, thus
we can simply write Eq. 3.7, which has solution Eq. 3.8. Several trials with
circles of initial radii R0 = {200, 150, 100, 50, 10} were run, and the results

10

plotted against the expectation of Eq. 3.8. As can be seen by Figure 4, the
phase field program agrees very nicely with expected results.

dR

dt
= − 1

R
(3.7)

R(t) =
√

R2
0 − 2t or A(t) = A0 − 2πt (3.8)

Once these tests are complete, we are able to simulate what is arguably the

Figure 4: Plot of circle area over time for various initial radii and comparison
to theory. From here it can be seen that near perfect agreement is achieved
between the phase field program and the expected results of motion by mean
curvature.

most complicated interface possible: a completely random initial condition.
For a number of trials of varying total time movies were generated showing
a random initial distribution coarsening into large domains of one phase
or the other, then slowly smoothing out bumps along the interfaces. This
type of calculation would be completely impossible using the straightforward

11

‘dh/dt’ method, but also highlights the single largest downfall of the phase-
field method. When doing sine wave simulations in the ‘dh/dt’ program, a
typical program runtime is on the order of 10-15 minutes. Doing the same
calculation with the phase-field method takes closer to 5 hours. This is a
result of the large regions of uniform phase where the computer spends most
of its time computing zero change. In an effort to accelerate these sorts of
computations, we now turn to Fourier transforms.

4 Fourier Transforms

The advantage of working in Fourier space rather than x-y space is entirely
due to what happens when you take the Fourier transform of the Laplacian
operator, namely, that it becomes simply a constant. Ordinarily, the accu-
racy of the finite difference approximations used constrains time steps for
Laplacians according to Eq. 4.1. However, in Fourier space our equation
becomes Eq. 4.2. In this formula, Φ is the Fourier transform of φ, thus
becoming a function of k1 and k2 rather than x and y. In addition, the term
{f̃ ′ (φ)}~k simply refers to the Fourier transform of the ∂f

∂φ
term from Eq. 3.5.

Since the evolution of each point in Fourier space is independent of surround-
ing points, we lose the instability that a Laplacian can induce at large time
steps, allowing us to have very large time steps in our computation.

∆t . (∆x)2 (4.1)

∂Φ

∂t
= −G

[
−V

(
−4π2

(
k2

1 + k2
2

))
Φ +

{
f̃ ′ (φ)

}
~k

]
(4.2)

The actual formula for the computation begins by re-writing Eq. 4.2 in
simpler form as Eq. 4.3, where L is a linear operator (the constants in front
of the first Φ) and NL is some nonlinear operator (the {f̃ ′(φ)}~k term). From
here we start to solve the equation using Eq. 4.4, and reach the final step
by assuming the nonlinear portion of the equation is constant within the
integral over the time step being used. Eq. 4.5 is rewritten in terms of all
explicit constants.

∂Φ

∂t
= LΦ + NL (4.3)

12

Φ(t + dt) =eLdtΦ(t) + eLdt

∫ dt

0

e−Lt′NL(t′)dt′

≈eLdtΦ(t) +
eLdtΦ(t)− 1

L

NL(t)

(4.4)

Φ(t+dt) = e−GV 4π2(k2
1+k2

2)dtΦ(t)+
e−GV 4π2(k2

1+k2
2)dtΦ(t)− 1

V 4π2 (k2
1 + k2

2)

{
f̃ ′(φ)

}
~k
|t (4.5)

The general structure of the program is now given below. As a final note, in
order to be able to use Fast Fourier Transforms (FFTs) both N and M must
be a power of two.

• Initial Condition

• Evaluate f ′(φ)

• Take Fourier transforms of φ and f ′(φ)

• Compute next time step (Eq. 4.5)

• Do inverse Fourier transform of resulting Φ

• Repeat with this φ as the new initial condition

• At regular intervals, take resulting φ and output data

4.1 Results

We once again start with the initial condition of a four period sine wave and
plot the amplitude with time. Two time steps were used in testing the new
method, dt = 0.1 and dt = 0.05. These contrast to the much smaller inter-
val being used in all previous computations of dt = 0.001. Although taking
Fourier transforms greatly increases the amount of computation needed at
each time step, the drastic reduction in the number of time steps allows our
program to speed up significantly regardless. In the case of dt = 0.05, the
program took about one hour to evaluate, while dt = 0.1 was about a half
hour. This lets the programs retain the advantage of handling complex inter-
faces that the phase field method provides, but returns computation times
to something much closer to those of the ‘dh/dt’ program.
This speed increase does come at a cost, however. Figure 5 shows the com-
parison of these two trials, along with the G = 1, V = 100 phase field trial

13

from before, the ‘dh/dt’ result, and the linear expectation. Additionally, for
this graph, rather than taking the first grid space to satisfy a given condition
as the height of the interface, the value at the point closest to zero and the
points above and below this point were fit linearly to obtain a continuous
measure of interface location in the phase field cases. This greatly clari-
fies the graph, allowing us to see the the phase-field method without fourier
transforms really is exactly reproducing the ‘dh/dt’ method. It also allows
us to see that there is some error present when using Fourier transforms to
speed up computation. Additionally, this error is lessened by in the smaller
time step, suggesting it is numerical in nature. I feel that the most probable

Figure 5: Final comparison of all methods employed as pertaining to ampli-
tude decay of an initial sine wave. The heights for the phase-field methods
were obtained by doing a linear fit to the point closest to zero along a given
x location with the points immediately above and below it. This removes
the stepping seen in previous plots of phase-field height and clearly shows
the accuracy of normal phase-field versus the error of introducing Fourier
transforms.

source of this error is in the approximation step within Eq. 4.4, although I

14

was not able to investigate that in detail. In the current setup, to achieve
closer accuracy it appears we will need an even smaller time step. This will
very quickly negate the advantages of using Fourier transforms as a source
of speed increase. One possible solution, however, lies in removing the step
computing the inverse Fourier transform of Φ at the end of each time step.
Currently, this is necessary because there is no other way to get the Fourier
transform of the nonlinear portion without first evaluating it in x-y space.
The methods proposed in Ref. [3], however, should allow this step to be by-
passed, requiring an inverse Fourier transform only when data is desired as
output. Another possible solution would be to use the schemes presented in
Ref. [1] instead of Eq. 4.4, as this paper claims superior accuracy over more
common methods. Unfortunately, I did not have time to investigate either
route.
The final computation in this project was to take the Fourier approach to
the phase-field method (despite its slight inaccuracy) and compute another
random initial condition. In this way I was finally able to extend the idea of
motion by mean curvature to a complicated interface, and still compute it in
a very reasonable amount of time, the crowning achievement of my REU.

5 Conclusions and Possible Future

Overall, the use of the phase-field approach to problems involving motion
by mean curvature was successfully implemented. With both sine waves and
circles for initial conditions, computed behavior agreed essentially flawlessly
with expected behavior. Additionally, we were able to model the very com-
plicated case of a random start and see larger scale structure arise. In an at-
tempt to speed computation, Fourier transforms proved to be very successful,
despite introducing some slight error into the result. Potential workarounds
for these errors do exist, however, and just could not be investigated in the
time alotted.
This work could hopefully be extended in the future in a number of ways.
In the immediate short-term, the methods of Orzag and/or Chen et. al. can
be implemented and their effectiveness investigated. In the longer-term, now
that general inroads into the implementation of phase-field has been made,
the method might be applied to new situations that haven’t been dealt with
via phase-fields before, such as the growth of films studied by Dr. Amar’s
research group. Additionally, I personally hope to be able to carry some of

15

these methods and ideas back to my University in the fall, where I will be
doing a senior project on the dynamics of ferrofluid materials. These goals
seem very achievable at the current time, and hopefully will be realized in
the days, months, or years to come.

References

[1] L. Chen and J. Shen. Applications of semi-implicit fourier-spectral
method to phase field equations. Comp. Phys. Comm., 108:147–158,
1998.

[2] K. Elder, M. Grant, N. Provatas, and J. Kosterlitz. Sharp interface limits
of phase-field models. Phys. Rev. E, 64, July 2001.

[3] D. Gottlieb and S. Orzag. Numerical Analysis of Spectral Methods: The-
ory and Applications. SIAM-CBMS, Philadelphia, PA, 1977.

16

