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The breadth and variety of applications for thin film deposition, among them solar cell manu-
facturing and microprocessor fabrication, make the theoretical and computational study of surface
growth important. While classical nucleation theory has long modeled these types of systems, it
applies only to normally diffusing particles on the surface. Here, we employ kinetic Monte Carlo
simulation to investigate submonolayer nucleation and growth for subdiffusive random walkers, and
find that the classical theory does not hold.

I. INTRODUCTION

Nucleation and growth drives many physical processes,
both natural (as in crystallization) and human-made (as
in deposition of all kinds – sputtering, atomic layer, va-
por, etc.). Because of this, much effort has focused on
studying the process.

Suppose we deposit some material on a two-
dimensional (2D) surface. The individual constituents
(particles) will undergo random walks, diffusing around
the surface, until (due to whichever molecular or atomic
forces dominate the process) they begin to stick together
and no longer move. This is called nucleation, and the
new structure is called a stable island; we let i+ 1 be the
number of particles needed to form a stable island, and
call i the critical island size. Figure 1 shows an illustra-
tion of this on a one-dimensional (1D) surface.

FIG. 1. Illustration of Nucleation and Growth

As in Figure 1, these stable islands aggregate, or grow,
as more monomers (single particles – they could also be
dimers, trimers, etc. depending on i) attach to the edges.
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A. Classical Nucleation Theory

Classically, nucleation is modeled by the set of rate
equations in (1),

dN1

dt
= Fγ − 2FN1 − 2Dσ1N

2
1 −DN1

∑
s≥2

σsNs

dNs
dt

= RD (σs−1Ns−1 − σsNs) + Fks−1Ns−1 − FksNs
(1)

where t is time, F is the deposition rate per site on the
substrate, D is the diffusion rate per monomer, N1 is
the monomer density, Ns is the density of islands of size
s (containing s particles), σ1 is the monomer capture
number, σs is the capture number for islands of size s,
γ is the fraction of the substrate not covered, and ks
is the direct impingement term (not important at low
coverage).

There are a number of important variables in charac-
terizing nucleation and growth. In this report, the most
important of these is the peak island densityNpeak, which
scales as

Npeak ∼
(
D

F

)−χ
, (2)

with χ unknown. Classically, for normal diffusion on a
2D substrate, the theory gives

χ =
i

i+ 2
. (3)

B. Super- and Sub-Diffusion

Diffusion is a phenomenon characterized by many in-
dividual particles each undergoing random walks: in nor-
mal diffusion, for each unit of time, the particle takes a
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unit step in a random direction; the mean squared dis-
placement from the starting position 〈R2〉 ∼ t.

However, there are at least two other types of diffusion:
superdiffusion and subdiffusion. For a superdiffusive par-
ticle, instead of each step being unit length, the step size
ξ follows a power-law distribution. Naturally, this gives
rise to larger mean squared displacement, and it turns
out that 〈R2〉 ∼ tβ with β > 1.

For subdiffusion, the particle takes a unit-length step
but waits a time τ – where τ follows a power law distri-
bution – before taking its next step. Thus, the process
gets “slowed down,” and 〈R2〉 ∼ tβ with β < 1.

Thus, generally, one can characterize the type of diffu-
sion by the mean squared displacement as in (4).

〈R2〉 ∼ tβ
 β > 1 superdiffusion
β = 1 normal diffusion
β < 1 subdiffusion

(4)

C. Research Question

Previous work by J. Amar and others has inves-
tigated systems where the constituent particles were
either normally diffusive or superdiffusive. In contrast,
subdiffusive random walkers have not previously been
studied in terms of nucleation and growth. Thus, for
this project, we ask:

What is the form of χ for subdiffusive walk-
ers? Does it differ from the classical theory’s
prediction (χ ≈ 0.35 for normal diffusion and
irreversible island growth with i = 1)? Does it
depend on β?

II. SIMULATION

To tackle this question, we employ kinetic Monte Carlo
(KMC) simulation, which has previously served to ver-
ify and or/check the analytical theory. KMC works by
knowing the rates of all possible events – in this case, dif-
fusion D or deposition F (either a monomer moves, or a
new one is deposited) – and then at each “step” deciding
which event to carry out. This is illustrated in Figure 2.

To make the decision process, we first define a “to-
tal rate” Rtotal = DN1 + Fno = diffusion rate +
deposition rate (where no is the total number of open
sites), and then pick a random number between 0 and
Rtotal. If the number falls below Fno, we diffuse; else,
we deposit. This ensures that the likelihood of a depo-
sition (or diffusion) is proportional to its rate compared
with the total rate.

For this project, we model on a 2D substrate with
i = 1 (only monomers are mobile) and irreversible island
growth.

FIG. 2. Kinetic Monte Carlo Outline

A. Time-Based KMC

The introduction of subdiffusion requires changing this
process: the rate is harder to define when the particle
waits a random time between each diffusive step. Since
Rate ≡ time−1, we first redefine Figure 2 to replace
“rates” with “waiting times.” The deposition “time”
τdep = − logX/ (deposition rate), where X is a uniformly
distributed random variable between 0 and 1. After every
deposition, we assign the new monomer a waiting time τ .
For every monomer diffusion, we update that monomer
with a new τ . Then, we run through the list of τ values
and carry out the event with the shortest waiting time.

Actually generating τ in the computer starts with its
power law probability density function (PDF), given by
(5).

ρ (τ) ∝ τ−1−β (5)

Michael Shlesinger and others have shown that this PDF
satisfies the subdiffusive criteria in (4). Letting τ ∈
[1,∞)1 and β > 02 gives the explicit version of (5):

ρ (τ) = βτ−1−β for all τ ≥ 1. (6)

The corresponding cumulative distribution function
(CDF) P (τ)3 is

P (τ) = 1− τ−β . (7)

1 The choice of the minimum τ = 1 simply implies there is some
finite minimum waiting time. If we could have τ = 0, there
would be no wait at all; we may as well normalize any τ = ε > 0
to 1.

2 The domain of τ and normalization requirements on (5) force
β > 0.

3 P (τ) ≡
∫ τ
−∞ ρ (τ) dτ . In this case, the lower bound on τ is 1, so

we integrate from τ = 1 to ∞.
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By setting (7) equal to the CDF of X as previously de-
fined,

P (X) = X, (8)

we solve for τ in terms of X and obtain

τ (X) = (1−X)
−1/β

. (9)

Now, X (being a uniformly-distributed random num-
ber between 0 and 1) is very easy to generate in a com-
puter. However, if X is allowed to be exactly 1, this
produces an infinity and cannot work; this problem is
solved easily by either using a non-inclusive generator or
by adding an extra subroutine in case of X = 1.

Finally, since X is uniform, 1−X and X are equivalent
for the purpose of generating a random number. We
make this change, and use

τ (X) = X−1/β (10)

to generate a waiting time for every monomer’s next step,
realizing a time-based version of the KMC structure in
Figure 2.

B. Implementation

To implement the time-based KMC, we modified pre-
vious KMC code from J. Amar, written in the C pro-
gramming language, which simulates up to a specified
coverage (fraction of the surface covered). Our purpose
was to simulate χ, so we varied D/F and simulated far
enough to pass the peak number of islands (and there-
fore island density); we then plotted the calculated island
density for each D/F . We repeated this entire process
for different β < 1; then, for each β, the slope of Npeak

versus D/F on a log-log plot gives the value of −χ for
each β.

We simulated subdiffusion on a 2D square lattice of
size 2048 by 2048, doing 10 runs for each β and D/F
combination. The code was run at the Ohio Supercom-
puter Center.

III. RESULTS

The plot of Npeak versus D/F is shown in Figure 3,
which shows a clear difference in slope for different β,
indicating a definite β-dependence in χ. This exciting
result indicates that the classical theory is inconsistent
with results for subdiffusion.

Figure 4 shows the final result of χ vs β – indeed, χ
depends rather strongly on β. The dotted line shows the
result of a new theory being developed by J. Amar.

IV. CONCLUSIONS AND FUTURE WORK

Simulated results show that there is definitely a strong
β-dependence in χ, and therefore that the classical theory

FIG. 3. Npeak versus D/F

FIG. 4. χ versus β

for normal diffusion does not work. An independently-
formulated theory by J. Amar features a β-dependence
which agrees very closely with simulated results, making
it a promising candidate for describing this phenomenon.

Additional simulations for larger system sizes and dif-
ferent D/F are currently being run to increase the sta-
tistical accuracy of the simulated data. We are also ob-
taining data for β = 0.9 and 1.0. It would be interesting
to compare the results obtained here for “fractal islands”
(with fractal dimension df ≈ 1.7) with the correspond-
ing results for “compact islands” (df = 2), as well as the
effects of quenched randomness on scaling behavior.
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