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Motivated by observations of three-dimensional �3D� island formation in a variety of experiments, we have
carried out kinetic Monte Carlo simulations of a simplified model of 3D island growth with critical island size
i=1 �irreversible growth�. Of particular interest are the exponents y1 and y1� describing the dependence of the
submonolayer island density in the precoalescence regime on dose and coverage respectively, as well as the
exponent �1� describing the dependence of the peak island density on the ratio D /F, where D is the monomer
hopping rate and F is the �per site� deposition rate. We find that the values of y1 and y1� �e.g., y1�0.24, y1�
�0.32� are significantly lower than the standard rate-equation �RE� predictions �y1=1 /3, y1�=3 /7�0.43�.
This may be explained by the fact that, in contrast to the standard RE assumption of size-independent capture
numbers, for 3D islands the island radius increases with the number of atoms in an island. Accordingly, the
average capture number increases with coverage and as a result, the coverage dependence of the island density
for 3D islands is intermediate between that for two-dimensional �2D� islands �y1=y1�=0� and the standard RE
prediction. As a result, the measured value of �1� ��1��0.30� is slightly larger than the standard RE prediction
��1�=2 /7�0.29� but still lower than the value ��1=1 /3� for irreversible 2D island growth. For comparison
with our simulations we also present self-consistent RE results for the island and monomer densities as a
function of coverage and excellent agreement is obtained without any adjustable parameters. Results for the
scaled island-size distribution �ISD� for 2D and 3D irreversible island growth are also presented. Somewhat
surprisingly, we find that there is very little difference between the scaled ISD for 3D islands and that for 2D
islands. In addition to our simulation results, the scaling behavior of the 3D island density for general critical
island size i is also discussed. Our results suggest that while the exponent �i� describing the flux dependence of
the peak island density is the most accurate indicator, the exponent yi may also be useful to estimate the critical
island size i in submonolayer 3D growth.
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I. INTRODUCTION

The ordering and size distribution of islands in submono-
layer growth plays an important role in determining the later
stages of thin-film growth.1–5 Accordingly, during the past
few years considerable experimental and theoretical efforts6

has been devoted to studying the dependence of the sub-
monolayer scaling behavior on deposition conditions. Of par-
ticular interest is the dependence of the �per site� island den-
sity N and island-size distribution �ISD� Ns��� �where Ns is
the number density of islands of size s at coverage �� on such
deposition parameters as the deposition flux F and growth
temperature T.

One concept that has proven especially useful is that of a
critical island size, corresponding to one less than the size of
the smallest “stable” cluster. For example, in the case of
submonolayer growth of two-dimensional �2D� islands on a
2D substrate, standard nucleation theory2,3 predicts that the
peak island density satisfies

Npk � �D/F�−�i eEb/�i+2�kBT, �1�

where D=D0e−Ea/kBT is the monomer hopping rate, Ea is the
activation energy for monomer diffusion, Eb is the binding
energy of the critical nucleus, i is the critical island size, and
�i=

i
i+2 . In addition, it has been shown that in the precoales-

cence regime the ISD satisfies the scaling form7,8

Ns��� =
�

S2 f i� s

S
� , �2�

where S is the average island size and the scaling function
f i�u� depends on the critical island size.9

While much of the theoretical work has focused on an
analysis of the scaling behavior in the case of homoepitaxial
2D island growth or on quantum dot formation in the case of
heteroepitaxial growth,10 in some cases three-dimensional
�3D� islands may also be formed in the submonolayer re-
gime, e.g., before a complete layer is formed. For example,
sputter deposition of Al, Cu, and Cr �Refs. 11 and 12� on
amorphous SiO2 and TiO2 as well as plasma-enhanced
chemical vapor deposition �PECVD� of hydrogenated amor-
phous Si on SiO2 �Refs. 13 and 14� can lead to nonwetting
3D island growth. Therefore, understanding the scaling be-
havior of the island density and size distribution in the case
of 3D island growth is of interest.

We note that in the case of 3D island growth a distinction
should be made between the coverage � corresponding to the
substrate area fraction covered by islands and the dose �
corresponding to the number of particles per unit area �or
equivalent monolayers �ML�� deposited. In particular, since
the onset of island coalescence is related to the coverage �
we expect that the scaling of the peak island density is
equivalent to that of the island density at fixed coverage.
Based on this assumption, standard nucleation theory2,3 pre-
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dicts that for 3D island growth, the effective value of the
exponent describing the flux dependence of the peak island
density is given by �i�= i

i+2.5 rather than �i=
i

i+2 as for 2D
islands. This relation has been used to analyze the depen-
dence of the peak 3D island density on temperature and flux
in a number of experimental papers.15,16 However, while
there have been many studies of 2D island growth, there
have been few theoretical17 studies of the scaling behavior of
the island density and ISD for 3D islands.

Here we present the results of simulations of a simple
model of 3D irreversible island growth, carried out in order
to better understand the relevant scaling behavior in this
case. We have also compared our results for the scaled
island-size distribution with those obtained for 2D islands. In
addition to our simulations, we also present a general theo-
retical relation �valid for any critical island size� connecting
the exponent �i corresponding to the flux dependence of the
island density at fixed dose � and the exponent �i� corre-
sponding to the flux dependence of the peak island density.
For comparison with our simulation results we also present
self-consistent rate-equation �RE� results for the island and
monomer densities as a function of coverage. Since our
simulations are motivated in part by recent experiments on
amorphous-Si grown via PECVD for which it was found that
there is a large wetting angle,13,18 here we assume that the
3D islands are hemispherical rather than facetted. In addi-
tion, since strain due to island-substrate lattice mismatch is
unlikely to play a role in the growth of a-Si islands, the
effects of strain are not included in our model.

In qualitative agreement with the standard RE prediction,
we find that �in contrast to the case of 2D islands� for 3D
islands the island density does not saturate with increasing
coverage in the precoalescence regime. Accordingly, the ef-
fective value of �1� is indeed somewhat smaller than the
value ��1=1 /3� for 2D irreversible island growth. However,
due to the fact that the average capture number for 3D is-
lands increases with coverage, some deviations are also ob-
served. For example, the effective values of the exponents y1
and y1� describing the dependence of the island density on
dose � and coverage � in the precoalescence regime are
significantly smaller than the standard RE prediction. As a
result, the value of �1� obtained in our simulations ��1�
�0.30� is somewhat larger than the standard RE theory pre-
diction ��1�=2 /7�0.286�. We also find good agreement be-
tween the results of a self-consistent RE calculation and our
simulation results for the island and monomer densities as a
function of coverage/dose and D /F. However, despite these
differences we find very little difference between the scaled
ISD for 3D islands and that for 2D islands.

In addition to these results, we also discuss the depen-
dence of the exponent �i� on the critical island size i. How-
ever, since �i� depends only weakly on yi�, this only leads to
small deviations from the standard RE predictions for �i�.
Finally, we discuss the suitability of measuring the exponents
yi �or yi�� rather than �i� in order to estimate the critical island
size.

This paper is organized as follows. In Sec. II, we first
describe our model while in Sec. III, we describe the self-
consistent rate-equation approach. In Sec. IV we first use a
scaling approach to derive general expressions connecting

the exponent �i corresponding to the scaling of the island
density at fixed dose � and the exponent �i� corresponding to
the scaling of the island density at fixed coverage. We then
compare our simulation results with the predictions of this
scaling approach, as well as with our self-consistent RE re-
sults. A comparison between the scaled ISD for 2D and 3D
islands is also presented. Finally, in Sec. V we summarize
our results.

II. MODEL

Since our simulations are motivated, in part, by recent
experiments on amorphous Si grown via PECVD for which
it was found that there is a large wetting angle13,18 here we
assume for simplicity that the 3D islands are hemispherical
while a substrate consisting of a square lattice of deposition
sites with lattice constant a is also assumed for simplicity.
Accordingly, each island of size s is represented by a hemi-
sphere with volume vs=2�rs

3 /3 and radius rs=r1s1/3, where
r1=a /2. While such an assumption is not entirely realistic
for small islands, we do not expect that inclusion of a more
realistic size dependence for small islands will affect the re-
sults presented here since the asymptotic scaling behavior is
determined by the large islands.

In order to take deposition into account, in our model
atoms are randomly deposited onto the substrate with rate F
per unit time per lattice site while monomers are assumed to
hop in each of the four nearest-neighbor directions with hop-
ping rate Dh=D /4, where D is the total hopping rate. Since
we are assuming irreversible growth, when two monomers
are nearest neighbors they are assumed to form a stable
dimer while any monomers which overlap with an island
either via direct impingement or via diffusion are assumed to
aggregate irreversibly to the island. In particular, we assume
that when two monomers become nearest neighbors they
form a hemisphere with radius r2 whose center is located at
the center of mass of the two monomers. Similarly, if a
monomer overlaps with an island, then the monomer is “ab-
sorbed” and the radius of the island is increased accordingly.
Although the focus here is on the precoalescence regime, we
also assume that if two islands overlap then a third island is
formed by the “union” of the two initial islands. In this case,
the radii of the islands are also adjusted to ensure mass con-
servation.

For comparison, we have also carried out similar simula-
tions for the case of 2D circular islands. In this case, every-
thing is the same as for the 3D case except that the island
area and radius are given by the expressions as=�rs

2 and
radius rs=r1s1/2 with r1=a /2 as before. In order to avoid
finite-size effects, in our kinetic Monte Carlo �KMC� simu-
lations we have used a large system size of 1024�1024
lattice sites while averages over 100 runs were taken to ob-
tain good statistics. In order to determine the asymptotic de-
pendence of the island density on coverage and D /F our
simulations were carried out using values of D /F ranging
from 109–1011 up to a maximum coverage of 0.2 ML.

III. SELF-CONSISTENT RATE-EQUATION APPROACH

For comparison with our simulations we have also carried
out self-consistent RE calculations following the method
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originally developed by Bales and Chrzan.19 We note that
while this method19–21 does not give accurate results for the
island-size distribution, it is expected to give accurate results
for the average island and monomer densities N��� and
N1���. In particular, in the case of 3D islands our rate equa-
tions may be written in the following form:

dN1

d�
= 1 − 2R�1N1

2 − RN1	
s=2

�

�sNs − 	1N1 − 	
s=1

�

	sNs �3�

dNs

d�
= RN1��s−1Ns−1 − �sNs� − 	s−1Ns−1 − 	sNs �s 
 2� ,

�4�

where � is the deposited dose in ML, R=D /F is the ratio of
the monomer diffusion rate D to the �per site� deposition rate
F, the terms with 	s correspond to direct impingement of
atoms deposited on top of islands, and the capture numbers
�s ��1� correspond to the average capture rate of diffusing
monomers by islands of size s �monomers�.

In order to numerically integrate the REs above we need
to know the size dependence and dose dependence of the
relevant capture numbers �s���. In order to do so we con-
sider a quasistatic diffusion equation for the monomer den-
sity n1�r , �̃� surrounding an island of size s of the form

�2n1�r,�̃� − �−2�n1 − N1� = 0, �5�

where N1 is the average monomer density and � is the aver-
age capture length. Assuming circular symmetry and solving
for n1�r�, using the boundary conditions n1���=N1 and
n1�r̃s�=0 �where r̃s=rs+r1 is the effective monomer capture
radius of an island of size s� the following expression for the
capture number can be obtained:19

�s = 2�
r̃s

�

K1�r̃s/��
K0�r̃s/��

, �6�

where the Kj are modified Bessel functions of order j. Simi-
larly, the monomer capture radius r̃s can be used to calculate
the direct impingement term, e.g., 	s=�r̃s

2. We note that in
our self-consistent RE calculations inclusion of the monomer
capture radius r1 in the definition of r̃s turns out to be crucial
to obtain good quantitative agreement with our simulations.

For consistency with the REs �Eqs. �3� and �4�� we re-
quire

�−2 = 2�1N1 + 	
s=2

�

�sNs. �7�

Thus, for a given dose � and island-size distribution Ns���,
the capture-length � may be determined self-consistently
starting with an initial guess for � in Eq. �6� and then substi-
tuting into Eq. �7� and repeating until the process converges.

IV. RESULTS

A. Scaling approach to 3D island growth

Before presenting our simulation results, we first consider
the standard RE approach for the flux dependence and dose

dependence of the island density for a given critical island-
size i. In particular, assuming size- and coverage-
independent capture numbers � one may write the following
truncated rate equations for the densities N �N1� of stable
islands �monomers�:

dN

d�
= �RN1Ni, �8�

dN1

d�
= 1 − 2�RN1

2 − 2	1N1 − 	
s
2

	sNs

− ��RN1 −
�s

F
�	

s=2

i

Ns − �RN1N , �9�

where N=	s
i+1Ns and �s corresponds to the monomer de-
tachment rate for an island of size s. In the limit of large D /F
and beyond the nucleation regime the first and last terms in
Eq. �9� dominate and dN1 /d��0 which implies

N1 � �RN�−1. �10�

Assuming the Walton relation1 Ni�N1
i eEb/kBT �where Eb is

the binding energy of the critical nucleus�, and substituting
Eq. �10� into Eq. �8� and solving for N we obtain

N � R−i/�i+2��1/�i+2�eEb/�i+2�kBT, �11�

which implies that N�F�i�yi, where

�i = i/�i + 2�, yi = 1/�i + 2� . �12�

We note that this expression for �i has been verified in many
simulations of 2D submonolayer island growth.8,9,22,23,25

However, the result for yi has only been found to be valid for
point islands.22,23 In contrast—due to the fact that the aver-
age capture number and impingement terms increase with
increasing coverage—for 2D islands the island density satu-
rates with increasing coverage and one has yi=0.

We now consider the standard RE prediction for the ex-
ponents yi� and �i� describing the coverage dependence and
flux dependence �at constant coverage�, respectively, of the
island density for 3D islands. In particular, one may write

� � NS2/3 � N��/N�2/3 � N1/3�2/3, �13�

where S=� /N is the average island size. Substituting into
Eq. �11� we obtain

N � F2�i/�yi+2��3yi/�yi+2� � F�i��yi�, �14�

which implies that

�i� = 2�i/�yi + 2�, yi� = 3yi/�yi + 2� . �15�

Substituting the expressions for �i and yi in Eq. �12� this
result leads to the standard RE prediction for the flux depen-
dence of the peak island density for 3D islands,24

�i� =
i

i + 2.5
�16�

as well as the result,
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yi� =
3

5 + 2i
. �17�

Substituting Eq. �11� into Eq. �13� and inverting to obtain
���� we also obtain the following expression for the cover-
age � as a function of dose � in the case of 3D islands:

� � R−�i/3�
i, �18�

where 
i= �yi+2� /3. We note that in the case of irreversible
growth, Eq. �14� implies ���7/9��0.778. Table I shows a
summary of the exponents 
i ,yi ,yi� ,�i and �i� as a function
of critical island size i for i=1–8. As can be seen, except for
the exponent 
i all of the other exponents depend sensitively
on the critical island size.

B. Simulation results

We first consider the dependence of the island and mono-
mer densities on dose � for the case of irreversible growth of
3D �hemispherical� islands. As can be seen in Fig. 1�a�, in
contrast to the case of 2D islands �see Fig. 3�b�� for which
the island density saturates at doses less than 1 ML, for 3D
islands the saturation dose is much higher than 1 ML since
the effective coverage is reduced. Also shown in Fig. 1�a� are
our self-consistent RE results �solid curve�. As can be seen,
there is very good agreement with our simulation results.
However, a power-law fit to the dependence of the island
density on dose in the precoalescence regime �see Fig. 1�b��
gives an effective value �y1�0.24� which is significantly
lower than the standard RE prediction given by Eq. �12�
�y1=1 /3�. In contrast, fits for the island density at constant
dose as a function of D /F �not shown� give a value �1
�0.32 in good agreement with the standard prediction of
1/3.

We now consider the dependence of the island density on
coverage. As can be seen in Fig. 2�a�, the island density
�solid curves� saturates at a coverage slightly above 0.1 ML.
As indicated by the continued increase in the total density of
nucleated islands �dashed curve� this saturation is due to coa-
lescence. In addition, fits to the coverage dependence in the
precoalescence regime �see Fig. 2�b�� give a value of y1�
�y1��0.32� which is significantly lower than the standard RE
prediction �y1�=3 /7�0.43� although in good agreement with
the value obtained using Eq. �15� if we assume the measured

value of y1 �y1�0.24� rather than the predicted value �y1
=1 /3�. Also shown in Fig. 2�a� �inset� is a plot of the island
density at fixed coverage ��=0.07� in the precoalescence re-
gime as a function of D /F. As can be seen the effective value
of the island-density scaling exponent obtained in our simu-
lations ��1��0.30� is slightly higher than the standard RE
prediction ��1�=2 /7�0.286� but still somewhat lower than
the value �1/3� expected for 2D islands.

In order to further understand the difference between the
coverage dependence and dose dependence of the island den-
sity for 3D islands, in Fig. 3�a� we show the dependence of
the coverage � on dose � obtained in our simulations. As can
be seen, the dependence of coverage on dose exhibits power-
law behavior, e.g., ���1


 over the entire range of dose, with
an exponent 
1�0.76 which is somewhat smaller than the

TABLE I. Standard RE predictions for exponents as function of
critical island size.

i 
i yi yi� �i �i�

1 0.778 0.333 0.429 0.333 0.286

2 0.750 0.250 0.333 0.500 0.444

3 0.733 0.200 0.273 0.600 0.545

4 0.722 0.167 0.231 0.667 0.615

5 0.714 0.143 0.200 0.714 0.667

6 0.708 0.125 0.176 0.750 0.706

7 0.704 0.111 0.158 0.778 0.737

8 0.700 0.100 0.143 0.800 0.762

10-4

10-3

10-2 10-1 100

N
y
1
= 0.24

R = 109

R = 1010

R = 1011

φ

y
1
= 0.25

(b)

10-6

10-5

10-4

10-3

10-5 10-4 10-3 10-2 10-1 100

R = 109

R = 1010

R = 1011

φ

D
en
si
ti
es

(a)

N
1

N

FIG. 1. �a� Island density N and monomer density N1 as a func-
tion of dose � obtained from KMC simulations �symbols� and self-
consistent RE calculations �solid curves� for D /F=109–1011. �b�
Island density as a function of dose showing power-law behavior
beyond the nucleation regime.
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standard RE prediction 
1=7 /9�0.78 but in good agree-
ment with the expression 
1= �y1+2� /3 given in Eq. �14� if
we assume y1=0.24. For comparison, simulation results for
the island density as a function of coverage for 2D circular
islands are shown in Fig. 3�b� up to a coverage �=0.5 ML.
As can be seen, the saturation coverage is close to that for
3D islands. In addition, we again find excellent agreement in
the precoalescence regime ���0.1 ML� between our self-
consistent RE results �curved lines� and simulation results.

Finally, we compare the submonolayer morphology and
scaled island-size distribution for 2D and 3D islands. Figure
4 shows typical pictures for ��a�–�c�� 3D and ��d�–�f�� 2D
islands at �=0.07 ML and D /F=109–1011. As expected,

with increasing D /F the island density decreases while the
average island size increases. However, due to the fact that
the capture number for 2D islands is larger than that for 3D
islands, the island density is much lower for 2D islands than
for 3D islands.

Figure 5 shows the corresponding results for the scaled
ISD for 2D and 3D islands. As can be seen, there is very
good scaling behavior as a function of D /F while there is
very little difference between the scaled ISD for 2D and 3D
islands. We also note that the scaled ISD obtained in our
simulations in the precoalescence regime ��=0.07 ML� is
very similar to that obtained in previous simulations of the
irreversible growth of compact �square� 2D islands.25 In par-
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FIG. 2. �a� Island density N and monomer density N1 as a func-
tion of coverage � obtained from KMC simulations �solid curves�
for D /F=109–1011. Dashed line corresponds to density of nucle-
ated islands �see text�. Inset shows D /F dependence of island den-
sity at fixed coverage. �b� Island density as a function of coverage
showing power-law behavior beyond the nucleation regime.
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FIG. 3. �a� Log-log plot of coverage � as a function of dose �
for 3D islands for D /F=109–1011 �b� Island density N and mono-
mer density N1 for 2D islands as a function of coverage � for
D /F=109–1011. Symbols correspond to KMC results while solid
curves correspond to results of self-consistent RE calculations.
Small diamonds correspond to density of nucleated islands �ignor-
ing coalescence� while larger symbols correspond to total island
density.
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ticular, in the precoalescence regime the peak of the ISD is
slightly shifted to the right from s /S=1 while the value of
f�0� �f�0��0.4� is somewhat larger than the standard point-
island prediction �f�0��1 /3�. In contrast, if we consider the
scaled ISD at fixed dose �not shown� and increasing values
of D /F, poor scaling behavior is found since the coverage
decreases with increasing D /F.

V. DISCUSSION

In order to understand the scaling behavior of the island
density and island-size distribution in irreversible 3D island
growth, we have carried out kinetic Monte Carlo simulations
of a simplified model. For comparison we have also derived
general expressions based on a mean-field RE analysis, for
the exponents yi describing the dose dependence, yi� describ-
ing the coverage dependence, and �i� describing the D /F

dependence �at fixed coverage� of the island density as a
function of critical island size i. We note that, since the onset
of coalescence is determined by the coverage, the exponent
�i� also describes the dependence of the peak island density
on D /F. A general expression for the exponent 
i describing
the dependence of coverage on dose has also been derived.

In contrast to the standard RE predictions �y1=1 /3, y1�
=3 /7�0.43� for 3D irreversible growth,2 we find signifi-
cantly lower values �y1�0.24, y1��0.32� for the effective
exponents describing the dose dependence and coverage de-
pendence of the island density for 3D islands. This may be
explained by the fact that, in contrast to the standard RE
assumption of size-independent capture numbers, for 3D is-
lands the island radius increases with the number of atoms in
an island. Accordingly, the average capture number also in-
creases with coverage, thus leading to a decrease in the rate
of nucleation as well as the effective exponents y1 and y1�
describing the increase in the island density in the precoales-
cence regime. We note that a similar effect occurs in 2D
island growth.8,23 However, in this case the strong increase in
the average capture number with island size leads to satura-
tion of the island density. As a result, the coverage depen-
dence of the island density for 3D islands is intermediate
between that for 2D islands �for which y1=0� and the stan-
dard RE prediction based on the assumption of size-
independent capture numbers. This behavior should be con-
trasted with that obtained for point islands �for which the
ratio r̄ / l of the average island radius r̄ to the average island
distance l is small and approaches 0 with increasing D /F� for
which the value of y1 obtained in simulations25 �y1�0.33� is
in good agreement with the standard RE prediction.

Our results also indicate that the value of �1� ��1��0.30�
for 3D islands lies in between the value for 2D islands ��1
=�1�=1 /3� and the standard RE prediction ��1�=1 /3.5
�0.29�. This value of �1� is also consistent with Eq. �15� and
the value of y1 obtained in our simulations. However, since
the exponent 
1 depends only weakly on y1 �e.g., 
1= �y1
+2� /3�, and y1 is significantly less than 1, the resulting “cor-
rection” to y1 leads to only a very small change in the expo-
nent 
1 �e.g., 
1�0.76 rather than the expected value 
1
=7 /9�0.78�.

For comparison, we have also carried out self-consistent
RE calculations and good agreement was found between our
RE results for the island and monomer densities and our
KMC results. It is worth noting that, in contrast to previous
work19,25 on square and fractal islands in which an adjustable
factor which scales the overall island radius was needed to
take into account geometrical effects, in this case good
agreement was obtained without any adjustable parameters.
This is most likely due to the fact that the circular island
geometry assumed in our simulations is consistent with that
assumed in the self-consistent RE approach.

We have also presented a comparison of results for the
island density and scaled ISD for 2D and 3D irreversible
island growth. Since the average capture number is smaller
for 3D islands, the island density is significantly larger �for
the same value of D /F� than for 2D islands. However, some-
what surprisingly, we find that there is very little difference
between the scaled ISD for 3D islands and that for 2D is-
lands. This indicates that, as previously found in simulations

a b c

d e f

FIG. 4. Comparison of morphology at coverage �=0.07 for
��a�–�c�� 3D islands and ��d�–�f�� 2D islands. System-size L=1024
while from left to right, D /F=109, 1010, and 1011.
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FIG. 5. Comparison of scaled ISD for 3D islands �filled sym-
bols� and 2D islands �open symbols� at �=0.07 ML for D /F
=109–1011.
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of 2D submonolayer island growth,9 the scaled ISD is prima-
rily determined by the critical island size rather than the is-
land morphology. We note that this result is also consistent
with a previous analysis26 of experimental results for
InGaAs/GaAs growth,27 which indicates a small critical is-
land size for the formation of 2D platelets.

While our simulation results clearly indicate that for typi-
cal values of D /F the scaling behavior deviates from the
standard RE predictions, it is also of interest to consider the
asymptotic limit of infinite D /F. In this connection, we note
that for point islands �for which the ratio r̄ / l of the average
island radius r̄ to the average island distance l is small� the
value of y1 obtained in simulations25 �y1�0.33� is in good
agreement with the standard RE prediction. We therefore ex-
pect that if r̄ / l goes to zero in the limit of large D /F, then the
asymptotic scaling behavior will be the same as for point
islands. However, in general one may write r̄��� /N�1/2

�where � /N is the average area per island� and l�N−1/2

which implies r̄ / l��1/2. This implies that in the asymptotic
limit of large D /F, the ratio r̄ / l remains independent of D /F
and only depends on the coverage. As a result, we expect that
the deviations from standard RE theory found in our simula-
tions for D /F=109–1012 will also occur for higher values of
D /F. This is consistent with our observation that with in-
creasing D /F the exponents y1 and y1� do not approach the
standard RE values.

Finally, we consider the general problem of experimen-
tally determining the critical island size in 3D island growth.
As already noted, except for the exponent 
i describing the

dependence of the coverage on dose �or time� all of the other
exponents depend sensitively on the critical island size. In
addition, since the exponent �i� depends only weakly on the
dynamic exponent yi �see Eq. �15�� deviations from the stan-
dard RE theory for 3D islands are likely to be relatively
small compared to the dependence on i �see Table I�. This is
consistent with the fact that our measured value of �1� �0.30�
is close to the standard RE prediction �1��0.286. As a result,
a direct determination of �i�, by measuring the peak island
density as a function of deposition flux, is still the most
accurate method to determine the critical island size. How-
ever, such a measurement requires carrying out several
growth experiments with different fluxes and in some cases it
may be difficult to control the deposition flux. In this case,
our results indicate �see Table I� that in contrast to the case of
2D islands �for which yi=0� for 3D islands an upper bound
to the critical island size may be determined from a single
experiment by measuring the exponent yi describing the time
dependence of the island density.
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