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Rate-equation approach to island size distributions and capture numbers
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We present a quantitative rate-equation approach to irreversible submonolayer growth on a two-dimensional
substrate. Our method explicitly takes into account the existence of a defigdptlire”) zone around every
island and the correlations between the size of an island and the corresponding average capture zone. The
evolution of the capture-zone distributions is described by a set of Voronoi-area evolution equations, which are
coupled to the usual rate equations for the island densities through local rates of monomer capture. The
combined set of equations leads to a fully self-consistent calculation of the size- and coverage-dependent
capture numbers. The resulting predictions for the average capture-zone and capture-number distributions are
in excellent agreement with experimental results and Monte Carlo simulations. As a result, the corresponding
scaled island size distributions and their dependence on coverage and deposition rate are also accurately
predicted in the precoalescence regime.
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[. INTRODUCTION but neither for reversible nor for irreversible growth does it
lead to correct predictions for the island-size
Molecular-beam epitaxyMBE) offers the possibility of ~ distributions?®?2433 The reason is that it is based on a
atomic-scale controlled production of thin films, high-quality mean-field approximation, which ignores spatial and tempo-
crystals, and nanostructure&he submonolayer growth in  ral correlations in the growth of island$*%*
MBE involves nucleation, aggregation, and coalescence of In this paper we present a rate-equation approach to two-
islands leading to a distribution of islands of various sizesdlimensional irreversible submonolayer growth in which the
and morphologies. The morphology and the spatial distribu€Xistence of a denuddtcapture”) zone and the correlations
tion of the islands determines the quality of the desired nano2€tween the size of the island and the corresponding average
structure(quantum dots/wirésor of the multilayer growth capture zone are explicitly taken into account. A second set

(thin films). These nanoscale features of the surface in th@ equations is used to describe the evolution of the island-

early stages of MBE growth can now be measured in real§lze—dependent capture zones, leading to explicit size- and

time with atomic-scale resolution experimental methodscoverage-dependent capture numbetto) in good agree-
. . ) P . ment with experimentat and simulation results. A numeri-
such as scanning tunneling microsca@®T M) and reflection

. _ . 1 cal solution of the resulting island-density rate equations
high-energy electron diffractioRHEED).” This has led to a leads to island-size distributions in good agreement with

renewed experimental interest in submonolayer ””Cleatiogimulations, in contrast to the standard rate-equation ap-
and growtt?,"**and has also stimulated considerable theoretproach.

ical work toward a better understanding of the mechanisms \we note that a general outline of our method and results

determining the scaling properties of the island density anthas already been presented in Ref. 34. Here we present a
island-size distribution in epitaxial growti—* detailed derivation of the relevant equations along with ex-
One of the standard tools used in theoretical studieglicit analytical expressions for the local capture number,
of submonolayer growth is the rate-equatiORE) app- monomer density distribution, and self-consistency condi-
roach!*3%% |t involves a set of deterministic, coupled tions. In addition, a detailed study of the dependence of the
reaction-diffusion equations describing the tife@verage¢ island-size distribution, capture-number distribution, and av-
dependence of average quantities through a set of rate coefrage capture zone “distribution” on the island morphology
ficients usually called capture numbéfs® While simple s presented along with a study of the evolution of the island-
mean-field choices for the capture numbers lead to corredize distribution as a function of coverage and deposition
predictions for the scaling behavior of the island and mono+ate. A possible generalization of our method for the case of
mer densities as a function of deposition flux and temperareversible growth is also discussed.
ture, in order to make quantitative predictions accurate ex- The organization of this paper is as follows. Section II
pressions for the rate coefficients should be used. presents the details of the self-consistent calculation of the
Recently, Bales and ChrzZhhave developed a self- capture numbers. After a brief introduction to the rate-
consistent RE approach that leads to quantitative predictionsquation formalism, the geometry of the exclusion zones is
for the average monomer and island capture numbers, as welkfined and the local capture number is calculated as a func-
as for the average island and monomer densities in twoton of the corresponding Voronoi area. It is then shown that
dimensional irreversible growth. This approach has also reboth the coverage dependence of the capture number and
cently been extended to the case of reversible gréwih, island-size correlations are naturally included through the av-
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eraging over the distribution of Voronoi areas. This part con-
cludes with a discussion of self-consistency conditions and
of their connection with the geometry of the system. In Sec.
[, evolution equations for the Voronoi areas are developed
and solved in closed form. We then discuss, in Sec. IV, our
rate-equation results and present comparisons with experi-
mental as well as kinetic Monte CanlkMC) results. A sum-
mary of our results and conclusions is presented in Sec. V.

II. SELF-CONSISTENT THEORY OF SIZE-DEPENDENT
CAPTURE NUMBERS

A. Rate equations

A rate-equation approach to submonolayer nucleation and
growth involves a set of deterministic, coupled, diffusion-
aggregation equations describing the tifoeverage depen- . )
dence of average quantiti&s®>*°The RE variables are the FIG. 1. Schematic representation of the capture-zone geometry
average densities of monomeh,, and of islands of size fqr an |_sland of sizes (radiusRy). Shown_ are islands of different
=2, N,, wheres is the number of atoms in the island. A sizes(big dark circle$, monomers(gray circle$, the boundary of

general form of these equations for irreversible growth ma)}he exclusion zoné&he circle of radiusk,,), and the nucleation and
be written as mean-field decay lengths,, respectivelyé.

dN, neighbor perimetgr s?tes. Depending on the details of the
G0 - y=2N;—2R0oN2= RN, >, 0N, (1)  growth, the resulting islands can have a compact shepe (
s=2 =2) or a fractal morphologyd;<2). For extended islands
dN the factorvy is given byy=1— 6+ N;.
s _ _ Once the capture numbess(6) are known, Eqs(1) and
g N0 1N 17 0N +Ke1Ns 1 kN (2) can be numerically solved to find the island-size distri-
bution Ng(6). However, understanding and predicting the
fors=2, ) size and coverage dependence of the capture numbers has
been the central problem of the rate-equation theory of MBE
growtht+?2:36=3%or more than three decades. In the next sec-
tion we present a theoretical approach that allows an explicit
Talculation of the correct size- and coverage-dependent cap-
ture numbers.

whered is the coveragey is the fraction of the substrate not
covered by islandsg are the capture numbers, akgare
the rates of deposition on top of existing islands. Here, th
kinetic constanR=D/F is the ratio of the diffusion constant
D (whereD=D/4 for the case of nearest-neighbor hopping
with isotropic hopping rat®,, on a two-dimensional lattige
to the deposition flu¥. The terms withog describe the rate
of monomer capture by other monomers or by existing is- It has been argued that an island grows by collecting
lands. The terms witk, whereks=s?"t andd; is the frac-  monomers mainly from a “capture” zone around the
tal dimension of the island®, correspond to the deposition island?>?"3*and that these capture zones are related to the
of adatoms directly on islands of siseFinally, the quantity ~physically and geometrically well-defined Voronoi cé&fg’
v—2N; corresponds to the deposition flux minus the directcorresponding to the set of points around an island closer to
impingement. it than to its neighbors. As has already been noted, in order to
In order to study the effects of island morphology on thequantitatively predict the coverage- and island-size depen-
capture-number and island-size distributions, we consideflence of the capture numbeog, one needs to take into
two different models: goint-islandmodel and arextended- account these correlations between the size of the island and
islandmodel. In thepoint-islandmodel, each island occupies its local environment.
just one lattice site. Dimer nucleation occurs when two As shown in Fig. 1, these observations lead to the follow-
monomers land on the same site, while any monomer thadng model for the environment of an island. An island of size
lands on the site occupied by an island becomes part of theis approximated by a circular region of radiRg= ps*,
island. Physically, this corresponds to islands that grow onlywherep is a “geometrical” prefactor that accounts for the
in a direction perpendicular to the substrate, or, alternativelygircular approximation of the island area and the fractal di-
to islands with a very large fractal dimensiod;&«). For ~ mensiond; depends on the morphology of the island. The
point islands the fraction of the substrate not covered byrea surrounding the island is divided into an innBg<(r
islands is then given by=1—N, whereN=3.,Ng is the <R, and an outer regionR,,<r<e). The inner region
total island density. corresponds to an exclusion zone in which only monomers
In the extended-islananodel, an island occupies a num- can be found. The area of the exclusion zépgis assumed
ber of lattice sites equal to its siseand monomers attach to to be proportional to the Voronoi are&, of the Voronoi
a growing island or to another monomer at the nearestpolygon surrounding the island, i.A.,= 7Ay, where the

B. Monomer-diffusion equation and local capture numbers
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factor # (typically larger than 1) is assumed to be the sameand therefore in the limit of largR the second term may be
for all islands. Accordingly, the radius of this zoneRg,  neglected as well. This leads to the quasistatic monomer dif-
= 7Ry, whereR,= A,/ is the “radius” of the Voronoi  fusion equation

polygon. In the outer region, correspondingrto Rqy, we

assume a “smeared” uniform distribution of monomers and £°[n1—a®(Ny/y)]  for Re<r=<Re,
islands, which is independent of the size of the central island, ~ V?ni=1\ ¢=2(n, — N, /y) for r>R,, tS)
as in Ref. 20.
This geometry naturally leads to the definition of a _ )
“nucleation” length &, and of a mean-field “screening” or For the case of irreversible growth, the local monomer

monomer “capture,” lengtl. The nucleation lengtl; char-  densityn;(r) must vanish at the island edge and must also
acterizes the monomer decay in the exclusion zone and f@atch the average local densit}{/y) far away from the

defined by island. In addition, the interior and exterior solutions must
match at the exclusion-zone boundary. This leads to the fol-
1/5%2201N1. (3 lowing boundary conditions:

Similarly, the mean-field screening lengthwhere ny(Rg) =0, (93)
1/§2=201N1+S§>:2 o N, (4) n(Re)=n1(Re), Vni(Ry)=Vny(R:), (9b)

characterizes the monomer decay in the regiorrounding lim ny(r)=Ni/y, (90

the exclusion zone. Using these definitions, the monomer r—e

density rate equatio(l) may be rewritten in the form where the renormalized valié, / y far away from the island
dN edge is due to the fact that the average local monomer den-
dgl y—2N;— RN, /£2. (5) sity is actually larger than the overall monomer dengdity

by a factor of 14.

A self-consistent calculation of the capture numbets Since the growth is isotropic, there is no angular depen-

entering into the rate equatio$) and (2) is then based on denpe irr:thg mootldel and g!e general' Sf(.j)|l..Jti0'n OT Eﬁa}sbsat—
comparing the microscopic capture rate of monomers near 4§fying the boundary conditio®c) at infinity is given by
island with the corresponding capture terms in the rate 2
equationg®?! To determine the microscopic capture rate, we Nala/y+alo(r/gy) +bKo(r/¢1)]
consider the following diffusion equation describing tloe ny(r)= for Re<r<Rey (10)

cal monomer densityll(F, 0): Ni[1/y+cKy(r/§)] for Rey<r<oo.

The coefficientsa and b are determined by the boundary

76 | 1-2m+RVZn—Rny /&%, r>Re.  ®  conditions(9a and (9b),

an, [ 1-2n;+RV2n;— RN /€2, Re<r=<Rg
The first two terms on the right side of E@) correspond to 1 (K 1,Koq —Kiost) — KoKy +aK 1, Kog (113
deposition minus direct impingement of monomers on Mono="" y Ko, (I1,qKos1 — K1yl os1) + Kl 01K~ Koxalost)

mers, while the last two terms correspond to monomer dif-

fusion and, respectively, loss of monomers by nucle&tith o?ly+alygy
(Rs<r=Rs,) or by nucleation and aggregation¥R,,). b=— B — (11b
Multiplying Eq. (6) by y and subtracting the monomer 0s1
rate equatior(5), one obtains whereKjs; =K|(R/£&1), Kix=Kj(Rex/8), Kjx1=K(Rex /&) (and
similarly for I 5;, ljx, andljy,), andK;,1;,j €{0,1} are the
v2n 1 ( @_‘9_'\'1) L2 2 =Ny modified Bessel functions of ordgr
1 HR 6] R TE Equating themicroscopicflux of atoms near the island,
27R,D[dn,/dr],_r, to the correspondingnacroscopic
£ a?(Ny )], Re<r=R, ROl /drl:—e, espondingnacroscop!
=1 £2(n;— Ny /) (R @) RE-like termDNlch(év), one obtains an expression for the
& (m=Nu/y), ex local capture numbes¢(Ay),
where a?=(¢,/€)?. Since by definitiony represents the ~ 2 R. R,
fraction of sites that are not occupied by islands, the proper os(Ay)= 5_ aly £ ) bKl( ‘ ” (12
- 1 1

normalization of the local monomer density nig=N; /v,

wheren, denotes the average local monomer density in thdlere the dependence efs on the Voronoi areaA, (or
region between islands. This implies that the last term on thequivalently on the exclusion-zone aréa,= nAy) arises
left-hand side of Eq(7) may be neglected. Similarly, the from the dependence of the coefficierasand b on the
quantity in the parentheses in the second term is also smadixclusion-zone radiuR.,= \ 7Ay /7.
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A similar analysis can be carried out for the monomerwhich corresponds to the requirement that the average
capture numberr;. However, since the monomers are mo- “screening length” embodied in the rate equations is the
bile, in this case there is no “exclusion” zone, which implies same as that expressed by the diffusion equations.

that Rgy,=R;. In this limit, i.e., takingRs=R;=Rgy, EQs. If nj(As) denotes the total number of monomers in a
(11) and(12) lead to Voronoi area of sizé\¢ surrounding an island of sizg then
the self-consistency condition for the monomer density cor-
27R; K1(Ry/8) responds to the requirement that the total monomer density
1= vE m- (13 in the Voronoi polygons must be equal to the average mono-

mer densityN,, i.e.,

Apart from an extra factor of 3, which takes into account
the enhancement of the local monomer density with increas- > Ngnb(Ag=Nj. (16)
ing coverage, this expression is the same as previously ob- =

tained by Bales and Chrzah. o .
Using Eq.(12), the size-dependent capture numbets In principle, Egs(15) and(16) can be solved at any given

are obtained by averaging the local capture numbef.,) coveragey for two of the three unknowns, », andp once

A : - ) the third is known and once the average Voronoi akgas
over the dlstrlbutl_on of Voronoi areas. Def_m'@(a’AV) a5 known for alls, However, by carrying out detailed numerical
the number density of Voronoi areas of si&g surrounding

an island of sizes at coveraqed. we can write comparisons we have fouffdthat a mean-field approxima-
9¢, tion gives equally good results. This is not surprising, since
the self-consistency conditions correspondht@ragequan-

> G(6;A)T(Ay) tities. This approximation allows us to “precalculate” the
~ Ay quantitiesp, 7, & and &, as a function of coverage before
os(0)=(0os(Av))e = carrying out the numerical integration of the full island-
; Gs(6;Av) density rate equationd) and(2) coupled with the Voronoi-
'V

area rate equationsee below.

1 _ In this approximation, the island sizesn Egs.(15) and
N 2 Gy(;A)T(AY), (14)  (16) are replaced by the average island ssze(6—N;)/N,
s Av while the corresponding Voronoi areas are replaced by the

_average Voronoi are,,=1/N. This leads to a very simple
form for the capture number and monomer density self-
consistency relations,

where(- - -)_denotes an average with respect to the distri
bution G¢(6;Ay).
The capture numberss have now been expressed in

terms of the Voronoi-area distributioB(6;Ay), the geo- 20,N; + Nog(A,,) = 1/€2, (179
metrical factorsp and », and the nucleation and screening

lengthsé; andé. The nucleation length; can be determined Ray

using Egs(3) and(13), assumingp and & are known. Once N dr 27rna(r)=Ng, (170

the distributionsG¢(8;Ay) and the parameters, », and ¢ Rs

are known, Eqs(12), (13), and(14) can be solved in order to  whereRg= pS*®f andR,, = \/1/(7N).

obtain the size- and coverage-dependent capture numbers Using Eq. (10) for the monomer densityn,(r), the
os. However, the local monomer density and capture nummonomer-density self-consistency conditiGhi7h) may be
bers must satisfy self-consistency conditions that we discusgwritten for the case)=1 as

in the next section. Use of these self-consistency conditions

allows the determination of two of the three parametgrs, wa(azly— 1)—- Réazly— 2Rgéq(aliq—bKig)
and ¢ once the third is known.
+ 2Ry, é1(al a1 —bKyay) =0, (18)
C. Self-consistency conditions for monomer density and wherel ;1=11(Ra,/&1), Kia1=K1(Ra,/£1), and the coef-
capture numbers ficientsa andb are given by Eq(11) with Rg,= V7R, . A

similar expression can be written for the monomer-density

The parameters and » are independent of the island size It-consistency condition for the cages1.

and Voronoi areas, and thus they can be determined using a In the case of extended islands, the geometrical parameter
approximation in which the Voronoi areas surrounding is- ' 9 P

lands of sizes are replaced by their average values. Denoting’ ngsé assumecll tot bde mdehp(;r]]dte nt of cqvelra_lgte, antq Its vfalue
the average Voronoi area corresponding to an island ofssize”” - was selected suc at numerical Integration ot a
at a given coverage by A,, this leads to the approximation mean-field form of the island-density rate equati¢hsand

~ o _ (2)—corresponding to replacingd, in Eq. (12) with A,
os=05(As). The definition(4) of the screening lengthithen  _ )\ jeq to good agreement with Monte Carlo results for
leads to the capture number self-consistency condition,

the average monomer and island densifigsand N. Al-
though the valugp=0.3 is somewhat smaller than expected

20N+ + N.o(A)=1/£2, 15 (for circular islands the value gf would be 14/7=0.6), the
it sgz sTs(As) =108 (15 same value works for all values & while variations of

205404-4



RATE-EQUATION APPROACH TO ISLAND SIE . .. PHYSICAL REVIEW B 64 205404
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FIG. 2. Coverage-dependence pfobtained from Eqs(17) for
point islands(solid lineg and compact islandéashed linesfor
R,=10"-1C. Inset shows corresponding coverage dependence of
p for point islands. N

about 20% irp lead to significant deviations from the Monte 107
Carlo calculated densitid¢ andN,. The two remaining vari- ;
ablesn and ¢ were then determined by simultaneously solv-
ing the two self-consistency conditio%7) as a function of
coverage.

In the case of point islands a slight variation of this
method was found to lead to better results. In this case there

is no explicits dependence i sinceRs=p for all s. Thus,
Eq. (178 may be rewritten as

15+ Na(A,,) = 1/€ (19

without any additional assumption of an average island size ) _ _
S In this case, a self-consistent RE approach similar to that, FIG 3. Island densiti and monomer densitht; as a function
used in Ref. 20 for compact islands was first used in order tGf COveraged for R,=10"-10" obtained from RE'{symbol§ and
obtain the coverage-dependent lengghé6) and &(6) for KMC (solid lineg for (a) point and(b) compact islands.
point islands. Equation&l7b) and (19) were then simulta-
neously solved fop(6) and 7(6). The inset in Fig. 2 shows our results fef6) for the case
Figure 2 shows the resulting coverage dependencg of of point islands. As expectegh(#) is almost constant and
for both point and compact islands. As expected, similar valindependent oR,=D/F for §=0.01, and asymptotically
ues of » are obtained at low coverage for both point and(i.e., in the limit of largeR;) approaches a constant value
compact islands. In particular, we fing>1 in the nucleation over the entire coverage range. Accordingly, in our calcula-
regime corresponding t¥<#6,, where 6, [defined by tion of the island-capture numbers and size distributions for
N.(6,)=N(6,)] corresponds to the crossover from nucle- point islands, we have approximated#) by the constant
ation to aggregation. However, fa>#6,, » quickly ap- value p=0.12 at all coverages. It is not surprising that this
proaches a constant value for point islands, which is somevalue is significantly smaller than the valpe=0.3 used for
what above 1 and is slightly dependent Bp=D,,/F. In extended islands, since for point islands, monomers can only
contrast, for extended islandscontinues to decrease in the attach by landing on the site occupied by another island or
coverage range where the spatial extent of an island is signonomer, and not by nearest-neighbor attachment.
nificant, and it eventually becomes smaller than 1 at cover- Figure 3 shows the resulting average island and monomer
ages higher thaf~0.2. This may be considered as a naturaldensitiesN and N; obtained using the island-density rate
limit of our method since in that range coalescence effectsgequations(1) and (2), as discussed above, along with the
which are not included in our rate equations, become significorresponding KMC simulation results. As can be seen, there
cant. It is interesting to note, however, that this decreasés excellent agreement between the RE predictions and the
actually correctly describes the qualitative behaviorpoin simulation results for these average quantities at all cover-
the presence of coalescence. ages in the precoalescence regime. Thus, the coverage-
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dependent factors and » and the screening and nucleation A. Voronoi-area distributions for point islands

lengths¢ and ¢, have been calculated using the mean-field  The point-island model is special because for this model

self-consistency conditions. The only quantity left unknowne ocal capture numbers do not depend explicitly on the

is the distribution of Voronoi areas. island sizes. This allows an exact solution of the Voronoi-
area evolution equation®1) and(22). Changing the cover-

I1l. VORONOI-AREA-DISTRIBUTION age variable fromd to
EVOLUTION EQUATIONS )
To obtain the capture numbers and the island-size distri- Xa= LAR Ni(¢)o(A)de, (23

bution, one has to consider the dependence of the Voronoi-

area distributionG¢(6;A) on the island sizes. Taking into  where o(A) is the local capture number for point islands,
account the change in the areas by nucleation and aggregleads to the following form of the Voronoi-area evolution
tion of islands, and ignoring for the moment the breakup ofequations:

Voronoi areas when new islands are nucleated, one can write

a general set of evolution equations for the functions dGo(xa;A) .

G4(6;A) in the following form: dxa Ga(Xa;A)+Bad(Xa), (24
dG,(6;A - dGs(Xa;A) _ _
%=(dN/d0)5(A—Aav)—RNle(A)Gz(G;A), d—XA=Gs_1(xA,A)—Gs(xA,A) (s=3).

(20) (25)

The solution of EQ.(24) is G,(xa;A)=Bae *AH(X,),
whereH(z) is the step functiojH(z)=1,2=0;H(z)=0,z
<0]. It can also be showAthat the general solution for the
Voronoi-area distributiorG for s=2 is

dGy(6;A)

dg —RNiLos 1(A)Gs 1(6:A) — oo(A)Gy( 6;A)]

(s=3), (21) Ge(Xa;A)=BaxS 2e *a/(s—2)!. (26)

where o4(A) is the local capture number as given by Eg.AAt coverages beyond the nucleation regime, bogrand the
(12). The first term on the right side of ER0) corresponds ~average Voronoi ared,, are typically large. Thus, Eq26)

to nucleation of dimers while the remaining terms in Eqs_corresponds to a sharpl}/ peaked distribution as a function of
(20) and (21) correspond to growth of islands via aggrega-A, and the peak positioAs satisfie§®

tion. We note that in these equations it has been assumed that

the Voronoi areas around tlieew) dimers nucleated at cov- XAg=S™ 2. (27)
eraged are equal to the average Voronoi area at that cover- ) ) )
age,A,,= 1N, and for simplicity the “source” term in Eq. Therefore, keeping only the dominant terms in the sums,

(20) has been assumed to take the form of a delta functionth® average Voronoi areds corresponding to an island of
As already noted, the breakup of larger areas due to nucléizes and the corresponding capture numbegssatisfy
ation has been neglected in EQ1). However, we will ac-

count for it through a uniform rescaling that will be justified > A AG(Xa:A)

a posteriori The effects of direct impingement of atoms on A= ~A 28)
islands have also been neglected in E&6) and (21) since S ) s

they are very small except for the case of extended islands at E AGs(Xa3A)

high coverages. However, direct impingement is still taken
into account in the full rate equatiori$) and (2).

Defining 6, through the conditionA=1/N(6,), the 2 Ao(A)Gy(Xa1A) o
nucleation term in Eq(20) may be rewritten a8 (6 o= =0s(As). (29)
—6,), with B,=1/A2. Accordingly, Eq.(20) may be rewrit- E AGs(Xa;A)

ten in the form
However, since Eqg€20) and(21) do not include the effects
dG,(6;A) _ of the area.breakup due to nucleation, the average areas cal-
—de RN;05(A)Go(0;A) +BaS(0—04). culated using Eq.(27) are expected to be larger than
22) the correct values. To account for thls,_ the areas should be
rescaled to the correct average Voronoi ateg,= 1/N. The

We note that the initial conditiongfor a givenA) for the ~ COITECt capture numbets; are then given by
functionsG(6;A) are determined bys4(6;A)=0 for all s

: - . ~ A
for < 6,. Since the solution of Eq$21) and(22) is some- os=04AL), where Al= s , (30)
what dependent on the particular growth modedint or E N.A
extended islandswe discuss the two cases separately. s o °
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where the local capture numbet(A) is given by Eq.(12). dGs(xaiA) _ _
Therefore, the calculation of the size-dependent capture X =Gs_1(Xa;A) = Gy(Xa;A)  (s=3) (39
numbersos has been reduced to solving EQ7) for the

peak position&s and then rescaling using E@O0) to obtain

the rescaled capture areA§. Once the capture numbess

are known at each step, the rate equati@sand (2) can _ S—2,-X

then be integrated to olg)tain the islar?d-sigg distriéu)tions. Cs(A)=Baxa "€ (s=2)L, (36
It is interesting to note that the variabig given in Eq.  with the peak of the distributioffor a givens) correspond-

(23)_ has a sim.ple physical inj[erpretation, which als_o impliesing to As determined by

a simple physical interpretation for the peak conditi@).

Since the quantitRN;(¢)a(A) is the average growth rate XA, =S~ 2, (37

at coveragep of a point island surrounded by a capture zone A

of areaA, the coverage variabbe,= [ d¢) RNy(¢)o(A) is ~ and from Eq.(28) the average Voronoi area A&=As.

the average number of particles gained by a point island with As befo_re, the_ effecf[s of the breakup of Voron0_| areas due
Voronoi areaA from the coveragd, at which it is nucleated to nucleation will be included through a rescaling of the
up to the current coverage. Thus the peak conditiorj areas to t_he correct average valtig, = IIN. Howevgr, QUe

. ) . s to the existence of a spatially extended island inside the
=s—2 given by Eq.(27) may be viewed as stating that the \,ron0j area, one should consider the rescaling due to
peak of the Voronoi-area distributidBy(A) corresponds 0 pyreakyp to apply only to the area at the exterior of the island,

islands whose Voronoi area is such that they have on averag§iher than to the whole area. Therefore, one obtains for the
gaineds—2 particles since their nucleation as dimers, 8Stescaling factor, the expression

suming that their capture-zone area did not change since they
were nucleated. y
f=r (39

B. Voronoi-area distributions for extended islands ES: AsNg+y—1

for the Voronoi-area distributions. The solution is again
given by

In the case of extended islands the Voronoi-area evolution
equations(21) cannot be solved analytically due to the ex- We note that for extended islands it is reasonable to define

plicit s dependence of the local capture numbetgA). the Voronoi polygon as passing through points halfway from

However, using the approximatian(A)=a«(A) (whereS the edgesof the islands rather then halfway from the

; . , centers'* Ignoring correlations between the size of an island
's the average island sigkeads to a set of equations that can and the size of its neighbors, the radius of the rescaled

be solved analytically. This approximation 1 e>_(pe_ctec_i toVoronoi polygon should then include an additional correc-
have only a weak effect on the final island-size distributions.

— lldf_ l/df H
Ng(6) because it retains the dominant effect, i.e., that of arillg?c’)nlz?oarlrreap (s S™)/2. This leads to the corrected

exclusion zoneA.,, which depends on the island size

Furthermore, the correct expression togA;) will be re- ' . 2
tained in the rate equatioris) and(2). As=m(VIAS T+ Reorr)”, (39
Using this approximation, the Voronoi-area evolution and the capture numbers are given by
equations become
os=0g(Ag). (40)
dG,(6;A) ~ .
—ae (dN/dO)5(A—A,,) —RNiog(A)G,( 6;A), Therefore, the calculation of the coverage-dependent capture
(31) numberso for extended islands has been reduced to solving
Egs.(33) and(37), and the full rate equatiori4) and(2) can
be integrated to find the island-size distributions.
dGg(6;A) ~
g~ RMos(A[Gs-1(BA)=Gs(GA) ] (s=3).

(32) C. Summary
Before presenting our results, we now summarize the key
One can again transform to new variables, points and physical assumptions used in our approach with

an emphasis on the case of extended islands. The environ-

0 - ment of an island is modeled as consisting of an inner “ex-
XA:J RNi(¢)os(A)de (33)  clusion” zone in which only monomers can be found, which
fa is surrounded by an outer “smeared” zone consisting of both

monomers and islands, while a circular approximation for
the island and exclusion zone areas is used. In order to con-
4G A nect the island radiuRg to the island sizes as well as the
dGa(xaiA) Go(Xa;A)+Bad(Xy), (34)  radius of the exclusion zorf, to the Voronoi cell ared,,,

dxa two geometrical parametepsand » were introduced.

to obtain the evolution equations
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By combining the linearized diffusion equati@6) satis- ' ' T o T
fied by the local monomer density surrounding an island with 1 | @ R, =107 R, =10
the contracted rate equatigh) for the average monomer 6=0.1 6=0.5
density, and solving the resulting quasistatic monomer- :
diffusion equation(8) with the appropriate boundary condi-
tions, a self-consistent expressi@t?) for the local capture 0.5 Y
number in terms of the island size and exclusion-zone area
was derived. The geometrical parametg) and the cap- -
ture length&( ) are precalculated as a function of coverage —RE
using the mean-field monomer density and capture-number '

—_
)
~
=

@ R = 108

self-consistency condition€l7), while the geometrical pa- 1 () R, =10° i
8=0.1 0=05

rameterp is determined by the requirement of reproducing =
the KMC and/or mean-field RE results for the total island > | .
and monomer densities. =
In order to find the distribution of exclusion zones, a set 9.5
of Voronoi-area evolution equations is used, which takes into
account the change in the areas by nucleation and aggrega-
tion of islands, while the effects of fragmentation are in-
cluded through a uniform rescaling of the areas. By introduc- 0
ing a change of variabledand using an additional

Point
Islands

[

approximation for the case of extended islands in which the g
local capture numbeir4(A) is approximated byos(A)] >
these equations can be solved in closed form. For large &
(corresponding to large values Bf,=Dy,/F) the solution in 0.5

Eq. (36) is a sharply peaked distribution as a function of the

Voronoi areaA, and the peak positioﬁ\S satisfies the condi-
tion x4 =s—2 given by Eq.(37). Thus, the most important

0 . . . .

and time-consuming aspect of our approach involves solving 0 1 s/S 2 0 1s/S 2

Eq. (37) numerically for each value of at each integration

step. In calculating the coverage varialile for each value FIG. 4. Scaled island-size distributidifs/S) for point islands

of A needed in the numerical routirl@ve have used Rid- calculated using RE'ésolid line9, along with corresponding KMC
ders’s methoy] Eq.(12) is used for the local capture number results(symbol$ and MF theory(dashed linesfor R,=10"-1(F.
o<(A), which enters in Eq(33). We note that calculating,

using Eq.(33) also requires knowin§l;(¢), &1(®), &(#),  o,,=(1/62—1/£3)/IN was used in the island-density rate
and S(¢) [or N(¢)] for all coveragess up to the present equations. However, at coverag@sst beyonds,) such that
value 6. While in principle these values can be Ca'CU'atedthe average island sizZ8is Sufficient|y |arge(We chose as
and stored during the integration, for convenience they argriterion S=10) and the peak in the Voronoi-area distribu-
precalculated using a mean-field approach as described {fbn G¢(6;A) is well defined, the appropriate Voronoi-area
Sec. IIC (specific values are obtained via interpolajion eyolution equation results fors, i.e., Eq.(30) for point
Once the value#\s have been calculated for & they are islands and Eq40) for extended islands, were used.
rescaled following Eqg38) and(39) to obtain the areaA .
As described in Eq(40), A{ is then used in Eq(12) to
obtain the capture numbets;. The resulting capture num-
bersoy(6) are then used to advance the full rate equations Figure 4 shows our rate-equation results for the scaled

A. Point islands

(1) and(2) in order to obtain the island-size distribution. island-size distribution for point islandsolid lineg in the
aggregation regime #=0.1-0.5) for R,=10"—1C. Also
V. RESULTS shown are the corresponding KMC simulation res(stgm-

bols) and, for comparison, mean-fiel[#lF) RE results R,

Using the methods described in the previous sections, the: 10°) obtained using the approximatian,=o-,, (dashed
island-density rate equatior(@) and (2) were numerically lines). As can be seen, there is excellent agreement between
integrated along with the Voronoi-area evolution equations irthe RE predictions obtained using the Voronoi-area evolution
order to obtain the size- and coverage-dependent captusmjuations and the corresponding kinetic Monte Carlo simu-
numberso¢(6) as well as the scaled island-density distribu-lation results. In contrast, the mean-field results are much
tions f(s/S)=(S? 6)N4(6). The rate equations were numeri- more sharply peaked and appear to be approaching the
cally integrated starting at very low coveragg<#, with  (divergeni asymptotic form®#3 f,_(u)=(1/3)(1
initial conditions N1 (6o) =6, and Ng(6,)=0 for s=2. At  —2u/3) 12
low coverage, for which both the average island ssz@nd The good agreement between the results obtained using
typical values ofx, are small, the average capture numberthe Voronoi-area evolution equations and the kinetic Monte
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FIG. 5. RE resultsymbols for scaled capture-number distri-
butionsos/oy, for point islands at coverages= 0.1 (circles and
6=0.5 (squaresfor R,=1C and 10. Lines are KMC results from
Ref. 30 at#=0.2 for R,=10° (dashedl and 10 (dotted. Inset
shows RE resultgésymbolg for dependence oés/o,, on scaled
Voronoi area aR,=10°, §=0.5.

Carlo simulations is due to the inclusion of explicit correla-
tions, which are not taken into account in the mean-field
calculations. We note, however, that fé=0.5 and high

D/F the predicted distributions are shifted slightly to the
right of the simulation results. This is most likely due to the
fact that the uniform rescaling of the Voronoi areas does not FIG. 6. Scaled island-size distributidi¢s/S) for (a)—(c) com-
exactly take into account the effects of breakup of exclusiorpact islands ¢;=2) and(d)—(f) fractal islands §;=1.72) for R,
zones due to nucleation. =108 10° and#=0.06- 0.3, obtained from RE'dines) and KMC

Figure 5 shows the corresponding results for the scaletsymbols, along with MF theory(dashed lines

capture number distributiows/o,, as a function of the However, as already noted, this difference does not appear to

scaled island size foR,=10° and 16. As can be seen, the ;0”5 significant effect on the scaled capture numbers
scaled capture-number distribution is essentially mdepender}rt

of coverage andR,,, but depends strongly on the scaled is-
land size fors/S>1. Also shown(dashed linesare KMC B. Extended islands
simulation results a#=0.2 for R,=10®—10° from Ref. 30.

As can be seen, there is good agreement with the simula- Figurg 6 _shqws.our rate-equation re.sults for the scaled
tions, although for larges/S and R, the RE results are island-size distribution for both compact islandks € 2) and

slightly below the KMC results. fractal islands ¢;=1.72) in the aggregation regimes (

The strong island-size dependence of the scaled captufe9-06—0-3) forRy=10° and 10, along with the corre-

numbers shown in Fig. 5 is due to the fact that the averagéponding KMC simula}tion re_su_lts and mean-field predictions
\Voronoi areas also depend strongly on the island size. A&t halog (dasheg lines Similar results have also been
shown by the inset in Fig. 5, the capture numbers are to g0btained forR,=10" (not shown. As can be seen, the pre-

good approximation linearly dependent on the Voronoi areadJicted island-size distributions are in good agreement with
the simulation results, while the mean-field distributions are

much too sharply peaked and diverge rapidly with increasing
05l 0a=a9+ay(ALIA,,). (41) ~ coverage. In addition, we note that the predicted position of

the peak in the size distribution is almost coverage indepen-

dent for compact islands, while for fractal islands it is shift-
The linear fit shown in the insefdotted ling gives® a, ing slightly to the left with increasing coverage, in very good
=0.85, a;=0.15. These values are significantly different agreement with the behavior shown by the KMC results.
from the values;=0.3, a;=0.7 obtained from simulations However, for both compact and fractal islands there is a
of a two-dimensional point-island model in Ref. 30. The dif- small “overshooting” of the peak value, which increases
ference inay anda; indicates a possible difference betweenwith coverage and/oR;,. This is most probably due to the
the Voronoi areas obtained in our area-evolution plus rateuse of the mean-field approximatie@* S in the Voronoi-
equation results and those obtained in the simulafténs. area evolution equatiorfs.

S av
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FIG. 8. RE results for scaled average capture zAgeA,, for
compact (open circley and fractal (open squargsislands Ry
2 i | =10°,6=0.18) along with experimental resultilled symbols at
Q 0=0.23 from Ref. 31.
o’ . .
Ref. 31. The RE results show excellent scaling with Heth
12 o 7 and coverage, and there is good agreement within statistical
e | fluctuations with the experimental data. Also shown in Fig.
o _ 7(a) are lines corresponding to the asymptotic fotins
- oo e - oslo4,=29S, where z=2/3 for point islands andz=1
. OEP o” s (with logarithmic correctionsfor compact islands. Both the
° =& e ] experimental and the RE results lie between these two lines,
0.4 Z ! . ! thus showing an effective value af smaller than 1, but
0 1 s/S 2 greater than 2/3, in agreement with the experimental results

of Ref. 31.

FIG. 7. RE results for scaled capture-number distributions for In contrast to the results for compact islands, for fractal
(a8 compact and(b) fractal islands forR,=10° and 16 at ¢ islands the scaled capture-number distribution is independent
=0.06(open circlesand 0.3(open squar@salong with experimen-  0Of R,, but depends on coverage, as shown in F{g). Vith
tal results(filled symbolg at #=0.23 from Ref. 31. increasing coverage the distributiony/o,, “rotates” coun-

terclockwise around the pois{ S=1, and this may explain

Another important difference between compact and frac-f‘he differences in the island-size distributions. The decrease

tal islands is the behavior of the size distribution at sret@l N the scaled capture numbers fefS<1 with increasing
values. While for both point and compact island®) ap- coveraggand the corresponding increase $%>1) is con-

pears to approach a common limiting valti€d)=1/3 in sistent with both the decrease ©f0) and the shift of the
agreement with the MF rate-equation predicti#32° (see fractal-island size-distribution peak towastiS=1, and also

Figs. 4 and § for fractal islands our rate-equation results €XPlains the incomplete scaling shown by the fractal island-
correctly follow the decrease of(0) with increasing size distributions. It can also be seen that, in contrast to the

coveragé’ as shown in Fig. 6. This indicates that the de-compact case, the asymptotic behavior of the scaled capture

crease inf(0) with increasing coverage is not due to coales-number at larges seems to be well described by the
cence, since coalescence is not taken into account in tHESYMPtotic value=1. o
island-density rate equations or Voronoi-area evolution equa- Figure 8 shows the scaled “capture zondg/A,, for
tions, but is most likely due to the increase in the averagdoth compact and fractal islands as a function of the scaled
Capture numbe‘j—av with coverage for fractal islands. island size. We note here thgt n agreement with Ref. 31, we
The difference in the behavior df(0) for compact and have defined\;=A.—s, thusA,, = yA,, , as corresponding
fractal islands is somewhat surprising, since the only change the part of the capture zomeitsidethe island(for a very
in the rate equations from compact to fractal islands is theletailed discussion of this point see Ref).44lso shown in
value of the fractal dimensiod . In order to understand this Fig. 8 are the experimental results & 0.23 for Cu/Co on
result, as well as the good predictions for the island sizeRu(0002) from Ref. 31. Again, there is good agreement be-
distributions and for the peak position, we have analyzed théween the predicted capture zones and the experimental re-
behavior of the capture numbers for each case. Figlae 7 sults fors/S<1.75. However, fois/S>1.75, the RE predic-
shows the scaled capture-number distributiog o, for  tions are somewhat above the experimentally measured
compact islands as a function fS for R,=10°~10° and  values. This may be due in part to insufficient statistics in the
#=0.06-0.3 along with theexperimentally measured experiment for large island sizes or to a slight breakdown of
capture-number distribution for Cu/Co on ®001) from the uniform rescaling assumption used in our RE’s. In any
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case, as already noted these differences have little effect on 1
the island-size distributions since in that range the island
density is already very small and decreasing, as can be seen !
from Fig. 6. 0.8
Finally, we briefly discuss and present results for [
the scaled Voronoi-area  distribution g(A/A,,) =
(IIN) 2= ,G4(6;A), which may be obtained using our ap-
proach. While the uniform rescaling of the Voronoi areas
appears to be sufficient to obtain good results for the capture
numbers and island densities, a more complicated rescaling
is necessary in order to obtain the Voronoi-area distribution
G(A)=24-,G4(6;A). The reason is easy to understand: re- I
scaling the areas shifts the distribution and thus corrects the 0.2
position of the peak, but leaves the amplitudes unchanged. R ?
Proper normalization of the \oronoi-area distributions [« %
G4(6;A) requires that they satisfy the condition . . e, L
JodA Gy(6;A)=Ns while the overall Voronoi-area distribu- 0 1 2 3 4
tion G(A) must satisfyf5dA G(A) =N. While the latter nor- A/A_
malization condition is automatically satisfi#tisince the
correct nucleation rate is included in the Voronoi-area evolu- FIG. 9. Scaled Voronoi-area distributiog(A/A,,) obtained
tion equations, the “individual” normalization conditions on from Eg. (44) for compact islandgsolid line) at 6=0.18 for R,
the G4(9;A) as given by Eq.(36) are not, since the area =10F, along with KMC result{symbols for compact islands from
rescaling is only carried out at the end of the calculationRef. 25 Ry=4X10%,6=0.1-0.3)
rather than continuously during the integration involved in
Xa - is somewhat lower than obtained in simulations. The corre-
While it is possible to rescale th@¢(6;A) in Eq. (36) in sponding RE results for the point-island distributiémot
order to obtain a prediction for the Voronoi-area distributionshown are similar, but the peak of the point-island distribu-
G(A), calculation of the correct normalization factévehich  tion is shifted slightly to the rightcompared to the compact-
involve integrals of the form/gdA Bax3 2e *4) is rather island casg consistent with KMC results obtained for circu-
tedious. Fortunately, a very simple approximation is possiblelar islands at low coveragé However, in both cases the tails
Since the distributionsG¢(6;A) given by Eq. (36) are o_f the predlcted distributions are _m_uch wider than in the
sharply peaked around the rescaled afasit is reasonable simulations and the RE results exhibit also a sharp cutoff for

to replace them, in a “zeroth order” approximation, iy smaII.A/AaU_, in contrast to the _smooth approach to zero of
functions. Taking into account the proper normalization, wethe simulation results. _Thes_e discrepancies are the result of
obtain the neglect of the nonlinearity of the fragmentation process,
which favors the breakup of large areas over small areas, and
G«(6;A) =N S(A—AL), (42)  Wwhich can lead to the formation of small Voronoi areas with
a nonvanishing probability. Overall, the qualitative agree-
where Al is the rescaled peak area obtained from thement with the KMC results shown by the very simple ap-
Voronoi-area evolution equatiohsee Eq(39)], while N;are  proximate form Eq(44) is surprisingly good, but it is clear
the island densities obtained from our island-density ratgéhat if quantitative predictions for the area distributions are
equations. needed, then the breakup should be accounted for in detail in
With this approximation, the Voronoi-area distribution the area evolution equations.
G(A) [which implicitly satisfies the correct normalization

JodAG(6;A)=N(6)], may be written as

KMC, 6 =0.1
KMC, 6 =0.2
KMC, 6 =0.3
0.6 B

g(A/A )

0.4}

o

V. DISCUSSION

We have developed a self-consistent rate-equation ap-
proach to two-dimensional irreversible submonolayer growth
in which the existence of a denud€aapture”) zone with a
and thus the scaled Voronoi distributigA/A,,) is fluctuating area around every island and the correlations be-
tween the size of the island and the corresponding average

_ N capture zone are explicitly taken into account. To obtain the

(A Aa) Zs (N/N) S(A=Ag)- “4 capture numbers and the island size distribution, we have
proposed a general set of evolution equations for the

Figure 9 shows results for the scaled Voronoi-area distriVoronoi-area distributions, which takes into account the
bution g(A/A,,), Eq. (44), for compact islandsR,=10%,#  change in the areas by nucleation and aggregation of islands,
=0.18) along with kinetic Monte Carlo simulation results while the effects of fragmentation have been included
(R,=4x10°,6=0.1-0.3) from Ref. 25. As expected, the through a uniform rescaling of the average Voronoi areas.
peak position is correctly predicted although the peak heighThis second set of equations has been solved analytically and

G(;A)=2, Ngo(A—AL), (43)
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the solution has been used to self-consistently determine thgell as the dependence on the island morphologyRyndAs
size- and coverage-dependent capture numbefg). The a result, our method leads to a self-consistent prediction for
resulting scaled island-size distributions were found to be inhe evolution of the scaled capture-number and island-size
excellent agreement with KMC simulations, although a smaldistributions with coverage, which is in good agreement with
“overshooting” of the peak value was noted for extendedboth simulations and experiments.

islands. In addition, our results were shown to accurately Finally, we note that it should be possible to extend the
predict the dependence of the scaled island-size distributiosoupled-evolution-equation method presented here to the
on the island morphology as well as on the coverage andase of reversible growth, in order to predict the scaled
deposition rate. The island-size dependence of the captuisland-size distribution as a function of the critical island size
numbers was also found to be in good agreement with, For the case>1, one may simply replace the equation for
simulatior?® and experimentat results. G,(6;A) with the corresponding equation f@®;, ,(6;A)

We note that in previous work by Blackman and while the Voronoi-area evolution equations for higher island
Mulherart reasonably accurate asymptotic island-size distrisizess>i+1 will remain the same. A self-consistent mean-
butions have been obtained in one dimensfoby using  field approach(see Refs. 21,33can be used to obtain the
Monte Carlo simulation results for the scaled-gap distribunucleation rateiN/d6, as well as the densities and capture
tion coupled with rate equations and assuming scaling. Morgumbers of islands smaller than or equal to the critical island
recently, Mulheran and Robiehave carried out a numeri- sjze. As a result, the quasistatic monomer diffusion equation
cal calculation of both the asymptotic scaled Voronoi-arednside the exclusion zonéEq. 8 and all other expressions
distributionG(s/S;A/(A)) and the asymptotic scaled island- for the monomer density and capture numbers will remain
size distribution f(s/S) for compact islands in two- the same, except that the monomer nucleation lergth
dimensions by assuming scaling as well as a linear relatioghould be replaced by the exclusion-zone capture le&gth
between the Voronoi area and the island capture nufiber. where 1&2:201N1+ S,-c<ioNg. The basic idea of
contrast, our method involves a fully self-consistent calculatoumed evolution of the capture zones and densities in-
tion of the coverage-dependent capture numbe(#) with-  cluded in the present approach may also prove useful in the
out any assumptions regarding the relation between the isate-equation modeling of a variety of other problems in-
land Capture number and the Capture-zone area. In add|t|000|v|ng growth by diffusion and aggregation, SUCh as het-
scaling of the island-size and capture-number distribution@roepitaxim growth and Ostwald ripening.
was not assumed. In this connection we note that in previous
work?>#4it has been pointed out that for irreversible growth
the actual scaling is only approximate. Since we do not as- ACKNOWLEDGMENT
sume exact scalinor a general discussion see Ref) 48e
are able to reproduce this approximate scaling including the This research was supported by a grant from the Office of
coverage dependence of the scaled island-size distribution, &&aval Research.
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