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Rate-equation approach to island size distributions and capture numbers
in submonolayer irreversible growth
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We present a quantitative rate-equation approach to irreversible submonolayer growth on a two-dimensional
substrate. Our method explicitly takes into account the existence of a denuded~‘‘capture’’! zone around every
island and the correlations between the size of an island and the corresponding average capture zone. The
evolution of the capture-zone distributions is described by a set of Voronoi-area evolution equations, which are
coupled to the usual rate equations for the island densities through local rates of monomer capture. The
combined set of equations leads to a fully self-consistent calculation of the size- and coverage-dependent
capture numbers. The resulting predictions for the average capture-zone and capture-number distributions are
in excellent agreement with experimental results and Monte Carlo simulations. As a result, the corresponding
scaled island size distributions and their dependence on coverage and deposition rate are also accurately
predicted in the precoalescence regime.
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I. INTRODUCTION

Molecular-beam epitaxy~MBE! offers the possibility of
atomic-scale controlled production of thin films, high-qual
crystals, and nanostructures.1 The submonolayer growth in
MBE involves nucleation, aggregation, and coalescence
islands leading to a distribution of islands of various siz
and morphologies. The morphology and the spatial distri
tion of the islands determines the quality of the desired na
structure~quantum dots/wires! or of the multilayer growth
~thin films!. These nanoscale features of the surface in
early stages of MBE growth can now be measured in re
time with atomic-scale resolution experimental metho
such as scanning tunneling microscopy~STM! and reflection
high-energy electron diffraction~RHEED!.1 This has led to a
renewed experimental interest in submonolayer nuclea
and growth,2–13and has also stimulated considerable theo
ical work toward a better understanding of the mechanis
determining the scaling properties of the island density
island-size distribution in epitaxial growth.14–34

One of the standard tools used in theoretical stud
of submonolayer growth is the rate-equation~RE! app-
roach.14,35,36 It involves a set of deterministic, couple
reaction-diffusion equations describing the time~coverage!
dependence of average quantities through a set of rate c
ficients usually called capture numbers.14,35 While simple
mean-field choices for the capture numbers lead to cor
predictions for the scaling behavior of the island and mo
mer densities as a function of deposition flux and tempe
ture, in order to make quantitative predictions accurate
pressions for the rate coefficients should be used.

Recently, Bales and Chrzan20 have developed a self
consistent RE approach that leads to quantitative predict
for the average monomer and island capture numbers, as
as for the average island and monomer densities in t
dimensional irreversible growth. This approach has also
cently been extended to the case of reversible growth,21,33
0163-1829/2001/64~20!/205404~13!/$20.00 64 2054
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but neither for reversible nor for irreversible growth does
lead to correct predictions for the island-siz
distributions.20,21,24,33 The reason is that it is based on
mean-field approximation, which ignores spatial and tem
ral correlations in the growth of islands.23,30,31

In this paper we present a rate-equation approach to t
dimensional irreversible submonolayer growth in which t
existence of a denuded~‘‘capture’’! zone and the correlation
between the size of the island and the corresponding ave
capture zone are explicitly taken into account. A second
of equations is used to describe the evolution of the isla
size-dependent capture zones, leading to explicit size-
coverage-dependent capture numbersss(u) in good agree-
ment with experimental31 and simulation results.27 A numeri-
cal solution of the resulting island-density rate equatio
leads to island-size distributions in good agreement w
simulations, in contrast to the standard rate-equation
proach.

We note that a general outline of our method and res
has already been presented in Ref. 34. Here we prese
detailed derivation of the relevant equations along with
plicit analytical expressions for the local capture numb
monomer density distribution, and self-consistency con
tions. In addition, a detailed study of the dependence of
island-size distribution, capture-number distribution, and
erage capture zone ‘‘distribution’’ on the island morpholo
is presented along with a study of the evolution of the isla
size distribution as a function of coverage and deposit
rate. A possible generalization of our method for the case
reversible growth is also discussed.

The organization of this paper is as follows. Section
presents the details of the self-consistent calculation of
capture numbers. After a brief introduction to the ra
equation formalism, the geometry of the exclusion zone
defined and the local capture number is calculated as a f
tion of the corresponding Voronoi area. It is then shown t
both the coverage dependence of the capture number
island-size correlations are naturally included through the
©2001 The American Physical Society04-1
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POPESCU, AMAR, AND FAMILY PHYSICAL REVIEW B64 205404
eraging over the distribution of Voronoi areas. This part co
cludes with a discussion of self-consistency conditions
of their connection with the geometry of the system. In S
III, evolution equations for the Voronoi areas are develop
and solved in closed form. We then discuss, in Sec. IV,
rate-equation results and present comparisons with exp
mental as well as kinetic Monte Carlo~KMC! results. A sum-
mary of our results and conclusions is presented in Sec.

II. SELF-CONSISTENT THEORY OF SIZE-DEPENDENT
CAPTURE NUMBERS

A. Rate equations

A rate-equation approach to submonolayer nucleation
growth involves a set of deterministic, coupled, diffusio
aggregation equations describing the time~coverage! depen-
dence of average quantities.14,35,36The RE variables are th
average densities of monomers,N1, and of islands of sizes
>2, Ns , wheres is the number of atoms in the island.
general form of these equations for irreversible growth m
be written as

dN1

du
5g22N122Rs1N1

22RN1(
s>2

ssNs , ~1!

dNs

du
5RN1~ss21Ns212ssNs!1ks21Ns212ksNs

for s>2, ~2!

whereu is the coverage,g is the fraction of the substrate no
covered by islands,ss are the capture numbers, andks are
the rates of deposition on top of existing islands. Here,
kinetic constantR5D/F is the ratio of the diffusion constan
D ~whereD5Dh/4 for the case of nearest-neighbor hoppi
with isotropic hopping rateDh on a two-dimensional lattice!
to the deposition fluxF. The terms withss describe the rate
of monomer capture by other monomers or by existing
lands. The terms withks , whereks5s2/df anddf is the frac-
tal dimension of the islands,20 correspond to the depositio
of adatoms directly on islands of sizes. Finally, the quantity
g22N1 corresponds to the deposition flux minus the dir
impingement.

In order to study the effects of island morphology on t
capture-number and island-size distributions, we cons
two different models: apoint-islandmodel and anextended-
islandmodel. In thepoint-islandmodel, each island occupie
just one lattice site. Dimer nucleation occurs when t
monomers land on the same site, while any monomer
lands on the site occupied by an island becomes part of
island. Physically, this corresponds to islands that grow o
in a direction perpendicular to the substrate, or, alternativ
to islands with a very large fractal dimension (df5`). For
point islands the fraction of the substrate not covered
islands is then given byg512N, whereN5(s>2Ns is the
total island density.

In the extended-islandmodel, an island occupies a num
ber of lattice sites equal to its sizes, and monomers attach t
a growing island or to another monomer at the near
20540
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neighbor perimeter sites. Depending on the details of
growth, the resulting islands can have a compact shapedf
52) or a fractal morphology (df,2). For extended islands
the factorg is given byg512u1N1.

Once the capture numbersss(u) are known, Eqs.~1! and
~2! can be numerically solved to find the island-size dis
bution Ns(u). However, understanding and predicting t
size and coverage dependence of the capture numbers
been the central problem of the rate-equation theory of M
growth14,22,36–39for more than three decades. In the next s
tion we present a theoretical approach that allows an exp
calculation of the correct size- and coverage-dependent
ture numbers.

B. Monomer-diffusion equation and local capture numbers

It has been argued that an island grows by collect
monomers mainly from a ‘‘capture’’ zone around th
island,25,27,31and that these capture zones are related to
physically and geometrically well-defined Voronoi cells23,27

corresponding to the set of points around an island close
it than to its neighbors. As has already been noted, in orde
quantitatively predict the coverage- and island-size dep
dence of the capture numbersss , one needs to take into
account these correlations between the size of the island
its local environment.

As shown in Fig. 1, these observations lead to the follo
ing model for the environment of an island. An island of si
s is approximated by a circular region of radiusRs5rs1/df ,
wherer is a ‘‘geometrical’’ prefactor that accounts for th
circular approximation of the island area and the fractal
mensiondf depends on the morphology of the island. T
area surrounding the island is divided into an inner (Rs,r
,Rex) and an outer region (Rex,r ,`). The inner region
corresponds to an exclusion zone in which only monom
can be found. The area of the exclusion zoneAex is assumed
to be proportional to the Voronoi areaAV of the Voronoi
polygon surrounding the island, i.e.,Aex5hAV, where the

FIG. 1. Schematic representation of the capture-zone geom
for an island of sizes ~radiusRs). Shown are islands of differen
sizes~big dark circles!, monomers~gray circles!, the boundary of
the exclusion zone~the circle of radiusRex), and the nucleation and
mean-field decay lengthsj1, respectivelyj.
4-2
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RATE-EQUATION APPROACH TO ISLAND SIZE . . . PHYSICAL REVIEW B 64 205404
factor h ~typically larger than 1) is assumed to be the sa
for all islands. Accordingly, the radius of this zone isRex

5AhRV , whereRV5AAV /p is the ‘‘radius’’ of the Voronoi
polygon. In the outer region, corresponding tor .Rex , we
assume a ‘‘smeared’’ uniform distribution of monomers a
islands, which is independent of the size of the central isla
as in Ref. 20.

This geometry naturally leads to the definition of
‘‘nucleation’’ length j1 and of a mean-field ‘‘screening’’ o
monomer ‘‘capture,’’ lengthj. The nucleation lengthj1 char-
acterizes the monomer decay in the exclusion zone an
defined by

1/j1
252s1N1 . ~3!

Similarly, the mean-field screening lengthj, where

1/j252s1N11(
s>2

ssNs , ~4!

characterizes the monomer decay in the regionsurrounding
the exclusion zone. Using these definitions, the mono
density rate equation~1! may be rewritten in the form

dN1

du
5g22N12RN1 /j2. ~5!

A self-consistent calculation of the capture numbersss
entering into the rate equations~1! and ~2! is then based on
comparing the microscopic capture rate of monomers nea
island with the corresponding capture terms in the r
equations.20,21To determine the microscopic capture rate,
consider the following diffusion equation describing thelo-

cal monomer densityn1(rW,u):

]n1

]u
5H 122n11R¹2n12Rn1 /j1

2 , Rs,r<Rex

122n11R¹2n12Rn1 /j2, r .Rex.
~6!

The first two terms on the right side of Eq.~6! correspond to
deposition minus direct impingement of monomers on mo
mers, while the last two terms correspond to monomer
fusion and, respectively, loss of monomers by nucleation40,41

(Rs,r<Rex) or by nucleation and aggregation (r .Rex).
Multiplying Eq. ~6! by g and subtracting the monome

rate equation~5!, one obtains

¹2n12
1

gR S g
]n1

]u
2

]N1

]u D1
2

gR
~gn12N1!

5H j1
22@n12a2~N1 /g!#, Rs,r<Rex

j22~n12N1 /g!, r .Rex,
~7!

where a25(j1 /j)2. Since by definitiong represents the
fraction of sites that are not occupied by islands, the pro
normalization of the local monomer density isn̄15N1 /g,
wheren̄1 denotes the average local monomer density in
region between islands. This implies that the last term on
left-hand side of Eq.~7! may be neglected. Similarly, th
quantity in the parentheses in the second term is also s
20540
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and therefore in the limit of largeR the second term may b
neglected as well. This leads to the quasistatic monomer
fusion equation

¹2n1.H j1
22@n12a2~N1 /g!# for Rs,r<Rex

j22~n12N1 /g! for r .Rex.
~8!

For the case of irreversible growth, the local monom
densityn1(r ) must vanish at the island edge and must a
match the average local density (N1 /g) far away from the
island. In addition, the interior and exterior solutions mu
match at the exclusion-zone boundary. This leads to the
lowing boundary conditions:

n1~Rs!50, ~9a!

n1~Rex
2 !5n1~Rex

1 !, “n1~Rex
2 !5“n1~Rex

1 !, ~9b!

lim
r→`

n1~r !5N1 /g, ~9c!

where the renormalized valueN1 /g far away from the island
edge is due to the fact that the average local monomer d
sity is actually larger than the overall monomer densityN1
by a factor of 1/g.

Since the growth is isotropic, there is no angular dep
dence in the model and the general solution of Eqs.~8! sat-
isfying the boundary condition~9c! at infinity is given by

n1~r !5H N1@a2/g1aI0~r /j1!1bK0~r /j1!#

for Rs,r<Rex

N1@1/g1cK0~r /j!# for Rex,r ,`.
~10!

The coefficientsa and b are determined by the boundar
conditions~9a! and ~9b!,

a5
1

g

a3~K1xK0x12K1xK0s1!2a2K0xK1x11aK1xK0s1

K0x~I1x1K0s12K1x1I0s1!1aK1x~I0x1K0s12K0x1I0s1!
, ~11a!

b52
a2/g1aI0s1

K0s1
, ~11b!

whereKjs15Kj(Rs/j1), Kjx5Kj(Rex/j), Kjx15Kj(Rex/j1) ~and
similarly for I js1 , I jx , andI jx1), andK j ,I j , j P$0,1% are the
modified Bessel functions of orderj.

Equating themicroscopicflux of atoms near the island
2pRsD@dn1 /dr# r 5Rs

, to the correspondingmacroscopic

RE-like termDN1s̃s(AV), one obtains an expression for th
local capture numbers̃s(AV),

s̃s~AV!5
2pRs

j1
FaI1S Rs

j1
D2bK1S Rs

j1
D G . ~12!

Here the dependence ofs̃s on the Voronoi areaAV ~or
equivalently on the exclusion-zone areaAex5hAV) arises
from the dependence of the coefficientsa and b on the
exclusion-zone radiusRex5AhAV /p.
4-3
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POPESCU, AMAR, AND FAMILY PHYSICAL REVIEW B64 205404
A similar analysis can be carried out for the monom
capture numbers1. However, since the monomers are m
bile, in this case there is no ‘‘exclusion’’ zone, which implie
that Rex5R1. In this limit, i.e., takingRs5R15Rex , Eqs.
~11! and ~12! lead to

s15
2pR1

gj

K1~R1 /j!

K0~R1 /j!
. ~13!

Apart from an extra factor of 1/g, which takes into accoun
the enhancement of the local monomer density with incre
ing coverage, this expression is the same as previously
tained by Bales and Chrzan.20

Using Eq. ~12!, the size-dependent capture numbersss

are obtained by averaging the local capture numberss̃s(AV)
over the distribution of Voronoi areas. DefiningGs(u;AV) as
the number density of Voronoi areas of sizeAV surrounding
an island of sizes at coverageu, we can write

ss~u!5^s̃s~AV!&Gs
[

(
AV

Gs~u;AV!s̃s~AV!

(
AV

Gs~u;AV!

5
1

Ns
(
AV

Gs~u;AV!s̃s~AV!, ~14!

where^•••&Gs
denotes an average with respect to the dis

bution Gs(u;AV).
The capture numbersss have now been expressed

terms of the Voronoi-area distributionGs(u;AV), the geo-
metrical factorsr and h, and the nucleation and screenin
lengthsj1 andj. The nucleation lengthj1 can be determined
using Eqs.~3! and~13!, assumingr andj are known. Once
the distributionsGs(u;AV) and the parametersr, h, andj
are known, Eqs.~12!, ~13!, and~14! can be solved in order to
obtain the size- and coverage-dependent capture num
ss . However, the local monomer density and capture nu
bers must satisfy self-consistency conditions that we disc
in the next section. Use of these self-consistency conditi
allows the determination of two of the three parametersh, r,
andj once the third is known.

C. Self-consistency conditions for monomer density and
capture numbers

The parametersr andh are independent of the island siz
and Voronoi areas, and thus they can be determined usin
approximation in which the Voronoi areas surrounding
lands of sizes are replaced by their average values. Denot
the average Voronoi area corresponding to an island of sis
at a given coverageu by As , this leads to the approximatio
ss5s̃s(As). The definition~4! of the screening lengthj then
leads to the capture number self-consistency condition,

2s1N11(
s>2

Nss̃s~As!51/j2, ~15!
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which corresponds to the requirement that the aver
‘‘screening length’’ embodied in the rate equations is t
same as that expressed by the diffusion equations.

If n1
t (As) denotes the total number of monomers in

Voronoi area of sizeAs surrounding an island of sizes, then
the self-consistency condition for the monomer density c
responds to the requirement that the total monomer den
in the Voronoi polygons must be equal to the average mo
mer densityN1, i.e.,

(
s>2

Nsn1
t ~As!5N1 . ~16!

In principle, Eqs.~15! and~16! can be solved at any give
coverageu for two of the three unknownsj, h, andr once
the third is known and once the average Voronoi areaAs is
known for alls. However, by carrying out detailed numeric
comparisons we have found42 that a mean-field approxima
tion gives equally good results. This is not surprising, sin
the self-consistency conditions correspond toaveragequan-
tities. This approximation allows us to ‘‘precalculate’’ th
quantitiesr, h, j, and j1 as a function of coverage befor
carrying out the numerical integration of the full islan
density rate equations~1! and~2! coupled with the Voronoi-
area rate equations~see below!.

In this approximation, the island sizess in Eqs.~15! and
~16! are replaced by the average island sizeS5(u2N1)/N,
while the corresponding Voronoi areas are replaced by
average Voronoi areaAav51/N. This leads to a very simple
form for the capture number and monomer density s
consistency relations,

2s1N11Ns̃S~Aav!51/j2, ~17a!

NE
RS

Rav
dr 2prn1~r !5N1 , ~17b!

whereRS5rS1/df andRav5A1/(pN).
Using Eq. ~10! for the monomer densityn1(r ), the

monomer-density self-consistency condition~17b! may be
rewritten for the caseh>1 as

Rav
2 ~a2/g21!2RS

2a2/g22RSj1~aI1S12bK1S1!

12Ravj1~aI1a12bK1a1!50, ~18!

where I 1a15I 1(Rav /j1), K1a15K1(Rav /j1), and the coef-
ficientsa andb are given by Eq.~11! with Rex5AhRav . A
similar expression can be written for the monomer-dens
self-consistency condition for the caseh<1.

In the case of extended islands, the geometrical param
r was assumed to be independent of coverage, and its v
r.0.3 was selected such that numerical integration o
mean-field form of the island-density rate equations~1! and
~2!—corresponding to replacingAV in Eq. ~12! with Aav
51/N—led to good agreement with Monte Carlo results f
the average monomer and island densitiesN1 and N. Al-
though the valuer.0.3 is somewhat smaller than expect
~for circular islands the value ofr would be 1/Ap.0.6), the
same value works for all values ofR while variations of
4-4
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about 20% inr lead to significant deviations from the Mon
Carlo calculated densitiesN andN1. The two remaining vari-
ablesh andj were then determined by simultaneously so
ing the two self-consistency conditions~17! as a function of
coverage.

In the case of point islands a slight variation of th
method was found to lead to better results. In this case th
is no explicits dependence ins̃s sinceRs5r for all s. Thus,
Eq. ~17a! may be rewritten as

1/j1
21Ns̃~Aav!51/j2 ~19!

without any additional assumption of an average island s
S. In this case, a self-consistent RE approach similar to
used in Ref. 20 for compact islands was first used in orde
obtain the coverage-dependent lengthsj1(u) and j(u) for
point islands. Equations~17b! and ~19! were then simulta-
neously solved forr(u) andh(u).

Figure 2 shows the resulting coverage dependence oh
for both point and compact islands. As expected, similar v
ues of h are obtained at low coverage for both point a
compact islands. In particular, we findh@1 in the nucleation
regime corresponding tou,ux , where ux @defined by
N1(ux)5N(ux)] corresponds to the crossover from nuc
ation to aggregation. However, foru@ux , h quickly ap-
proaches a constant value for point islands, which is so
what above 1 and is slightly dependent onRh5Dh /F. In
contrast, for extended islandsh continues to decrease in th
coverage range where the spatial extent of an island is
nificant, and it eventually becomes smaller than 1 at cov
ages higher thanu'0.2. This may be considered as a natu
limit of our method since in that range coalescence effe
which are not included in our rate equations, become sign
cant. It is interesting to note, however, that this decre
actually correctly describes the qualitative behavior ofh in
the presence of coalescence.

FIG. 2. Coverage-dependence ofh obtained from Eqs.~17! for
point islands~solid lines! and compact islands~dashed lines! for
Rh5107–109. Inset shows corresponding coverage dependenc
r for point islands.
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The inset in Fig. 2 shows our results forr(u) for the case
of point islands. As expected,r(u) is almost constant and
independent ofRh5Dh /F for u>0.01, and asymptotically
~i.e., in the limit of largeRh) approaches a constant valu
over the entire coverage range. Accordingly, in our calcu
tion of the island-capture numbers and size distributions
point islands, we have approximatedr(u) by the constant
value r.0.12 at all coverages. It is not surprising that th
value is significantly smaller than the valuer.0.3 used for
extended islands, since for point islands, monomers can
attach by landing on the site occupied by another island
monomer, and not by nearest-neighbor attachment.

Figure 3 shows the resulting average island and mono
densitiesN and N1 obtained using the island-density ra
equations~1! and ~2!, as discussed above, along with th
corresponding KMC simulation results. As can be seen, th
is excellent agreement between the RE predictions and
simulation results for these average quantities at all cov
ages in the precoalescence regime. Thus, the cover

of

FIG. 3. Island densityN and monomer densityN1 as a function
of coverageu for Rh5107–109 obtained from RE’s~symbols! and
KMC ~solid lines! for ~a! point and~b! compact islands.
4-5



n
eld

n

str
no

e
o
r

n

q

s
a
t

-
e

on
c

d
n

s
e

del
the
i-

s,
n

e

n of

s,
f

cal-
n
be

POPESCU, AMAR, AND FAMILY PHYSICAL REVIEW B64 205404
dependent factorsr andh and the screening and nucleatio
lengthsj and j1 have been calculated using the mean-fi
self-consistency conditions. The only quantity left unknow
is the distribution of Voronoi areas.

III. VORONOI-AREA-DISTRIBUTION
EVOLUTION EQUATIONS

To obtain the capture numbers and the island-size di
bution, one has to consider the dependence of the Voro
area distributionGs(u;A) on the island sizes. Taking into
account the change in the areas by nucleation and aggr
tion of islands, and ignoring for the moment the breakup
Voronoi areas when new islands are nucleated, one can w
a general set of evolution equations for the functio
Gs(u;A) in the following form:

dG2~u;A!

du
5~dN/du!d~A2Aav!2RN1s̃2~A!G2~u;A!,

~20!

dGs~u;A!

du
5RN1@s̃s21~A!Gs21~u;A!2s̃s~A!Gs~u;A!#

~s>3!, ~21!

where s̃s(A) is the local capture number as given by E
~12!. The first term on the right side of Eq.~20! corresponds
to nucleation of dimers while the remaining terms in Eq
~20! and ~21! correspond to growth of islands via aggreg
tion. We note that in these equations it has been assumed
the Voronoi areas around the~new! dimers nucleated at cov
erageu are equal to the average Voronoi area at that cov
age,Aav51/N, and for simplicity the ‘‘source’’ term in Eq.
~20! has been assumed to take the form of a delta functi

As already noted, the breakup of larger areas due to nu
ation has been neglected in Eq.~21!. However, we will ac-
count for it through a uniform rescaling that will be justifie
a posteriori. The effects of direct impingement of atoms o
islands have also been neglected in Eqs.~20! and ~21! since
they are very small except for the case of extended island
high coverages. However, direct impingement is still tak
into account in the full rate equations~1! and ~2!.

Defining uA through the conditionA51/N(uA), the
nucleation term in Eq.~20! may be rewritten asBAd(u
2uA), with BA51/A2. Accordingly, Eq.~20! may be rewrit-
ten in the form

dG2~u;A!

du
52RN1s̃2~A!G2~u;A!1BAd~u2uA!.

~22!

We note that the initial conditions~for a given A) for the
functionsGs(u;A) are determined byGs(u;A)[0 for all s
for u,uA . Since the solution of Eqs.~21! and~22! is some-
what dependent on the particular growth model~point or
extended islands!, we discuss the two cases separately.
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A. Voronoi-area distributions for point islands

The point-island model is special because for this mo
the local capture numbers do not depend explicitly on
island sizes. This allows an exact solution of the Vorono
area evolution equations~21! and ~22!. Changing the cover-
age variable fromu to

xA5E
uA

u

RN1~f!s̃~A!df, ~23!

where s̃(A) is the local capture number for point island
leads to the following form of the Voronoi-area evolutio
equations:

dG2~xA ;A!

dxA
52G2~xA ;A!1BAd~xA!, ~24!

dGs~xA ;A!

dxA
5Gs21~xA ;A!2Gs~xA ;A! ~s>3!.

~25!

The solution of Eq.~24! is G2(xA ;A)5BAe2xAH(xA),
whereH(z) is the step function@H(z)51,z>0;H(z)50,z
,0#. It can also be shown32 that the general solution for th
Voronoi-area distributionGs for s>2 is

Gs~xA ;A!5BAxA
s22e2xA/~s22!!. ~26!

At coverages beyond the nucleation regime, bothxA and the
average Voronoi areaAav are typically large. Thus, Eq.~26!
corresponds to a sharply peaked distribution as a functio
A, and the peak positionÂs satisfies43

xÂs
5s22. ~27!

Therefore, keeping only the dominant terms in the sum
the average Voronoi areaAs corresponding to an island o
sizes and the corresponding capture numbersss satisfy

As[
( A AGs~xA ;A!

( A Gs~xA ;A!

.Âs , ~28!

ss[
( A s̃s~A!Gs~xA ;A!

( AGs~xA ;A!

.s̃s~Âs!. ~29!

However, since Eqs.~20! and~21! do not include the effects
of the area breakup due to nucleation, the average areas
culated using Eq.~27! are expected to be larger tha
the correct values. To account for this, the areas should
rescaled to the correct average Voronoi area,Aav51/N. The
correct capture numbersss are then given by

ss5s̃s~As8!, where As85
As

(
s

NsAs

, ~30!
4-6
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where the local capture numbers̃s(A) is given by Eq.~12!.
Therefore, the calculation of the size-dependent cap
numbersss has been reduced to solving Eq.~27! for the
peak positionÂs and then rescaling using Eq.~30! to obtain
the rescaled capture areasAs8 . Once the capture numbersss

are known at each step, the rate equations~1! and ~2! can
then be integrated to obtain the island-size distributions.

It is interesting to note that the variablexA given in Eq.
~23! has a simple physical interpretation, which also impl
a simple physical interpretation for the peak condition~27!.
Since the quantityRN1(f)s̃(A) is the average growth rat
at coveragef of a point island surrounded by a capture zo
of areaA, the coverage variablexA5*uA

u df RN1(f)s̃(A) is

the average number of particles gained by a point island w
Voronoi areaA from the coverageuA at which it is nucleated
up to the current coverageu. Thus the peak conditionxÂs

5s22 given by Eq.~27! may be viewed as stating that th
peak of the Voronoi-area distributionGs(A) corresponds to
islands whose Voronoi area is such that they have on ave
gaineds22 particles since their nucleation as dimers,
suming that their capture-zone area did not change since
were nucleated.

B. Voronoi-area distributions for extended islands

In the case of extended islands the Voronoi-area evolu
equations~21! cannot be solved analytically due to the e
plicit s dependence of the local capture numberss̃s(A).
However, using the approximations̃s(A).s̃S(A) ~whereS
is the average island size! leads to a set of equations that c
be solved analytically. This approximation is expected
have only a weak effect on the final island-size distributio
Ns(u) because it retains the dominant effect, i.e., that of
exclusion zoneAex , which depends on the island sizes.
Furthermore, the correct expression forss(As) will be re-
tained in the rate equations~1! and ~2!.

Using this approximation, the Voronoi-area evolutio
equations become

dG2~u;A!

du
5~dN/du!d~A2Aav!2RN1s̃S~A!G2~u;A!,

~31!

dGs~u;A!

du
5RN1s̃S~A!@Gs21~u;A!2Gs~u;A!# ~s>3!.

~32!

One can again transform to new variables,

xA5E
uA

u

RN1~f!s̃S~A!df ~33!

to obtain the evolution equations

dG2~xA ;A!

dxA
52G2~xA ;A!1BAd~xA!, ~34!
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dGs~xA ;A!

dxA
5Gs21~xA ;A!2Gs~xA ;A! ~s>3! ~35!

for the Voronoi-area distributions. The solution is aga
given by

Gs~A!5BAxA
s22e2xA/~s22!!, ~36!

with the peak of the distribution~for a givens) correspond-
ing to Âs determined by

xÂs
5s22, ~37!

and from Eq.~28! the average Voronoi area isAs.Âs .
As before, the effects of the breakup of Voronoi areas d

to nucleation will be included through a rescaling of t
areas to the correct average valueAav51/N. However, due
to the existence of a spatially extended island inside
Voronoi area, one should consider the rescaling due
breakup to apply only to the area at the exterior of the isla
rather than to the whole area. Therefore, one obtains for
rescaling factor, the expression

f 5
g

(
s

AsNs1g21

. ~38!

We note that for extended islands it is reasonable to de
the Voronoi polygon as passing through points halfway fro
the edges of the islands rather then halfway from th
centers.44 Ignoring correlations between the size of an isla
and the size of its neighbors, the radius of the resca
Voronoi polygon should then include an additional corre
tion, Rcorr5r(s1/df2S1/df)/2. This leads to the correcte
Voronoi area

As85p~Af As /p1Rcorr!
2, ~39!

and the capture numbers are given by

ss5s̃s~As8!. ~40!

Therefore, the calculation of the coverage-dependent cap
numbersss for extended islands has been reduced to solv
Eqs.~33! and~37!, and the full rate equations~1! and~2! can
be integrated to find the island-size distributions.

C. Summary

Before presenting our results, we now summarize the
points and physical assumptions used in our approach
an emphasis on the case of extended islands. The env
ment of an island is modeled as consisting of an inner ‘‘e
clusion’’ zone in which only monomers can be found, whi
is surrounded by an outer ‘‘smeared’’ zone consisting of b
monomers and islands, while a circular approximation
the island and exclusion zone areas is used. In order to
nect the island radiusRs to the island sizes as well as the
radius of the exclusion zoneRex to the Voronoi cell areaAV ,
two geometrical parametersr andh were introduced.
4-7
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POPESCU, AMAR, AND FAMILY PHYSICAL REVIEW B64 205404
By combining the linearized diffusion equation~6! satis-
fied by the local monomer density surrounding an island w
the contracted rate equation~5! for the average monome
density, and solving the resulting quasistatic monom
diffusion equation~8! with the appropriate boundary cond
tions, a self-consistent expression~12! for the local capture
number in terms of the island size and exclusion-zone a
was derived. The geometrical parameterh(u) and the cap-
ture lengthj(u) are precalculated as a function of covera
using the mean-field monomer density and capture-num
self-consistency conditions~17!, while the geometrical pa
rameterr is determined by the requirement of reproduci
the KMC and/or mean-field RE results for the total isla
and monomer densities.

In order to find the distribution of exclusion zones, a s
of Voronoi-area evolution equations is used, which takes i
account the change in the areas by nucleation and aggr
tion of islands, while the effects of fragmentation are
cluded through a uniform rescaling of the areas. By introd
ing a change of variables@and using an additiona
approximation for the case of extended islands in which
local capture numbers̃s(A) is approximated bys̃S(A)]
these equations can be solved in closed form. For largs
~corresponding to large values ofRh5Dh /F) the solution in
Eq. ~36! is a sharply peaked distribution as a function of t
Voronoi areaA, and the peak positionÂs satisfies the condi-
tion xÂs

5s22 given by Eq.~37!. Thus, the most importan
and time-consuming aspect of our approach involves solv
Eq. ~37! numerically for each value ofs at each integration
step. In calculating the coverage variablexA for each value
of A needed in the numerical routine~we have used Rid-
ders’s method!, Eq. ~12! is used for the local capture numb
s̃S(A), which enters in Eq.~33!. We note that calculatingxA
using Eq.~33! also requires knowingN1(f), j1(f), j(f),
and S(f) @or N(f)] for all coveragesf up to the presen
value u. While in principle these values can be calculat
and stored during the integration, for convenience they
precalculated using a mean-field approach as describe
Sec. II C ~specific values are obtained via interpolation!.
Once the valuesÂs have been calculated for alls, they are
rescaled following Eqs.~38! and~39! to obtain the areasAs8 .
As described in Eq.~40!, As8 is then used in Eq.~12! to
obtain the capture numbersss . The resulting capture num
bersss(u) are then used to advance the full rate equati
~1! and ~2! in order to obtain the island-size distribution.

IV. RESULTS

Using the methods described in the previous sections,
island-density rate equations~1! and ~2! were numerically
integrated along with the Voronoi-area evolution equations
order to obtain the size- and coverage-dependent cap
numbersss(u) as well as the scaled island-density distrib
tions f (s/S)5(S2/u)Ns(u). The rate equations were numer
cally integrated starting at very low coverageu0!ux with
initial conditions N1(u0)5u0 and Ns(u0)50 for s>2. At
low coverage, for which both the average island sizeS and
typical values ofxA are small, the average capture numb
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sav5(1/j221/j1
2)/N was used in the island-density ra

equations. However, at coverages~just beyondux) such that
the average island sizeS is sufficiently large~we chose as
criterion S>10) and the peak in the Voronoi-area distrib
tion Gs(u;A) is well defined, the appropriate Voronoi-are
evolution equation results forss , i.e., Eq. ~30! for point
islands and Eq.~40! for extended islands, were used.

A. Point islands

Figure 4 shows our rate-equation results for the sca
island-size distribution for point islands~solid lines! in the
aggregation regime (u50.1–0.5) for Rh5107– 109. Also
shown are the corresponding KMC simulation results~sym-
bols! and, for comparison, mean-field~MF! RE results (Rh
5109) obtained using the approximationss5sav ~dashed
lines!. As can be seen, there is excellent agreement betw
the RE predictions obtained using the Voronoi-area evolut
equations and the corresponding kinetic Monte Carlo sim
lation results. In contrast, the mean-field results are m
more sharply peaked and appear to be approaching
~divergent! asymptotic form16,28,30 f MF(u)5(1/3)(1
22u/3)21/2.

The good agreement between the results obtained u
the Voronoi-area evolution equations and the kinetic Mo

FIG. 4. Scaled island-size distributionf (s/S) for point islands
calculated using RE’s~solid lines!, along with corresponding KMC
results~symbols! and MF theory~dashed lines! for Rh5107–109.
4-8
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RATE-EQUATION APPROACH TO ISLAND SIZE . . . PHYSICAL REVIEW B 64 205404
Carlo simulations is due to the inclusion of explicit corre
tions, which are not taken into account in the mean-fi
calculations. We note, however, that foru50.5 and high
D/F the predicted distributions are shifted slightly to t
right of the simulation results. This is most likely due to t
fact that the uniform rescaling of the Voronoi areas does
exactly take into account the effects of breakup of exclus
zones due to nucleation.

Figure 5 shows the corresponding results for the sca
capture number distributionss /sav as a function of the
scaled island size forRh5108 and 109. As can be seen, th
scaled capture-number distribution is essentially indepen
of coverage andRh , but depends strongly on the scaled
land size fors/S.1. Also shown~dashed lines! are KMC
simulation results atu50.2 for Rh51082109 from Ref. 30.
As can be seen, there is good agreement with the sim
tions, although for larges/S and Rh the RE results are
slightly below the KMC results.

The strong island-size dependence of the scaled cap
numbers shown in Fig. 5 is due to the fact that the aver
Voronoi areas also depend strongly on the island size.
shown by the inset in Fig. 5, the capture numbers are
good approximation linearly dependent on the Voronoi are

ss /sav5a01a1~As8/Aav!. ~41!

The linear fit shown in the inset~dotted line! gives46 a0
.0.85, a1.0.15. These values are significantly differe
from the valuesa0.0.3, a1.0.7 obtained from simulations
of a two-dimensional point-island model in Ref. 30. The d
ference ina0 anda1 indicates a possible difference betwe
the Voronoi areas obtained in our area-evolution plus ra
equation results and those obtained in the simulation44

FIG. 5. RE results~symbols! for scaled capture-number distr
butionsss /sav for point islands at coveragesu50.1 ~circles! and
u50.5 ~squares! for Rh5108 and 109. Lines are KMC results from
Ref. 30 atu50.2 for Rh5108 ~dashed! and 109 ~dotted!. Inset
shows RE results~symbols! for dependence ofss /sav on scaled
Voronoi area atRh5109, u50.5.
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However, as already noted, this difference does not appe
have a significant effect on the scaled capture numb
ss /sav .

B. Extended islands

Figure 6 shows our rate-equation results for the sca
island-size distribution for both compact islands (df52) and
fractal islands (df51.72) in the aggregation regime (u
50.06–0.3) for Rh5108 and 109, along with the corre-
sponding KMC simulation results and mean-field predictio
at Rh5109 ~dashed lines!. Similar results have also bee
obtained forRh5107 ~not shown!. As can be seen, the pre
dicted island-size distributions are in good agreement w
the simulation results, while the mean-field distributions a
much too sharply peaked and diverge rapidly with increas
coverage. In addition, we note that the predicted position
the peak in the size distribution is almost coverage indep
dent for compact islands, while for fractal islands it is shi
ing slightly to the left with increasing coverage, in very goo
agreement with the behavior shown by the KMC resu
However, for both compact and fractal islands there is
small ‘‘overshooting’’ of the peak value, which increas
with coverage and/orRh . This is most probably due to th
use of the mean-field approximations5S in the Voronoi-
area evolution equations.45

FIG. 6. Scaled island-size distributionf (s/S) for ~a!–~c! com-
pact islands (df52) and ~d!–~f! fractal islands (df51.72) for Rh

51082109 andu50.0620.3, obtained from RE’s~lines! and KMC
~symbols!, along with MF theory~dashed lines!.
4-9
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POPESCU, AMAR, AND FAMILY PHYSICAL REVIEW B64 205404
Another important difference between compact and fr
tal islands is the behavior of the size distribution at smalls/S
values. While for both point and compact islandsf (0) ap-
pears to approach a common limiting valuef (0).1/3 in
agreement with the MF rate-equation prediction16,28,30 ~see
Figs. 4 and 6!, for fractal islands our rate-equation resu
correctly follow the decrease off (0) with increasing
coverage,47 as shown in Fig. 6. This indicates that the d
crease inf (0) with increasing coverage is not due to coale
cence, since coalescence is not taken into account in
island-density rate equations or Voronoi-area evolution eq
tions, but is most likely due to the increase in the avera
capture numbersav with coverage for fractal islands.

The difference in the behavior off (0) for compact and
fractal islands is somewhat surprising, since the only cha
in the rate equations from compact to fractal islands is
value of the fractal dimensiondf . In order to understand thi
result, as well as the good predictions for the island s
distributions and for the peak position, we have analyzed
behavior of the capture numbers for each case. Figure~a!
shows the scaled capture-number distributionss /sav for
compact islands as a function ofs/S for Rh5108–109 and
u50.06–0.3 along with theexperimentally measured
capture-number distribution for Cu/Co on Ru~0001! from

FIG. 7. RE results for scaled capture-number distributions
~a! compact and~b! fractal islands forRh5108 and 109 at u
50.06~open circles! and 0.3~open squares!, along with experimen-
tal results~filled symbols! at u50.23 from Ref. 31.
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Ref. 31. The RE results show excellent scaling with bothRh
and coverage, and there is good agreement within statis
fluctuations with the experimental data. Also shown in F
7~a! are lines corresponding to the asymptotic form31

ss /sav5zs/S, where z52/3 for point islands andz51
~with logarithmic corrections! for compact islands. Both the
experimental and the RE results lie between these two lin
thus showing an effective value ofz smaller than 1, but
greater than 2/3, in agreement with the experimental res
of Ref. 31.

In contrast to the results for compact islands, for frac
islands the scaled capture-number distribution is indepen
of Rh , but depends on coverage, as shown in Fig. 7~b!. With
increasing coverage the distributionss /sav ‘‘rotates’’ coun-
terclockwise around the points/S51, and this may explain
the differences in the island-size distributions. The decre
in the scaled capture numbers fors/S,1 with increasing
coverage~and the corresponding increase fors/S.1) is con-
sistent with both the decrease off (0) and the shift of the
fractal-island size-distribution peak towards/S51, and also
explains the incomplete scaling shown by the fractal isla
size distributions. It can also be seen that, in contrast to
compact case, the asymptotic behavior of the scaled cap
number at larges seems to be well described by th
asymptotic valuez51.

Figure 8 shows the scaled ‘‘capture zone’’Ãs /Ãav for
both compact and fractal islands as a function of the sca
island size. We note here that in agreement with Ref. 31,
have definedÃs5As82s, thusÃav5gAav , as corresponding
to the part of the capture zoneoutsidethe island~for a very
detailed discussion of this point see Ref. 44!. Also shown in
Fig. 8 are the experimental results atu50.23 for Cu/Co on
Ru~0001! from Ref. 31. Again, there is good agreement b
tween the predicted capture zones and the experimenta
sults fors/S,1.75. However, fors/S.1.75, the RE predic-
tions are somewhat above the experimentally measu
values. This may be due in part to insufficient statistics in
experiment for large island sizes or to a slight breakdown
the uniform rescaling assumption used in our RE’s. In a

r

FIG. 8. RE results for scaled average capture zoneÃs /Ãav for
compact ~open circles! and fractal ~open squares! islands (Rh

5109,u50.18) along with experimental results~filled symbols! at
u50.23 from Ref. 31.
4-10
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RATE-EQUATION APPROACH TO ISLAND SIZE . . . PHYSICAL REVIEW B 64 205404
case, as already noted these differences have little effec
the island-size distributions since in that range the isla
density is already very small and decreasing, as can be
from Fig. 6.

Finally, we briefly discuss and present results
the scaled Voronoi-area distribution g(A/Aav)5
(1/N)(s>2Gs(u;A), which may be obtained using our ap
proach. While the uniform rescaling of the Voronoi are
appears to be sufficient to obtain good results for the cap
numbers and island densities, a more complicated resca
is necessary in order to obtain the Voronoi-area distribut
G(A)5(s>2Gs(u;A). The reason is easy to understand:
scaling the areas shifts the distribution and thus corrects
position of the peak, but leaves the amplitudes unchan
Proper normalization of the Voronoi-area distributio
Gs(u;A) requires that they satisfy the conditio
*0

`dA Gs(u;A)5Ns while the overall Voronoi-area distribu
tion G(A) must satisfy*0

`dA G(A)5N. While the latter nor-
malization condition is automatically satisfied,48 since the
correct nucleation rate is included in the Voronoi-area evo
tion equations, the ‘‘individual’’ normalization conditions o
the Gs(u;A) as given by Eq.~36! are not, since the are
rescaling is only carried out at the end of the calculati
rather than continuously during the integration involved
xA .

While it is possible to rescale theGs(u;A) in Eq. ~36! in
order to obtain a prediction for the Voronoi-area distributi
G(A), calculation of the correct normalization factors~which
involve integrals of the form*0

`dA BAxA
s22e2xA) is rather

tedious. Fortunately, a very simple approximation is possi
Since the distributionsGs(u;A) given by Eq. ~36! are
sharply peaked around the rescaled areasAs8 , it is reasonable
to replace them, in a ‘‘zeroth order’’ approximation, byd
functions. Taking into account the proper normalization,
obtain

Gs~u;A!5Nsd~A2As8!, ~42!

where As8 is the rescaled peak area obtained from
Voronoi-area evolution equations@see Eq.~39!#, while Ns are
the island densities obtained from our island-density r
equations.

With this approximation, the Voronoi-area distributio
G(A) @which implicitly satisfies the correct normalizatio
*0

`dAG(u;A)5N(u)], may be written as

G~u;A!5(
s

Nsd~A2As8!, ~43!

and thus the scaled Voronoi distributiong(A/Aav) is

g~A/Aav!5(
s

~Ns /N!d~A2As8!. ~44!

Figure 9 shows results for the scaled Voronoi-area dis
bution g(A/Aav), Eq. ~44!, for compact islands (Rh5108,u
50.18) along with kinetic Monte Carlo simulation resul
(Rh543106,u50.120.3) from Ref. 25. As expected, th
peak position is correctly predicted although the peak he
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is somewhat lower than obtained in simulations. The cor
sponding RE results for the point-island distribution~not
shown! are similar, but the peak of the point-island distrib
tion is shifted slightly to the right~compared to the compact
island case!, consistent with KMC results obtained for circu
lar islands at low coverage.44 However, in both cases the tail
of the predicted distributions are much wider than in t
simulations and the RE results exhibit also a sharp cutoff
small A/Aav , in contrast to the smooth approach to zero
the simulation results. These discrepancies are the resu
the neglect of the nonlinearity of the fragmentation proce
which favors the breakup of large areas over small areas,
which can lead to the formation of small Voronoi areas w
a nonvanishing probability. Overall, the qualitative agre
ment with the KMC results shown by the very simple a
proximate form Eq.~44! is surprisingly good, but it is clea
that if quantitative predictions for the area distributions a
needed, then the breakup should be accounted for in deta
the area evolution equations.

V. DISCUSSION

We have developed a self-consistent rate-equation
proach to two-dimensional irreversible submonolayer grow
in which the existence of a denuded~‘‘capture’’! zone with a
fluctuating area around every island and the correlations
tween the size of the island and the corresponding ave
capture zone are explicitly taken into account. To obtain
capture numbers and the island size distribution, we h
proposed a general set of evolution equations for
Voronoi-area distributions, which takes into account t
change in the areas by nucleation and aggregation of isla
while the effects of fragmentation have been includ
through a uniform rescaling of the average Voronoi are
This second set of equations has been solved analytically

FIG. 9. Scaled Voronoi-area distributiong(A/Aav) obtained
from Eq. ~44! for compact islands~solid line! at u50.18 for Rh

5108, along with KMC results~symbols! for compact islands from
Ref. 25 (Rh543106,u50.120.3.!
4-11
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POPESCU, AMAR, AND FAMILY PHYSICAL REVIEW B64 205404
the solution has been used to self-consistently determine
size- and coverage-dependent capture numbersss(u). The
resulting scaled island-size distributions were found to be
excellent agreement with KMC simulations, although a sm
‘‘overshooting’’ of the peak value was noted for extend
islands. In addition, our results were shown to accura
predict the dependence of the scaled island-size distribu
on the island morphology as well as on the coverage
deposition rate. The island-size dependence of the cap
numbers was also found to be in good agreement w
simulation30 and experimental31 results.

We note that in previous work by Blackman an
Mulheran24 reasonably accurate asymptotic island-size dis
butions have been obtained in one dimension,24 by using
Monte Carlo simulation results for the scaled-gap distrib
tion coupled with rate equations and assuming scaling. M
recently, Mulheran and Robbie25 have carried out a numeri
cal calculation of both the asymptotic scaled Voronoi-a
distributionG(s/S;A/^A&) and the asymptotic scaled islan
size distribution f (s/S) for compact islands in two-
dimensions by assuming scaling as well as a linear rela
between the Voronoi area and the island capture number.25 In
contrast, our method involves a fully self-consistent calcu
tion of the coverage-dependent capture numbersss(u) with-
out any assumptions regarding the relation between the
land capture number and the capture-zone area. In addi
scaling of the island-size and capture-number distributi
was not assumed. In this connection we note that in prev
work25,44 it has been pointed out that for irreversible grow
the actual scaling is only approximate. Since we do not
sume exact scaling~for a general discussion see Ref. 49!, we
are able to reproduce this approximate scaling including
coverage dependence of the scaled island-size distributio
y
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well as the dependence on the island morphology andRh . As
a result, our method leads to a self-consistent prediction
the evolution of the scaled capture-number and island-
distributions with coverage, which is in good agreement w
both simulations and experiments.

Finally, we note that it should be possible to extend t
coupled-evolution-equation method presented here to
case of reversible growth, in order to predict the sca
island-size distribution as a function of the critical island s
i. For the casei .1, one may simply replace the equation f
G2(u;A) with the corresponding equation forGi 11(u;A)
while the Voronoi-area evolution equations for higher isla
sizess. i 11 will remain the same. A self-consistent mea
field approach~see Refs. 21,33! can be used to obtain th
nucleation ratedN/du, as well as the densities and captu
numbers of islands smaller than or equal to the critical isla
size. As a result, the quasistatic monomer diffusion equa
inside the exclusion zone~Eq. 8! and all other expression
for the monomer density and capture numbers will rem
the same, except that the monomer nucleation lengthj1
should be replaced by the exclusion-zone capture lengthj i ,
where 1/j i

252s1N11(2<s< issNs . The basic idea of
coupled evolution of the capture zones and densities
cluded in the present approach may also prove useful in
rate-equation modeling of a variety of other problems
volving growth by diffusion and aggregation, such as h
eroepitaxial growth and Ostwald ripening.
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