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Abstract

A self-consistent rate-equation (RE) approach to irreversible submonolayer growth in one dimension is presented.
Our approach is based on a set of dynamical equations for the evolution of gaps between islands which is coupled to the
island-density REs via local capture numbers and explicitly takes into account correlations between the size of an island
and the corresponding capture zone. In the most simple formulation, fragmentation of capture zones is not directly
included, but accounted for through a uniform rescaling, while nucleation is assumed to generate only gaps with av-
erage length. Using this approach, we have been able to accurately predict the scaled island-size, capture-number, and
average-gap-size distributions in the pre-coalescence regime. Our approach also leads to a novel analytical expression
for the monomer capture number o, = (4/RN;y)"/*> where N, is the monomer density, y is the fraction of the substrate
covered by islands, and R is the ratio D/F of the diffusion rate to deposition flux which agrees with simulations over the
entire pre-coalescence regime, and implies a novel scaling behavior for the island density at low coverage, in contrast to
earlier predictions. Comparisons between our RE results and kinetic Monte Carlo simulations are presented for both
point islands and extended islands. © 2001 Published by Elsevier Science B.V.

Keywords: Molecular beam epitaxy; Growth; Nucleation; Models of surface kinetics; Monte Carlo simulations; Non-equilibrium
thermodynamics and statistical mechanics; Vicinal single crystal surfaces

1. Introduction

Molecular beam epitaxy (MBE) offers the pos-
sibility of atomic-scale controlled production of
thin films, high quality crystals, and nanostruc-
tures. The dominant processes in the early stages of
growth involve nucleation, aggregation and coales-
cence of islands. The resulting island density and
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size distributions play an important role in deter-
mining the quality of the multilayer growth or of
the desired nanostructures.

The recent development of experimental meth-
ods such as scanning tunneling microscopy (STM)
and reflection high energy electron diffraction
(RHEED) has made possible the real-time probing
of the surface evolution during the early stages of
thin-film growth [1]. This has led to a renewed
experimental interest in understanding and char-
acterizing epitaxial growth [2-16] and has also
stimulated considerable theoretical work toward a
better understanding of the scaling properties of
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the island density and island-size distribution in
submonolayer growth [17-41].

Although submonolayer growth is usually two
dimensional, in some cases it can be effectively one
dimensional. For example, during heterogeneous
deposition on a cleaved surface, nucleation often
occurs preferentially on steps rather than on the
free surface, and in cases when monomer diffusion
along the steps is also dominant this leads to quasi
one-dimensional growth. The deposition of gold on
stepped sodium chloride substrates has recently
been studied by Gates and Robins [24-26]. The
decoration of steps by clusters has also been used to
study the behavior of surface steps, and recently it
has been suggested that this offers the possibility of
controlled growth of nanoclusters [36]. For systems
with an extremely high anisotropy, such as the
2 x 1-row-reconstructed Si(00 1) surface [2] or the
2 x 1 reconstructed Pt(100) surface [37], it is also
possible to have quasi one-dimensional growth [39].

One of the standard tools used in studying sub-
monolayer growth is the rate-equation (RE) ap-
proach [42,43]. This approach involves a set of
deterministic coupled reaction—diffusion equations
describing the coverage dependence of average
quantities through a set of rate coefficients usually
called capture numbers [17-19,42,43]. As has been
pointed out [17-19,29,31,35] one of the central
problems in this approach is the determination of
the magnitude and size dependence of the capture
numbers.

Here we present a self-consistent RE approach to
one-dimensional irreversible submonolayer growth
in which the capture numbers are explicitly calcu-
lated by taking into account correlations between
the size of an island and the corresponding capture
zone. Using this approach, we first derive a novel
analytical expression for the monomer-monomer
capture number in one-dimensional irreversible
growth. To obtain the island-size distribution, a
second set of mean-field (MF) equations is used
to describe the evolution of the island-size depen-
dent capture zones, leading to explicit size- and
coverage-dependent capture numbers. A numerical
solution of the resulting set of REs leads to pre-
dictions for the size-dependent capture numbers
and island-size distributions which agree well with
simulations.

We note that in recent work [34] Blackman and
Mulheran have pointed out the importance of
fluctuations and have also developed a RE ap-
proach to one-dimensional irreversible growth. In
their approach, the dependence of the average
monomer and island capture numbers on the ave-
rage monomer and island densities was expressed
in terms of two phenomenological parameters
whose values were determined by simulations. By
using these parameters and assuming scaling, this
approach was extended [36] to predict the island-
size distribution in terms of the distribution of
gaps between islands, which was determined by
Monte Carlo simulations. In contrast, in our ap-
proach scaling is not assumed but is found to arise
naturally from the solution of our gap-evolution
and island-density REs. In addition, the distribu-
tion of average gap sizes is explicitly predicted in
the course of the calculation.

2. Model and simulations

Fig. 1 shows schematically the physical pro-
cesses involved during irreversible submonolayer
growth. As can be seen these involve random de-
position, diffusion, dimer nucleation, and island
growth or aggregation of adatoms (monomers).
Also shown in Fig. 1 is the “gap” y between a
dimer and the nearest island to its right as well as
the ““capture zone” corresponding to the region
between the midpoints of the gaps on each side.

In order to study the effects of island morpho-
logy on the island-size distribution in one-dimen-
sional submonolayer growth, we have studied two
different models — a point-island model and a more
realistic extended-island model. As shown in Fig. 1,
in both models atoms are deposited randomly on
an initially empty line of M sites with a (per site)
deposition rate F and may diffuse to nearest-
neighbor sites with hopping rate Dy. In the point-
island model (Fig. 1(a)) an island occupies a single
site. When a monomer moves onto a site occupied
by another monomer, a dimer island is nucleated at
that site. Similarly, a monomer moving onto a site
occupied by an island is absorbed and the island
size s increases by one. In contrast, in the extended-
island model (Fig. 1(b)) the islands are allowed to
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Fig. 1. Schematic diagram showing processes of diffusion, deposition, and aggregation for (a) point-island model and (b) extended-

island model.

grow laterally by irreversible attachment of atoms
at nearest-neighbor sites. Atoms with one or more
nearest neighbors are assumed to be immobile
while monomers landing on top of an island dif-
fuse on the surface until they fall off an edge and
are incorporated into the island. Monomers land-
ing on another monomer are immediately incor-
porated into the first layer and nucleate a dimer.
In order to obtain good statistics for the aver-
age monomer and island densities and island-size
distributions in our simulations, very large system
sizes of M =5 x 10° and 10° were used and aver-
ages were taken over 30-100 runs. The ratio
Ry, = Dy, /F of the monomer hopping rate Dy, to the
deposition rate F was varied from 103 to 108.

3. Self-consistent rate equations for submonolayer
growth

3.1. Mean-field rate equations

The RE approach [17-19,42,43] involves a set of
deterministic coupled reaction-diffusion equations

describing the time (coverage) dependence of the
average densities of monomers, N, and of islands
of size s = 2, N,, where s is the number of atoms in
the island. A general form of these equations, valid
for irreversible growth in the pre-coalescence re-
gime, may be written

dN1 2
@:“)}—2]\/1 —2RO'1N] _RN]S;G.\'NS’ (l)
dn;
a0 = RNl(O'Sley—l - Ust) + ks,qu,l - kSNY
fors>=2 )

where 0 = Ft is the coverage, and R = D/F is the
ratio of the monomer diffusion rate D = Dy, /2 to
the (per site) deposition rate F. In these equations,
the terms with ¢, correspond to the capture of
diffusing monomers by other monomers or by ex-
isting islands, while the terms with &, (where k; = s
for extended islands and &, = 1 for point islands)
correspond to the deposition of adatoms directly
on islands of size s. The first two terms on the right
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side of Eq. (1) correspond to the gain in monomers
due to deposition flux minus the rate of loss due to
direct impingement on existing monomers or is-
lands. The quantity y (where y =1— 0+ N, for
extended islands and y = 1 — N for point islands)
corresponds to the fraction of the substrate which
is not covered by islands.

Once the coverage-dependent capture numbers
a,(0) are known, then Egs. (1) and (2) can be nu-
merically solved to find the island densities N,(6)
as a function of coverage. If we define the total
island density N =3 _, N, and identify 2N, =
1/& and 1/& =1/& + 3, ., 0,N,, we may also
obtain a simpler set of contracted REs for the total
island density N and monomer density N,

dn,

50 ="M — RN, /& (3)
dN
90 =RV /28 + N, (4)

These equations can be numerically integrated
once the “nucleation length” &, and ‘“monomer
capture length” £ are known.

3.2. Self-consistent equation for capture numbers o,

In order to carry out a self-consistent calcula-
tion of the capture numbers o, entering into the
REs (1) and (2), we need to first calculate the mi-
croscopic capture rate of monomers near an island
and then compare with the corresponding “cap-
ture” terms in the REs. In particular, we consider
the following diffusion equation for the /local
monomer density n;(x, 0) in a gap of length y be-
tween the edge of an island and the edge of the
neighboring island,

om

5 =12 +RV?ny — Rmy /& (5)

with boundary conditions appropriate for irre-
versible growth i.e. ny(0) = n;(y) = 0. The first two
terms on the right side of Eq. (5) correspond to
deposition minus direct impingement of mono-
mers on monomers while the last two terms cor-
respond to monomer diffusion and nucleation
respectively. Multiplying Eq. (5) by y and sub-
tracting the contracted RE (3) one obtains

Vi — &2 (m — (2 /7)Ny)

- 1 6n1 6N1 2
—&(V@—@)+Y—R(WI—M) (6)

where o = & /%, Since y represents the fraction of
sites that are not occupied by islands, the proper
normalization of the monomer density is yn; = N
where 71, is the average local monomer density in
all the gaps. Along with the factor of 1/R, this
implies that the right side of Eq. (6) may be ne-
glected so that

Vn, — ffz(nl — (o?/7)Ny) ~ 0 (7)

Using the boundary conditions n,(0) = n;(y) =0,
the solution is

@) = o) (1 - DT

coshly (22, ®)

Equating the RE-like expression Da,N; for the rate
of capture of a monomer by an island of size s to
the microscopic rate of capture 2D[dn; /dx] _, (the
factor of two comes from assuming that the gaps
on both sides of the island are the same) leads to
an expression for the “local” capture number G(y)
corresponding to a gap of size y,

&mzﬁmmwmm 9)

We note that, in analogy with previous work
[34,35] in which the importance of a Voronoi cell
construction has been emphasized in describing
the “capture zone” of an island in two dimensions,
one may define the capture zone of an island as
corresponding to the Voronoi region delimited by
the bisectors of the gaps between islands as shown
in Fig. 1. Here, however, we find it simpler to
calculate the capture number 6(y) directly in terms
of the gap distance y to the nearest island, where
we associate one gap (say the gap on the right)
with each island. Averaging over the gap distri-
bution G;(y), corresponding to the density of gaps
of size y on the right of an island of size s, leads to
the average capture number g; i.c.,
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) >, G(»)6()
o, = <U(y)>Gv(v) - Zy G, (y
- G0 o

Once the monomer nucleation length £, and the
distribution of gap sizes G,(y) are known, then the
capture length & and the capture numbers g, may
be calculated self-consistently using Egs. (9) and
(10) along with the “‘capture number self-consis-
tency condition”,

> Noo+1/8=1/& (11)

s=2

Defining the overall gap distribution G(y) =
> s>2 Gs(»), this condition may be rewritten,

ZG +1/8=1/& (12)

It is worth noting that using the capture-number
self-consistency condition (12) along with the
“sum-rule” Zy G(y)y =7, and Eq. (9) for the local
capture number &(y) one may show that the
monomer density 7 (x) as given by Eq. (8) satisfies
the monomer density self-consistency condition,

= (1/y) ZG /

where the factor of (1/y) in the middle expression
is due to the fact that the gap distribution G(y) is
normalized to the total substrate length rather
than to the total gap length.

x)dx = Ny /y (13)

3.3. Mean-field solution for &,

To calculate the nucleation length &, we have
used a MF approach similar to that used by Bales
and Chrzan [29] for the case of deposition on a
two-dimensional substrate. In this approach we
replace the “capture’ of monomers by other mono-
mers and islands in the region “outside” a given
monomer by an overall smeared ‘“‘sink’ term of
the form Rn,/&*. The resulting diffusion equation
for the monomer density n;(x) near the monomer
is the same as Eq. (5) except that &, is now re-

placed by &. Multiplying this equation by y and
subtracting the contracted RE (3) one obtains

1
V2n1 - 572 <Il] - ;N])

1 6n1 aNl 2
= — - N, 14
yR( 30 aa)erR(V' ! (14)
Since yi; = Ny, the righthand side is zero on av-

erage and one obtains,
1
Vi, —§2<n1 _;Nl) =0 (15)

Just as before, the factor of 1/y takes into account
the fact that the average local monomer density in
the gaps is actually larger than the overall mono-
mer density by a factor of 1/y. Using the boundary
conditions 7,(0) = 0 and n;(c0) = N;/y the solu-
tion is

— (1 —e™%) (16)

Equating the RE-like expression 2Da N, for the
(per monomer) rate of nucleation to the micro-
scopic rate of capture of a monomer by another
monomer 4D[dn;/dx],_, (one factor of 2 comes
from the two “‘sides” of a monomer while the extra
factor of 2 comes from the fact that the “relative”
diffusion rate of monomers with respect to other
monomers is twice the monomer diffusion rate)
gives

a1 =2/(&) (17)

Using the definition 20N, = 1/ ff this implies the
MF result,

N1
a= (o) (18)

From the contracted RE (3) for the monomer
density, we know that at late-time dN;/d0 =
7 — RN, /& ~ 0 so that & ~ (RN, /7). Substitut-
ing into Eq. (18), we obtain the following ana-
lytic expression for the monomer nucleation length

61a

1/ Ry\"*
él:E(Nf) (19)
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Although derived using a ‘“‘late-time” assumption,
this expression for &; works extremely well in
predicting the rate of nucleation of dimers from
monomers at a/l times, including very early times.
In contrast, the MF expression (18) only applies at
late times after the nucleation regime. Using the
relation 1/6% = 20Ny, Eq. (19) also implies the
unusual result for the monomer capture number,

4\
ne (RNW) (20)

which indicates that in one dimension the mono-
mer capture number ¢; depends strongly on the
monomer density ;.

In order to test these results, we have measured
the quantity 1/ éf = 20N, as a function of cover-
age using kinetic Monte Carlo (KMC) simula-
tions for both point islands and extended islands
and compared with theoretical predictions. Simu-
lations were carried out over a range of values of
R, = Dy/F ranging from 10° to 10%. The Monte
Carlo simulation results for 1/¢; were calculated
by measuring the nucleation rate dN/df and then
using the expression (see Eq. (4)) 1/ éf = (2/(RN))
[(dN/d0) — Ny], while the theoretical results were
obtained using Eq. (20) along with the monomer
density N, obtained from simulation. As can be
seen in Fig. 2, for both point and extended islands
there is good agreement over all coverages in the
pre-coalescence regime.

In the low-coverage “nucleation” regime for
which N < N, and N; ~ 0, Eq. (20) implies that

N ~ (4/5)R"?0° (21)

As can be seen in Fig. 3, simulation results for the
island density N at low coverage are in excellent
agreement with Eq. (21). If we define 0, as the
coverage corresponding to the crossover from the
“early-time” nucleation regime when N < N; to
the aggregation regime when N > Nj, such that
N(0,) ~ Ny ~ 0., then Eq. (21) implies that

0, = (5/4)°R71/ (22)

for the case of one-dimensional irreversible sub-
monolayer growth.

It is interesting to compare our theoretical pre-
dictions (9) and (20) for the local capture number
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Fig. 2. Comparison of scaled nucleation rate 2¢|N; calculated
using Eq. (20) (solid lines) as a function of coverage 6 for

Dy, /F = 10°-10® with KMC simulation results (symbols) for (a)
point islands and (b) extended islands.
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&(y) and the monomer capture number o; with the
corresponding one-dimensional scaling predictions
[34] 0y ~ g4y ~ N for 0 > 0, and 0| ~ 6,y ~ N, for
0 < 0, which may also be obtained using random
walk arguments [19]. For 0> 0,, the monomer
density N, is small and N; < N which implies that
&, > ¢ while the monomer capture length & is of
the order of the average gap sizei.e. & ~ (y) ~ y/N.
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Fig. 3. Island and monomer densities N and N; as a function of
coverage 0 for D, /F = 107 obtained using contracted REs (3)
and (4) along with Egs. (19) and (29) (solid lines) along with
corresponding KMC results (symbols) for (a) point islands and
(b) extended islands. Dashed lines correspond to Eq. (21).

Eq. (9) then implies 0,y ~ (&) ~ N in agreement
with the random walk prediction. Similarly, for
0 > 0., one has as before, RNI/C2 =y and Eq. (20)
implies that g; ~ 1/¢ ~ N which is also in agree-
ment with the random walk prediction. Thus, our
results agree with the scaling behavior predicted by
the random-walk analysis for 0> 0,. Further-
more, using the relation & ~ (RN;/y)"/? (valid at
late-time) one may show that for 0 > 0, the ex-
pression for g given in Ref. [34] is equivalent to

Eq. (20). For 0 <« 0,, one has & ~ ¢ ~ 1/N; and
(yy ~1/N > ¢, so that Eq. (9) implies o, =~
a({(y)) ~ N; which is also in agreement with the
random-walk prediction. However, as indicated by
Egs. (20) and (21) and confirmed in Fig. 3, for
0 < 0., one has g, = 2/+/RN; which implies N =
(4/5)R'/20°/*. The latter result is in strong contrast
to the prediction N =2R6* for 0 < 0, obtained
using o1 from Ref. [34]. Thus Egs. (19) and (20)
provide simple accurate analytical expressions for
¢, and o including all relevant prefactors, which
are valid at all coverages in the pre-coalescence
regime.

3.4. Fluctuations in one dimension

Using Eq. (9) for 6(y) along with the sum rule
>, G(») = N, the capture number self-consistency
condition (12) may be rewritten

1/& = 1/& + (2N& /yE) (tanh(y/2¢))) 6,y (23)

where the brackets denote an average over the gap

distribution G(y) ie. (f(¥))g, = (I/N)>_, f(v)
G(y). Solving for ¢ we obtain

&= fﬂl - (2N51/V)<tanh(J’/2fl)>G(y)] (24)

Replacing y by the average gap length (y) = y/N
leads to the MF prediction,

& =&l — (2N¢, /y) tanh(y/(2N¢&)))] (25)

For 0> 0., the monomer density is low so that
N¢&, > 1 and one may expand tanh(z) ~z —2°/3
to obtain

& ~9*/(12N?) (26)

However, due to the existence of large fluctuations
in one dimension, this result is not correct. Instead
one must average over the distribution of gap sizes
y in order to self-consistently find the “‘capture
length” &. While in general we need to know the
gap distribution G(y), at late times we can again
expand the tanh(z) in Eq. (24) to obtain

& =(r’)y/(123?) (27)

in agreement with Ref. [34] where ¥ = y/(y) and
(yy =y/N. From KMC simulations we find
(Y?) ~ 1.6 (see also Ref. [34]) for 6 > 0, for both
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point and extended islands. This implies that for
0 > 0, the MF prediction (26) must be multiplied
by a factor of (Y*) ~ 1.6 to take into account
fluctuations in the gap distribution. Including this
correction leads to the following corrected equa-
tion for the monomer capture length,

& = ())&l - (2N& /y) tanh(y/(2NE))] - (28)

where (Y?) ~ 1.6 for 6> 0, and (Y*)~1 for
0 < 0,. We note that in order to ensure a ‘“‘grad-
ual” transition in the correction factor for & (from
1.0 at early time to 1.6 at late time) a slight mod-
ification of Eq. (28) may be made. This leads to the
following equation for the monomer capture
length,

£=afi-(ave/(nr)?))
x tanh (<Y3>1/2y/(2zv51))} (29)

where (¥3) = 1.6.

Using Egs. (19) and (29) for &, and & along with
the contracted REs (3) and (4), we have calculated
the average island density N and monomer density
N, for both point and extended islands as a func-
tion of coverage as shown in Fig. 3. The starting
coverage 0, for the integration was set to a small
value (0y < 0, with 0, given by Eq. (22)) such that
Ni(60y) =~ 0y while the initial island density N(0p)
was calculated using Eq. (21). As can be seen, this
leads to excellent agreement with KMC simula-
tions for both point and extended islands over the
whole coverage range.

4. Gap evolution equations
4.1. Gap evolution equations for point islands

In order to obtain the coverage and size-
dependent capture numbers g, (6), one needs to go
beyond MF theory and consider the dependence of
the gap size on the cluster size s. We first consider
the case of point islands and begin by defining
G,(0;y) as the number of gaps of size y near
clusters of size s at coverage 0. While a full set of
gap-evolution equations including the effects of
island growth, dimer nucleation, and the break-up

of gaps by nucleation may be written [44], the re-
sulting equations are quite complicated and diffi-
cult to solve. However, taking into account the
generation of new gaps by the nucleation of dimers
as well as the growth of islands by aggregation,
and ignoring the break-up of gaps by nucleation,
one can write a general set of evolution equations
for the gap densities G,(0;y) in the following form,

% = (dN/d0)é(y — (»)) — RN16(y) G2 (0; y)
(30)

% = RN16(y)[Gy-1(0;y) — Gs(0;¥)] (s =3)
(31)

where 6(y) = (2¢,/7¢%) tanh(y/2¢,). The first term
on the right side of Eq. (30) corresponds to dimer
nucleation, while the remaining terms in Egs. (30)
and (31) correspond to growth of islands via ag-
gregation. Since we expect the average size of new
gaps generated by nucleation to be equal to the
average gap size (y) = y/N at that coverage, for
simplicity we have assumed in Eq. (30) that the size
of new gaps generated by nucleation is exactly
given by the average gap size (y). Rewriting the
nucleation term in Eq. (30) as B,d(6 — 0,), where
0, is defined by the condition y =y/N(6,), the
dimer-gap evolution Eq. (30) may be rewritten

% =B,6(0—0,) - RNG()G:(6;y)  (32)

where B, = 7/y”.

As already noted, the gap-evolution equations
(31) and (32) do not include terms corresponding
to the “break-up” of existing gaps due to nucle-
ation within a gap. While such terms can be added
they render an analytic solution intractable. In-
stead we will solve Eqgs. (31) and (32) and then
account for the break-up of gaps due to nucleation
by a uniform rescaling of the gap distribution.

The set of Egs. (31) and (32) constitute a two-
dimensional set of equations (in s and in y) which
are quite difficult to solve directly numerically.
However, by transforming to new variables,
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0
%;:/QRN(HWQaUMH (33)
0,

the gap equations (31) and (32) can be put in a
form which can be solved analytically, i.e.

mﬁ&@W:_Gﬂ%Wy+mM@> (34)
“ﬁgﬁzaﬂmn—@mw)@>$ (35)

The solution of Eq. (34) is G>(x,;y) = B,e ™ H(x,)
where H(z) is the step-function (H(z) =1, z >
0; H(z) =0,z < 0). In addition one may show (see
Appendix A) that the general solution for the gap
distribution for s > 2 is

G(y) = B, 2e ™ /(s — 2)! (36)
For 0 < 0, one may show (see Appendix B) that x,
is small and so the distribution G,(y) is relatively
“flat” as a function of y. This corresponds to the
MF result y, = (y) as one expects in the nucleation
regime. However, at late time, both x, and the
average gap size y, are typically large and so Eq.
(36) corresponds to a sharply peaked distribution
as a function of y with a peak at y = y,. Neglecting
the y-dependence of B, (which is negligible com-
pared to that due to the terms depending on x,),
one obtains for the peak y, of the gap distribution

X, =s—2 (37)

We note that for dimers, Eq. (37) implies, using
Eq. (33) and the definition of 6,, j, = y/N as ex-
pected.

Thus, neglecting the effects of break-up, the
average length y, of a gap near an island of size s,
and the capture numbers o, will satisfy (keeping in
the sums only the dominant term),

_ 2, yGilxiy)
HES Gy (38)

_ Zy G(»)G(x,; ) — (5
TS Gy 0) %)

As has already been noted, however, the gap
equations (31) and (32) do not include the effects

of the break-up of gaps due to nucleation. There-
fore, the average gap sizes calculated using Eq.
(37) are expected to be larger than the correct
values. To include the effects of break-up, the gap
lengths must be rescaled to give the correct average
gap-length (y) = y/N. Thus, the correct capture
numbers g, may be calculated using

Vs
Zs NS‘ As

and where &(y) = (2¢,/y¢%) tanh(y/2¢,). There-
fore, the calculation of the size-dependent capture
numbers has been reduced to solving Egs. (37) and
(40) and the full REs (1) and (2) can be integrated
to find the island-size distributions.

We now summarize how in practice Eqs. (37)-
(40) are used to obtain the capture numbers in the
course of our RE calculations. For any given s, Eq.
(37) is solved numerically to find the solution j, by
calculating the integral x, as given by Eq. (33) for
different values of y. In calculating x, for each
value of y needed in the numerical routine (we
have used Ridders’ method), Eq. (9), along with
Egs. (19) and (29) for &, and ¢, is used for the local
capture number &,(y) which enters in Eq. (33).
Once the solutions y, have been calculated for all s,
they are rescaled following Eq. (40) to obtain y;.
As described in Eq. (40), )/ is then used in Eq. (9)
to obtain g,. We note that calculating x, using Eq.
(33) requires knowing N, (¢) for all coverages ¢ up
to the present coverage 0. While in principle, these
values can be stored during the integration, for
numerical convenience we have used the pre-cal-
culated N,(0) obtained in Section 3.4.

o, =6(y) wherey = (40)

4.2. Results for point islands

Using our gap-evolution equation results as
described above, the full REs (1) and (2) were nu-
merically integrated in order to obtain the scaled
island-size distribution f(s/S) = (5%/0)N, (where
S = (60— N,)/N is the average island size) as a
function of coverage for point islands. The REs
were integrated starting at an initial coverage 0y <
0., with initial conditions N](H()) = 0y, Nz(@o) =
(4/5)R'20°, and N,(0,) =0 for s >3 using the
capture numbers o, as described above. At low
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coverage, for which the island-size distribution is
not sharply peaked and for which both the average
island size and x, are small, the island capture
numbers g, were taken to be equal to the MF value
Oy = (g”z — 51’2)/N for all s. However, at higher
coverages when the peak in the gap-distribution
G,(y;0) is well-defined (we chose as criterion
S > 10) the gap-evolution equation result (40) for
g, was used. At each integration step, the variables
x, were updated over the range of relevant values
of y and Egs. (37) and (40) were then used to
obtain the capture numbers ;.

Fig. 4 shows typical results for the calculated
scaled island-size distributions for point islands
in the aggregation regime (6 = 1.0 and 3.0) for
Dy/F = 107 and 10% along with the corresponding
KMC simulation results. As can be seen, there is
excellent agreement between the predicted island-
size distributions and the simulation results. In

addition, the scaled distributions appear to show
excellent scaling i.e. they depend only weakly on
coverage. Also shown for comparison (dashed lines)
are results obtained using the MF approximation
0, = 0,y(0) which corresponds to the absence of a
correlation between the island size and the capture
number. As can be seen, the scaled MF distribu-
tions are much more sharply peaked with a peak
height that increases rapidly with increasing cove-
rage and appear to be approaching the asymptotic
form [27] fur(s/S) = (1/4)(1 — s/8) . Such be-
havior is similar to the divergence predicted in
Refs. [27,28,30,35] and is due to the lack of cor-
relations between the island size s and the “cap-
ture zone” in the MF approximation. In addition,
we note that the value of f(0) obtained by both
our simulations and our RE predictions is sig-
nificantly above the MF prediction of fyr(0) =
1/4.

L (a) ‘

e

: Point Islands | (b)
, D, /F=10"

_ 7]
, | D/F=10

N

8
D /F=10"
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O 05 1 15 2 25 0 05 1 15 2 25 3
s/S s/S

Fig. 4. Scaled island-size distribution f(s/S) = (S?/0)N,(6) for point islands (D,/F = 107 and 10%) calculated using gap evolution
equations (solid lines) along with corresponding KMC results (symbols) at coverage 0 = 1 and 3. Dashed lines correspond to MF

results.
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Fig. 5. (a) Scaled average gap size y,/(y) and (b) capture-
number distributions o, /a,, for point islands for D,/F = 107 as
a function of scaled island size for 0 = 0.6 and 3.0, obtained
from gap evolution equations (RE) along with corresponding
simulation results (KMC).

In order to understand the scaling behavior
observed in our calculated island-size distribu-
tions, in Fig. 5(a) we have plotted the calculated
scaled average gap-size y,/(y) corresponding to an
island of size s as a function of the scaled island-
size s/S obtained from our gap-evolution equa-
tions for 0 = 0.6-3.0 and Dy /F = 107 along with
the corresponding results obtained from KMC
simulations. As can be seen, there is good agree-
ment between the scaled gap-size distribution
predicted by our calculations and the simulations.
Also shown in Fig. 5(a) is the scaled island-size

distribution f(s/S) = N,(0)S?/0. As can be seen,
the main discrepancy between the scaled gap-size
distribution predicted by the gap-evolution equa-
tions and the simulation results occurs for s/S > 2
and is due to the absence of a cutoff (which should
occur due to break-up) in the calculated distribu-
tion. However, this has little effect on the calcu-
lated capture numbers o, or on the resulting
island-size distribution because the island density
is extremely small over this range of island sizes.

Using Eq. (40) for the capture number o, =
6(y.), where y/ is the average gap size correspond-
ing to an island of size s, we can also calculate the
scaled capture number o,/0,, as a function of the
scaled island size u = s/S as shown in Fig. 5(b).
For both Dy/F =107 and 10® (not shown), the
scaled distribution is essentially independent of
coverage and appears to be approaching the limi-
ting form o,/0,, = zu for large u where z =3/4
[27] is the dynamical exponent corresponding to
irreversible point-island growth in one dimension.
This behavior is in agreement with that predicted
and previously observed in Monte Carlo simula-
tions by Bartelt and Evans [395].

4.3. Gap evolution equations for extended islands

We now consider the gap evolution equations
for the case of extended islands. In this case, it
turns out to be easier to consider a set of gap-
evolution equations for the distribution of dis-
tances y between the center of an island and the
center of the nearest island. Assuming no corre-
lation between the size of an island and the size of
the nearest island, then the actual average gap
distance y, corresponding to an island of size s may
be approximated as y, ~ y, — (s + 5)/2.

In this case the gap-evolution equations be-
come,

% = —RN,62(7)G2(0;7) + B;o(0
= 0y) (41)
w = RN [6,-1(7)Gs-1(0:7) — 6,(7) G, (0: 7))
(s =3) (42)
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where 6,(3) =6(y —s/2 — §/2) and B; = 1/3°, 0;
is defined by the condition y = 1/N(6;), and the
effects of direct impingement of atoms on islands
have been neglected in the gap-evolution equations
since they are negligible except at high coverage.

Unfortunately, these equations cannot be solved
analytically due to the explicit s-dependence in
6s(y). However, using the MF approximation
6,(y) = 65(p) (where S = (0 — Ny)/N is the average
island size) leads to a set of gap-evolution equa-
tions which can be solved. We note that the use of
such a MF approximation in the gap-evolution
equations still retains the dominant effect i.e. that
of the capture zone y. Furthermore, the correct
expression for &,(7) is still retained in the island-
density REs (1) and (2). Therefore, we expect this
approximation to have only a weak effect on the
final island-size distributions N;(0).

Transforming as before to new variables,

0
x5 = / RN(0)65(0'; 7)d0, (43)
05

the resulting gap equations become
dGy(x5:7)

dy, =G (x5 7) + Byo(xy) m
W = Gy (i 7) — Golys ) (s=3)  (49)

The solution is given by

Gy(7) = By 2™ /(s — 2)! (46)

while the peak of the center-to-center distribution
¥, for a given s corresponds to

X =5—2 (47)

To include the effects of break-up, the gap
lengths must again be rescaled to give the correct
average center-to-center distance (y) =1/N. If
one considers the rescaling to apply directly to
the center-to-center distances, then the coverage-
dependent capture numbers o, may be calculated
using

~7 1 / ys
o, =6y, —s/2—S/2) where y SN, (48)

Another possibility is to apply the rescaling due
to break-up directly to the gaps y, rather than to
the center-to-center distances. In this case one
obtains

o, =0(fy,—s/2-5/2)

! (49)

where f = W

Therefore, the calculation of the coverage-depen-
dent capture numbers o, for extended islands has
been reduced to solving Egs. (43) and (47) by
following a similar numerical procedure as for
point islands, and the full island-density REs (1)
and (2) can be integrated to find the island-size
distributions.

4.4. Results for extended islands

Fig. 6 shows our RE results (solid lines) ob-
tained using the gap-evolution and island-density
REs for the scaled island-size distribution for ex-
tended islands in the aggregation regime (6 = 0.3
and 0.5, Dy /F = 107 and 10%) along with the cor-
responding simulation results (symbols). As can be
seen, there is good agreement between the calcu-
lated distributions and the KMC simulations. Also
shown in Fig. 6 are the corresponding MF results
(dashed lines) which lead to scaled island-size
distributions which are much more sharply peaked
and appear to diverge with increasing coverage
and Dy /F.

In contrast to our point-island results, for ex-
tended islands f(0) decreases with increasing cov-
erage. The existence of a small value of f(0) for
irreversible growth of extended islands has been
previously observed experimentally [13,14] for the
case of two-dimensional submonolayer growth as
well as in two-dimensional simulations [30]. Sur-
prisingly, the value of f(0) obtained from the MF
calculations (dashed lines) which were obtained
using coverage-dependent but not size-dependent
capture numbers, agree relatively well with the gap-
evolution and simulation values even though the
rest of the distribution does not. This indicates that
the decrease in f(0) with increasing coverage is not
due to coalescence, since coalescence is not taken
into account in either the MF or gap-evolution
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results.

equations, but is most likely due to the rapid in-
crease in the average capture number o, with
coverage for extended islands. The evolution of the
scaled island-size distribution with coverage for
small scaled island size is also an indication of
incomplete scaling for extended islands [23].

Fig. 7 shows the corresponding results for the
scaled average gap size y,/(y) as a function of the
scaled island size for D, /F = 10® and 0 = 0.3 and
0.5. As for the point-island case, the main dis-
crepancy between the calculated values of the ave-
rage gap size y, and simulation occurs for large
scaled island size and is due to the absence of a
cutoff in the calculated distribution. However, just
as for the point-island case, this has a negligible
effect on the calculated capture numbers or on the

island-size distribution because the island density
N, is extremely small for large s/S.

Fig. 8 shows the corresponding RE results for
the scaled capture number distribution C(s/S) =
0,/ 04, for extended islands for D, /F = 107 and 108
and 0 = 0.1-0.5. In contrast to the point-island
case, the scaled capture number distribution C(u)
is almost constant for u < 1 but increases rapidly
for u > 1. For extended islands, the asymptotic
dynamical exponent z., (where S~ 0/N ~ &) is
equal to 1, since one expects constant island den-
sity for 6, < 0 < 0c where Oc indicates the onset
of island coalescence. This is in contrast to the
point-island value z,, = 3/4 in one dimension [27].
However, as can be seen from Fig. 3(b), for ex-
tended islands and Dy, /F = 107-10%, the regime of
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Fig. 7. Scaled average gap-size y,/(y) for extended islands
(Dy/F = 10%) as a function of scaled island size for 0 = 0.3 and
0 =0.5 obtained from gap-evolution equations (lines) along
with corresponding simulation results (symbols).

constant island density has just been reached at
0 = 0.5 and so the effective value of z is actually
somewhere between the point-island value z = 3/4
and the asymptotic value z = 1. Therefore it is not
surprising that the predicted scaled capture-num-
ber distribution C(s/S) crosses the line C(u) = u
near u = 1. Similar behavior has been observed in
Monte Carlo simulations of two-dimensional
point-islands by Bartelt and Evans [35]. We note
however, that the predicted capture number dis-
tributions remain clearly above the point-island
asymptotic limit C(u) = (3/4)u. The approach of
the slope of C(u) to 1 for large u may also indicate
a crossover to asymptotic extended-island scaling
behavior.

5. Discussion

We have developed a self-consistent RE ap-
proach to irreversible submonolayer growth in one
dimension which takes into account the existence
of correlations between the size s of an island and
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Fig. 8. Scaled capture-number distribution a,/a,, for extended
islands obtained from gap-evolution equations with (a) Dy, /F =
107 and (b) Dy,/F = 10%. Solid lines correspond to theoretical
asymptotic limit C(u) = zu where z = 1. Dashed lines corre-
spond to point-island limit C(u) = (3/4)u.

the size of its “capture zone™ or gap y, and which
consistently describes both point- and extended-
island models. By solving the diffusion equation
for the local monomer density within a gap self-
consistently with the corresponding REs, we have
obtained an explicit analytical expression for the
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monomer capture number ¢; which accurately
predicts the rate of nucleation over the full range
of coverage in the pre-coalescence regime. This
expression indicates an unusual dependence of the
capture number ¢; on the monomer density V; and
also correctly predicts the early time behavior of
the island density N as well as the scaling behavior
of the critical coverage 0, corresponding to the end
of the nucleation regime. By self-consistently
solving for the ‘“‘capture length” ¢ and incorpo-
rating the fluctuations in the gap distribution via
the third moment of the gap distribution as in Ref.
[34] we have also been able to quantitatively pre-
dict the average island capture number o,, along
with the monomer density N; and island density N
as a function of coverage for both point- and ex-
tended-islands on a one-dimensional substrate.

To obtain the island-size distribution, we have
proposed a second set of MF equations describing
the evolution of the size-dependent capture zones.
This second system was solved in closed form, and
the solution was used to explicitly derive the cor-
rect size- and coverage-dependent capture zones
and capture numbers o,(0) for irreversible sub-
monolayer growth in one dimension. The pre-
dicted average gap sizes y, were found to be in very
good agreement with KMC simulations and led to
capture-numbers o, which exhibit a strong de-
pendence on the island-size s especially for large s.
Using this set of capture numbers along with the
full set of island-density REs, we have been able to
accurately predict the scaled island-size distribu-
tion in the pre-coalescence regime for both point
and extended islands.

It is interesting to ask why our approach works
even though the “break-up” of existing gaps due
to nucleation (which favors the break-up of large
gaps over small gaps) has been approximated by a
uniform rescaling of the gaps obtained in the gap-
evolution equations. In considering this question it
is important to realize that there are actually two
competing effects. While nucleation favors the
formation of large gaps, it also favors the break-up
of larger gaps so that in some sense the two effects
cancel out, except for a rescaling factor. Therefore,
by ignoring both of these effects in our gap-evo-
lution equations such a rescaling approach may be
used. In this connection we note that our as-

sumption that the gap-size of a freshly nucle-
ated dimer (before rescaling) is equal to the average
already-existing gap size turns out to be crucial
in obtaining reasonable results and is consistent
with the neglect of both break-up effects in the gap-
evolution equations. A more detailed explanation
may also be provided by a study of the scaling
properties of the joint distribution function G,(y).

We note that an important factor in the present
approach was the simple geometry correspond-
ing to one-dimensional growth. Nevertheless, in
higher dimensions the idea of evolution of capture
zones still applies, and we have developed an ex-
tension of the present approach to the important
case of irreversible submonolayer growth in two
dimensions [45]. It is also worth noting that the use
of coupled evolution equations for the capture
zones and island densities may also prove useful in
the study of a variety of other problems including
reversible submonolayer growth, heteroepitaxial
growth, and Ostwald ripening.

Acknowledgements

This research was partially supported by the
Office of Naval Research through grant number
N00014-96-1-0536 to Emory University.

Appendix A. Solution of gap-evolution equations for
s>3

The rescaled gap equations (35) are

dG(x;»)/dx, = Go1(x;9) — Go(x,39) (s = 3)

(A.1)

where G(x,;y) = B,e™™. Defining the generating
function g(x,,u) = o, Gs(x,;»)u*"? and substi-
tuting into Eq. (A.1) we obtain

w = (u—1)g(x,,u) (A.2)

v
The solution of Eq. (A.2) consistent with g(x,,0) =
Gz(xy) is

g(xu) = Be v = Be > "(ux,) 2/ (k — 2)!

k=2

(A.3)
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From Eq. (A.3) and the definition of g(x,,u), we
obtain

Gy(x,3p) = Byx;;z e /(s —2)!
Appendix B. Proof that x, < 1 in nucleation regime

The definition of x, (see Eq. (33)) is
0
X, = /0 dO'RN, (06 (y; 6) (B.1)

where 6(r;0') = (2¢,/(7€)) tanh(y/(2¢,)). Tn the
nucleation regime corresponding to 6 < 6, the
island density N = y/y is much less than the mono-
mer density ;. This implies that for typical values
of y one has y > ¢ and one may approximate
tanh(y/(2¢,)) ~ 1 in Eq. (B.1). In the nucleation
regime one also has, Ny ~ 6 and &, ~ ¢ Using
these along with Eq. (19) for ¢, and ignoring fac-
tors of order 1 leads to

x, = R0 — 0)%) (B.2)

However, in the nucleation regime one has
0 < 0, ~ R~'3. This implies that in the nucleation
regime x, < 1.

References

[1] J.Y. Tsao, Materials Fundamentals of Molecular Beam
Epitaxy, World Scientific, Singapore, 1993.

[2] Y.W. Mo, J. Kleiner, M.B. Webb, M.G. Lagally, Phys.
Rev. Lett. 66 (1991) 1998.

[3] HJ. Ernst, F. Fabre, J. Lapujoulade, Phys. Rev. B 46
(1992) 1929.

[4] R.Q. Hwang, J. Schroder, C. Gunther, R.J. Behm, Phys.
Rev. Lett. 67 (1991) 3279.

[5] R.Q. Hwang, R.J. Behm, J. Vac. Sci. Technol. B 10 (1992)
256.

[6] W. Li, G. Vidali, O. Biham, Phys. Rev. B 48 (1993) 8336.

[7] E. Kopatzki, S. Gunther, W. Nichtl-Pecher, R.J. Behm,
Surf. Sci. 284 (1993) 154.

[8] G. Rosenfeld, R. Servaty, C. Teichert, B. Poelsema, G.
Comsa, Phys. Rev. Lett. 71 (1993) 895.

[9] J.-K. Zuo, J.F. Wendelken, Phys. Rev. Lett. 66 (1991)
2227.

[10] J.-K. Zuo, J.F. Wendelken, H. Durr, C.-L. Liu, Phys. Rev.

Lett. 72 (1994) 3064.

[11] D.D. Chambliss, R.J. Wilson, J. Vac. Sci. Technol. B 9
(1991) 928.

[12] D.D. Chambliss, K.E. Johnson, Phys. Rev. B 50 (1994)
5012.

[13] J.A. Stroscio, D.T. Pierce, R.A. Dragoset, Phys. Rev. Lett.
70 (1993) 3615.

[14] J.A. Stroscio, D.T. Pierce, Phys. Rev. B 49 (1994) 8522.

[15] Q. Jiang, G.C. Wang, Surf. Sci. 324 (1995) 357.

[16] F. Tsui, J. Wellman, C. Uher, R. Clarke, Phys. Rev. Lett.
76 (1996) 3164.

[17] J.A. Venables, G.D. Spiller, M. Hanbucken, Rep. Prog.
Phys. 47 (1984) 399.

[18] J.A. Venables, Philos. Mag. 27 (1973) 697.

[19] J.A. Venables, Phys. Rev. B 36 (1987) 4153.

[20] J.A. Blackman, A. Wilding, Europhys. Lett. 16 (1991)
115.

[21] F. Family, P. Meakin, Phys. Rev. Lett. 61 (1988) 428.

[22] C. Ratsch, A. Zangwill, P. Smilauer, D.D. Vvedensky,
Phys. Rev. Lett. 72 (1994) 3194.

[23] J.G. Amar, F. Family, P.M. Lam, Phys. Rev. B 50 (1994)
8781.

[24] A.D. Gates, J.L. Robins, Surf. Sci. 116 (1982) 188.

[25] A.D. Gates, J.L. Robins, Surf. Sci. 191 (1987) 492.

[26] A.D. Gates, J.L. Robins, Surf. Sci. 191 (1987) 499.

[27] M.C. Bartelt, J.W. Evans, Phys. Rev. B 46 (1992)
12675.

[28] M.C. Bartelt, J.W. Evans, J. Vac. Sci. Technol. A 12 (1994)
1800.

[29] G.S. Bales, D.C. Chrzan, Phys. Rev. B 50 (1994) 6057.

[30] J.G. Amar, F. Family, Phys. Rev. Lett. 74 (1995) 2066.

[31] P.A. Mulheran, J.A. Blackman, Philos. Mag. Lett. 72
(1995) 55.

[32] M.C. Bartelt, J.W. Evans, Surf. Sci. 344 (1995) 1193.

[33] J.G. Amar, F. Family, Thin Solid Films 272 (1996) 208.

[34] J.A. Blackman, P.A. Mulheran, Phys. Rev. B 54 (1996)
11681.

[35] M.C. Bartelt, J.W. Evans, Phys. Rev. B 54 (1996) R17359.

[36] P.A. Mulheran, J.A. Blackman, Surf. Sci. 376 (1997)
403.

[37] T.R. Linderoth, S. Horch, E. Legsgaard, 1. Stensgaard, F.
Besenbacher, Phys. Rev. Lett. 78 (1997) 4978.

[38] G.S. Bales, A. Zangwill, Phys. Rev. B 55 (1997) 1973.

[39] H. Kallabis, P.L. Krapivsky, D.E. Wolf, Eur. Phys. J. BS
(1998) 801.

[40] M.N. Popescu, J.G. Amar, F. Family, Phys. Rev. B 58
(1998) 1613.

[41] M.C. Bartelt, A.K. Schmid, J.W. Evans, R.Q. Hwang,
Phys. Rev. Lett. 81 (1998) 1901.

[42] M. von Smoluchowski, Z. Phys. Chem. 17 (1916) 557.

[43] SSM. von Smoluchowski, Z. Phys. Chem. 92 (1917)
129.

[44] J.G. Amar, M.N. Popescu, F. Family, Phys. Rev. Lett. 86
(2001) 3092.

[45] M.N. Popescu, J.G. Amar, F. Family, unpublished.



