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Electron correlations in multiconfiguration atomic wave functions
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A two-electron spin-independent operator is defined to represent the spatial correlation of the electrons in a
general atom or ion. The spherical-tensor expansion of this operator provides a systematic method for evalu-
ating the two-electron correlation function implied by a Hartree-Fbeklectron wave function including
arbitrary configuration mixing. The method is illustrated by examples involving electron coalescence in helium
and carbon, and core polarization in sodium. This technique for computing the electron correlation function
provides a useful tool of wide applicability in comparing different theoretical approaches to the structure of
complex atoms[S1050-294{©6)06306-9

PACS numbd(s): 31.10+z, 31.25-v

I. INTRODUCTION Il. THEORY

A. Construction of the two-electron operator

A major challenge of atomic structure theory is to predict e assume an atom or ion with electrons described by
the correlation in the motion of the electrons in a complexihe state function
atom. The most widely used computational techniques are
based on the Hartree-Fock method with configuration inter-
action(HF CI); these calculations begin with the central-field
approximation in which the electrons are uncorrelated. The
influence of electron correlations is then accounted for indi-
rectly, by using linear combinations of product wave func-Each term in this expansion is a configuration state function
tions. First Slater antisymmetrization, then Russell-Saunder§CSP denoted by |¥ (L,S,J,M)) multiplied by a
coupling, and finally configuration mixing, allow for the cor- configuration-interaction coefficiet, . The CSH¥ ) is an
relations required by Fermi-Dirac statistics and by the nonlS-coupled antisymmetric basis state corresponding to the
central character of the Coulomb interaction between elecconfigurationy={(nl1)"1(nl;)"2...}. In this configura-
trons. Unfortunately the physical nature of the implied tion there arew; electrons occupying the single-particle state
correlations is not necessarily obvious at the end of this protSubshell with quantum numbersn(,l;) and radial wave
cess, from the resulting single-particle radial functions andunction?(r). .
configuration-mixing coefficients. This paper presents a The two-electron distribution functioB,(a,b) is the ex-
method for analyzing the results of HF Cl calculations so apectation value of the corresponding opera®s(a,b),
to study directly the correlations of the electrons in spacewhich has an obvious form in the position representation:
This is a significant advance because it gives added insight
into the physical nature of a multielectron quantum state, and

|\1r>=27 C,|¥,(L,S,J,M)). (1

N i—-1
because it allows detailed comparisons between wave func- N - s g
tions resulting from different calculations. GZ(a’b)_Zl j§=:l [8°(ri~2)8%(r;=b)
In judging the expected precision of a result, or in com- L o
paring two different calculations, it would be useful to have +8%(ri—b)&%(r;—a)l. )

a direct measure of the predicted correlation. In particular, a
natural quantity to study would be the two-electron distribu-
tion function,G,(a,b), defined as the probability of finding el
an electron at poird and another at poirii. The purpose of fGI%(t?]'b)? ad_ b_N(N_dl.)' ¢ A, th
this paper is to describe a general tensor-operator method for e atom IS prepare _|n apure quan ur_n sfaltg, ep

. > - .. Gy(ab)=(¥|G,(a,b)| V) is a rather complicated function
computing G,(a,b) from the results of a nonrelativistic fsi di h fth di .
many-configuration Hartree-FodkICHF) calculation in an of six coordinates. However, three of the coordinates are just

_ . ) the Euler angles giving the orientation of the atom in space;

atom or ion withN electrons. The nature of the predicted

) ' these are irrelevant to our present purpose and we will aver-
correlation can then be studied by meansGf and other . LA e -
functions easily calculated from it, such as the distribution in?29e over them. Equivalently, sm-sz(g,b)ﬁls spin mdgpen-
interelectron distances. After describing the computationafl€nt: we can average over the direction& @indsS. In either
method we first test it against previous work in helium andcas€ the resultis a two-particle operator which depends only
then apply it to certain states of the carbon and sodium aon the relevant variables, b, and#é, the angle betweea
oms. andb:

The total integral gives twice the number of electron pairs:
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G(a,b,0)=>, [&(r;—a)é(r;—b)
i<j
+6(ri—b)d(r;—a)]é(cost;j —cosd). (3)

Our two-particle distribution function is the expectation

value of this operator, and is again normalized to twice the

number of electron pairs:

G(a,b,0)=(¥|G(a,b,0)| V),
4

0 o0 +1
J daf dbf dcos G(a,bd)=N(N—-1).
0 0 -1

Defining é(a,b,a) in this way corresponds to using a
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G(a,b,6)=(\lf|é|\lf)=§k: G(a,b)P,(cosd),

(7
Gi(a,b)=3(2k+1)Y C,C,P(a)Pi(b)[f5P.(a)P; (b)

¥y’

+ 5P (D) Py ()]

In this way it is straightforward to add the computation of
G(a,b,#) to any standard calculation based on the HF CI
method. The required quantities are the mixing coefficients
C,, the Slater coefficientss,fs, and the radial functions
Pi(r), all of which have already been computed during the
HF CI calculation. In the present work we have done all
calculations using the well-knowmCHF-ASP program pack-
age of Froese Fischdr], which provides these required
guantities in the form of convenient data files.

spatially isotropic sample and selecting atoms by energy

E, s but not resolving the fine structure. Thus we neglect
correlation effects caused by the spin-orbit interaction and by

relativistic corrections, which we defer for future consider-
ation.

B. Expansion in tensor operators

Since we want to be able to evaluakeusing a general
numerical Cl wave function, it will be very convenient to

expressG in the language of spherical-tensor operators

C. Other spatial distribution functions

Having computeds(a,b, ) as described above, we can
gain some understanding of its nature by plotting the condi-
tional probability density

G(a,r,0)

(@) ®

Pc(a,r)=

This is the probability density for finding an electron at po-
sition r relative to the nucleus, given the condition that an-

SinceG is a symmetric spin-independent two-electron operayher electron is on theaxis, at distance from the nucleus.

tor, its behavior under rotations is identical to that of the
Coulomb interaction operatoHc=X1/r;j. Thus we can
carry over the familiar analysis dflc into a sum of Slater

integrals multiplied by angular coefficients computed via Ra-
cah algebra. The first step is to introduce the standard partial

wave expansion oG:
oo

G(a,b,0)=>, kZO G{'(a,b, ) P(cost;),
i<j k=

5
G{¥(a,b,6)=1(2k+1)P(cosh)[ 8(r;—a) 5(r;— b)

+5(ri—b)5(rj—a)].

Now we see that the standard Slater expansion of th
matrix elements of¢ in terms of two-electron radial inte-
grals can immediately be applied to our operdBrthe &
functions will convert the general Slater integral
R(i,j;i’,j’) into the direct and exchange radial functions
(“Slater integrands’:

DY (a,b,6)=}(2k+1)Py(cost) Pi(a) P;(b) Pi(a) P (b),
(6)
EX (a,b,0)=3(2k+1)P(cost)P;(a) P (b) P,/ (D) Py (a).

This leads to our principal result, valid for a general state o
N electrons, whergX and X are the standard direct and
exchange Slater coefficients, which dependyom’:

Herep(a) is the single-particle density, and the integrals of
these functions satisfy

f Pc(a,r)d3r=N-1, f p(a)d®a=N. 9
Often more interesting is the difference between fhe
functions calculated with and without Cl, which we desig-

natePg,:
Pci(ar)=Pc(a,Nucrir—Pc(aNue. (10
This function displays most directly the spatial correlation
due to the noncentral part of the electron-electron interaction,
the dynamic correlation distinct from that due to antisymme-
trization andLS coupling. Sample plots dP- and P, are
iven in Fig. 4.

Perhaps the most obvious diagnostic for electron correla-
tion is the distribution in interelectron distandegs), known
as the pair-distribution functioPDF). DefineF(s)ds as the

number of electron pairs with separatiéa—b| having a
value betweens and s+ds. Using the coordinate$2]

p=a+b, q=a—b, ands=|a—b|, we have

F<s>=%wzsjjdpf_sdq(pz—q%z(é.ﬁ) (1D

¢ =sLxdle:dq(pz—qz)*lG(a,b,6). (12

Now F(s) is normalized to count each pair only once:
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FIG. 2. The electron coalescence in the ground state of helium:

the position probability densitiR(s) for one electron at a distance

—~ 0.0 s from the other. HRtriangles: Single-configuration Hartree-Fock;
"-4 0.04 + RW (diamond$: correlated-variables result of Roothaan and Weiss
s [8]; circles: MCHF AS2 (active setn<2, 4 configurations
@ 0024 squares: MCHF AS3active sein<3, 10 configurations crosses:
i MCHF AS4 (active sein<4, 20 configurations
2 ] —
:g: 00z 1 Il. HELIUM TEST CASE
2 The 1s?'S ground state of neutral helium has been thor-
< -0.04 1 (b) oughly studied using a variety of theoretical techniques, in-
£ cluding calculations using correlated variables, which do not
3 -0.06 rely on the central-field approximation. We will not attempt
) to discuss the latest or most precise calculations, or the im-
-0.08 portance of relativistic corrections. Instead we are simply
0 05 1 15 2 25 3 interested in testing the present method before applying it to
Interelectron separation s (a.u.) more complex atoms. To that end we have computed MCHF

FIG. 1. The electron pair-distribution functio@DP for the
ground state of helium(a) Solid curve: the correlated-variable re-
sult (RW) of Roothaan and Weis$8], and the MCHF 20-
configuration result, which are indistinguishable in this plot. Broken
curve: the HF single-configuration resulb) The Coulomb hole,
that is, the PDF with the HF result subtracted; the difference be-
tween the two curves ifa). Solid curve, MCHF; broken curve,
RW.

fmF(s)ds=%N(N—1). (13)
0

From this function mean values such(a$ and(1/s) can be
calculated. Again we can subtract HF from CI results to
study dynamic correlationH(s)=Fycue(S) —Fue(s) has
been called &€oulomb hold 3] or correlation hole[4] func-
tion by analogy with thé=ermi holewhich results from sta-
tistical correlation only.

As an alternative td-(s) we can choose to ZStUdy the  FiG. 3. Electron coalescence in the states of carbon: the
pair-distribution volume densityR(s) =F(s)/4ms®, espe- position probability densityR(s) for one electron at a distance
cially in the limit s—0. In some cases previous theoretical from the other. Note the different behavior of the natural-parity
work, based on the symmetry of the wave function, hasinglets ¢F,'P), the triplets 8F,3D,3P), and the unnatural-parity
given interesting predictions about the volume density at &inglet !D. Calculations are single-configuration Hartree-Fock and
two-electron coalescen¢g,6]. Examples of~(s), H(s) are  only the 2p,3d electrons are included in the coalescence probability
plotted in Fig. 1, examples d®(s) in Figs. 2 and 3. distribution.

s (a.u.)
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TABLE I. Parameters describing pair-distribution function coalescence. Kutzelnigg and MorgqhO] have analyzed
F(s) for the helium ground state, computed from HF, MCHF, andthese restrictions for a configuration of typel1n,l,, with
Hylleraas wave functions. 11,1,>0, and in particular for the configuratiomp3d in neu-
tral carbon [5]. They find there are three classes of

HF MCHF (AS49 Hylleraas(7] LS-coupled terms, with regard to the behavior of the wave
(s) 1.311 1.420 1.420 function as the electron separation approaches zero. For the
(1/s) 1.026 0.946 0.946 natural-parity singletsR(0) is finite; for the triplets,R(Ss)
s at maxima 1.0 1.10 1.1 has a quadratic zero at 0; for the unnatural-parity singlets,
F(max) 0.632 0.625 0.625 a quartic zero.
F(1.0) 0.632 0.617 0.616 This behavior can be displayed quantitatively by using
F(2.0) 0.274 0.308 0.311 our tensor expansion method to compRie) for the carbon
F(3.0) 0.049 0.060 0.058 configuration »3d. Figure 3 shows the results fR(s) near

s=0 produced by doing abhS-dependent HF calculatidi |

for each of the six terms separately, and computing the pair-
wave functions for the helium ground state using four dif-distribution function for just the two outer electrons. The
ferent approximations, designated HF, AS2, AS3, andseparation of the unnatural-paritp from the other terms is
AS4, involving 1, 4, 10, and 20 configurations, respectively.clear. Note, however, that if all si¢or the four outer elec-
The designation AS refers to an “active set” calculation trons are included in the computation of the PDF, the results
using all two-electron configurations which can be con-shown in Fig. 3 will be obscured by the larger values of

structed from orbitals with principal quantum numbers 1-g(g) associated with thesland 2 orbitals (core correla-
n. The functionsF(s), H(s), and R(s) computed from iong).

these solutions can now be compared with the corresponding
functions resulting from calculations using correlated vari-
ables.

Coulson and Neilson[7] have computed the pair-
distribution and Coulomb hole functions which result In discussing the sodiums33p line strength, Brage,
from the pioneering correlated-variables calculation ofFroese Fischer, and dsson[11] have stressed the distinc-
Hylleraas[2]. Our results using the AS4 basis are virtually tion between core-valend€V) and core-cor¢CC) correla-
identical with theirs, as shown in Table I; also shown fortions, and the importance of including both. Using our
comparison are the single-configuration Hartree-Fock retensor-operator method, we can readily illustrate the differ-
sults. ence in the core polarization associated with these two types

A more elaborate correlated-variables result, which isof correlation by plotting the conditional probability distri-
convenient for the present purpose, is that of Roothaan angution P.(a,r) for the Na 3p state. For this purpose it is
Weiss[8]. Their “correlated open-shell” wave function has sufficient to consider the seven-electron systep?3p 2P
20 adjustable parameters, and accounts for 99% of the cowith an inert four-electron coresf2s?!S. For thisN=7

relation energy computed in the definitive work of Pekerissystem we computEc(a,F) with one electron fixed near the
[9]. Figures 1 and 2 compare our MCHF results for the funcyaximum in the P radial distribution.

tions F(s), H(s), and R(s) with the corresponding We have done four relatively simple MCHE] calcula-
functions computed from the wave function of Roothaan angijons of this state, which we identify as HF, CV, CC, and

Weiss (RW). These comparisons verify that our tensor-cyc. HF is a single-configuration Hartree-Fock calculation
operator method is giving the correct functions. Theys,, 2p®3p2P. CV includes all configurations of type
also serve to highlight the degree to which a relatively, 5,477 2p With n.n'<4, resulting in 44 CSFs. CC in-
simple MCHF wave function can approach a fully correlated.| ,qes all configurations of type p23pnin’l’ 2P, with
result. In particular, Fig. 2 shows the situation with electrony, /4 resulting in 260 CSFs. CVC uses all configurations

coalescence by plotting the pair separation probability,t ok types, and results in 303 CSFs. Tie 1,2 orbitals
density R(s). The HF calculation seriously overestimates ;o e determined by HF, and then held fixed during the other

R(s) for small s, but MCHF dramatically improves the ey jations. Calculations CV and CC were independent
agreement with RW by adding only a few configurations. ;e calculations, with the seven outer orbitats=(3,4)

Note, _howe,ver,_that the RW result satisfies the H8ocusp  peing determined self-consistently in each case. Finally, in
conditionR’(0)=R(0), while the MCHF results do not be- .5 c(jlation CVC no orbitals were varied: instead, a CI cal-

cause of the limitations of the global basis on which they are. | |5tion was done. with thesl2s,2p radial functions having
constructed. been determined by HF, thes3p,3d functions by CC, and
the 4s,4p,4d,4f functions by CV. Thus CVC is intended to
show a combination of the core-valence and core-core types
IV. SAMPLE APPLICATIONS of correlation. The_ two-electron c_orre_lations predicted by
these four calculations are shown in Figs. 4 and 5.

Figure 4a) shows the result foPc(a,F) given by the HF

It is well known that Fermi-Dirac statistics and spin-orbit (single-configuratioh solution. Here we are assuming one
coupling conditions combine to place restrictions on the beelectron is on thez axis ata=5.0 a.u., and plotting the
havior of two-electron wave functions in the vicinity of a probability distribution of the remaining six electrons as a

B. Core polarization in sodium

A. Electron coalescence in the @3d states of carbon
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FIG. 4. Core polarization in theBstate of sodium: the conditional probabiIiB/C(a,F) for an electron at given an electron on the
+z axis atz=5 a.u. Only the seven electrons outside a frozef24? core are considered. The quantity plotted on the vertical axis is
27XPc; the integral over thexz half plane withx>0 givesN—1=6. The units for the horizontal axes are a.u., for the vertical axis
a.u.”2. The calculations HF, CV, CC, CVC are described in the text; CV contains core-valence correlation only, while CC contain core-core
correlation only.(a) the Hartree-Fock resultp) the difference CW-HF; (c) the difference CE&HF; (d) the difference CVC-HF which
shows the combined effect.

function of r. Since Pc(a,r) is symmetric under rotations ~ Calculation CV gives the expected result that tipé 2ore
about thez axis, the functions plotted in Fig. 4 have been electron distribution is distorted by the presence of the outer
multiplied by 2x for normalization per unit area in thez ~ €electron on thet z axis, with the charge density being dis-

plane, withx=r sing, so that placed in the—z direction relative to HF, as shown in Fig.
4(b). On the other hand, calculation CC, shown in Fic)4
f dxf dz[277xPC(a,F)]=6. (14) does nqt give a d|pole.polar|zat|on, although it is a bigger
0 —w calculation and results in a lower energy. The symmetry of

the CC result is also expected, since the core-core correla-

tions included tend to maintain the physical picture of a
The plots ofP(a,r) for all four solutions look very similar, Single 3 electron outside a spherical six-electron core.
since the configuration mixing for this case is small: theHowever, this symmetry is not exact; it is dependent on the
leading CI coefficient is at least 0.99 in each solution. Nev-fact that we chose to comput%c,(a,F) with a chosen at a
ertheless, interesting and reproducible patterns emerge if Weistance characteristic of theprbital, and well outside the
plot the difference functionB¢ (a,r), which reflect the cor- 2p® core. If the first electron is placed closer to the nucleus,
relation due to configuration mixing. These plots are showrthen the other six are not distributed symmetrically. Calcu-
in Fig. 4(b) for calculation CV, Fig. 4) for CC, and Fig. lation CVC, containing all the configurations of both CV and
4(d) for CVC. CC, gives the pattern of core polarization shown in Figl) 4
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FIG. 5. Core polarization in theBstate of sodium: with one electron on thez axis atz=5 a.u., the probability density of the other
six electrons along the axis. (a) The Hartree-Fock resulih) the difference CV-HF; (¢) the difference CEHF; (d) the difference
CVC—HF.

Clearly this has a strong dipole component, but is quite difthe nucleus instead of the dip in Figah which is caused by
ferent in detail from the polarization predicted by core-the zero in the P radial function ar =0. Again Figs. %),

valence interactions alone. 5(c), and %d) show the CV, CC, and CVC results, respec-
Plots such as those in Fig. 4 give a valuable global viewively, with the HF result subtracted.
of the correlation function®¢c and P¢; however, we can Finally, we consider the core-core correlations further by

obtain more detailed information by making cuts in various, . . >

o ) ing th wave function mpue:
directions through these distributions. Figure 5 shows plotsusI gt efC?:' a e6u :to tol io ?th (@r) fc:tr se\%(;al
of Pc(a,r) and P (a,r) as a function ofz for fixed x=0 o ues Ofd. FIGUre o SnOWs piots of TNESE results witon

anda=5.0 a.u. In other words, this is the volume density of.thez axis, as in Fig. 5. The symmetry of Figscftand 5c)

core electrons along the line joining the outer electron and® oW lost as we consider the co.rrela'uon betvygen electron
the nucleus; Fig. @) shows the HF result. As with the plots Pairs closer to the nucleus. In Fig. 6 the position of one
in Fig. 4 it must be emphasized that we are considering onhF/€ctron is indicated by the dot on thez axis in each case.
seven electrons. If the four electrons in the frozest2s? or an exact solutiorP¢, and therefore alsBc,, must have
core were included, they would produce a sharp peak ned¥ Z€ro or a cusp at that coalescence pf@ittAs in the case
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of helium (Fig. 2 we note the necessary absence of suctextended in a straightforward way to apply to Dirac wave
cusps in the MCHF results. functions. A program is now being developed to compare
directly the correlations predicted by MCHE] and multi-
configuration Dirac-FockMCDF) [12] calculations. Such
comparisons should be helpful in studying the relative effec-
The tensor expansion shown in E@) provides a general tiveness of these two approaches for various classes of prob-
method for computing the two-electron spatial correlationlems.
function G(a,b, 6), the probability of finding electrons at
both pointsa and b. This method can be applied to the
results of any HF CI calculation which provides a wave func- It is a pleasure to acknowledge valuable interactions with
tion specified by single-particle radial functions and Tomas Brage, Robert Cowan, Larry Curtis, Alan Hibbert,
configuration-mixing coefficients. Constantine Theodosiou, and especially Charlotte Froese
The two-electron correlation function provides fresh in- Fischer. Some calculations were supported by Grant No.
sight into the nature of HF CI solutions; it gives an additionalPJS216-1 from the Ohio Supercomputer Center. Help with
point of comparison between different calculations, which isthe computation and graphics was provided by Jens Peter-
especially useful in cases where experimental data are laclsohn and Rasa Matulioniene of The University of Toledo,
ing. In the future this method could provide a helpful con-and by Todd Leonhardt, who was supported by Grant No.
nection between theoretical descriptions of atomic structur@HY-9200403 from the National Science Foundation. Many
based on the central-field approximation and those usingersonal thanks are due for the encouragement and support
other methods, including correlated variables. of Indrek Martinson and the hospitality of the Physics De-
Finally we note that this tensor-operator formalism can begpartment at The University of Lund.
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