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A two-electron spin-independent operator is defined to represent the spatial correlation of the electrons in a
general atom or ion. The spherical-tensor expansion of this operator provides a systematic method for evalu-
ating the two-electron correlation function implied by a Hartree-FockN-electron wave function including
arbitrary configuration mixing. The method is illustrated by examples involving electron coalescence in helium
and carbon, and core polarization in sodium. This technique for computing the electron correlation function
provides a useful tool of wide applicability in comparing different theoretical approaches to the structure of
complex atoms.@S1050-2947~96!06306-8#

PACS number~s!: 31.10.1z, 31.25.2v

I. INTRODUCTION

A major challenge of atomic structure theory is to predict
the correlation in the motion of the electrons in a complex
atom. The most widely used computational techniques are
based on the Hartree-Fock method with configuration inter-
action~HF CI!; these calculations begin with the central-field
approximation in which the electrons are uncorrelated. The
influence of electron correlations is then accounted for indi-
rectly, by using linear combinations of product wave func-
tions. First Slater antisymmetrization, then Russell-Saunders
coupling, and finally configuration mixing, allow for the cor-
relations required by Fermi-Dirac statistics and by the non-
central character of the Coulomb interaction between elec-
trons. Unfortunately the physical nature of the implied
correlations is not necessarily obvious at the end of this pro-
cess, from the resulting single-particle radial functions and
configuration-mixing coefficients. This paper presents a
method for analyzing the results of HF CI calculations so as
to study directly the correlations of the electrons in space.
This is a significant advance because it gives added insight
into the physical nature of a multielectron quantum state, and
because it allows detailed comparisons between wave func-
tions resulting from different calculations.

In judging the expected precision of a result, or in com-
paring two different calculations, it would be useful to have
a direct measure of the predicted correlation. In particular, a
natural quantity to study would be the two-electron distribu-

tion function,G2(aW ,bW ), defined as the probability of finding
an electron at pointaW and another at pointbW . The purpose of
this paper is to describe a general tensor-operator method for

computing G2(aW ,bW ) from the results of a nonrelativistic
many-configuration Hartree-Fock~MCHF! calculation in an
atom or ion withN electrons. The nature of the predicted
correlation can then be studied by means ofG2 and other
functions easily calculated from it, such as the distribution in
interelectron distances. After describing the computational
method we first test it against previous work in helium and
then apply it to certain states of the carbon and sodium at-
oms.

II. THEORY

A. Construction of the two-electron operator

We assume an atom or ion withN electrons described by
the state function

uC&5(
g

CguCg~L,S,J,M !&. ~1!

Each term in this expansion is a configuration state function
~CSF! denoted by uCg(L,S,J,M )& multiplied by a
configuration-interaction coefficientCg . The CSFuCg& is an
LS-coupled antisymmetric basis state corresponding to the
configurationg5$(n1l 1)

w1(n2l 2)
w2 . . . %. In this configura-

tion there arewi electrons occupying the single-particle state
~subshell! with quantum numbers (ni ,l i) and radial wave
functionPi(r ).

The two-electron distribution functionG2(aW ,bW ) is the ex-
pectation value of the corresponding operatorĜ2(aW ,bW ),
which has an obvious form in the position representation:

Ĝ2~aW ,bW !5(
i51

N

(
j51

i21

@d3~rW i2aW !d3~rW j2bW !

1d3~rW i2bW !d3~rW j2aW !#. ~2!

The total integral gives twice the number of electron pairs:
*G2(aW ,bW )d

3a d3b5N(N21).
If the atom is prepared in a pure quantum stateuC&, then

G2(aWbW )5^CuĜ2(aW ,bW )uC& is a rather complicated function
of six coordinates. However, three of the coordinates are just
the Euler angles giving the orientation of the atom in space;
these are irrelevant to our present purpose and we will aver-
age over them. Equivalently, sinceĜ2(aW ,bW ) is spin indepen-
dent, we can average over the directions ofLW andSW . In either
case the result is a two-particle operator which depends only
on the relevant variablesa, b, andu, the angle betweenaW

andbW :
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Ĝ~a,b,u!5(
i, j

@d~r i2a!d~r j2b!

1d~r i2b!d~r j2a!#d~cosu i j2cosu!. ~3!

Our two-particle distribution function is the expectation
value of this operator, and is again normalized to twice the
number of electron pairs:

G~a,b,u!5^CuĜ~a,b,u!uC&,
~4!

E
0

`

daE
0

`

dbE
21

11

d cosu G~a,bu!5N~N21!.

Defining Ĝ(a,b,u) in this way corresponds to using a
spatially isotropic sample and selecting atoms by energy
ELS but not resolving the fine structure. Thus we neglect
correlation effects caused by the spin-orbit interaction and by
relativistic corrections, which we defer for future consider-
ation.

B. Expansion in tensor operators

Since we want to be able to evaluateG using a general
numerical CI wave function, it will be very convenient to
expressĜ in the language of spherical-tensor operators.
SinceĜ is a symmetric spin-independent two-electron opera-
tor, its behavior under rotations is identical to that of the
Coulomb interaction operatorĤC5(1/r i j . Thus we can
carry over the familiar analysis ofĤC into a sum of Slater
integrals multiplied by angular coefficients computed via Ra-
cah algebra. The first step is to introduce the standard partial
wave expansion ofĜ:

Ĝ~a,b,u!5(
i, j

(
k50

`

Gi j
~k!~a,b,u!Pk~cosu i j !,

~5!

Gi j
~k!~a,b,u!5 1

2 ~2k11!Pk~cosu!@d~r i2a!d~r j2b!

1d~r i2b!d~r j2a!#.

Now we see that the standard Slater expansion of the
matrix elements ofĤC in terms of two-electron radial inte-
grals can immediately be applied to our operatorĜ; the d
functions will convert the general Slater integral
Rk( i , j ; i 8, j 8) into the direct and exchange radial functions
~‘‘Slater integrands’’!:

Dgg8
k

~a,b,u!5 1
2 ~2k11!Pk~cosu!Pi~a!Pj~b!Pi 8~a!Pj 8~b!,

~6!

Egg8
k

~a,b,u!5 1
2 ~2k11!Pk~cosu!Pi~a!Pj~b!Pi 8~b!Pj 8~a!.

This leads to our principal result, valid for a general state of
N electrons, wheref d

k and f e
k are the standard direct and

exchange Slater coefficients, which depend ong,g8:

G~a,b,u!5^CuĜuC&5(
k
Gk~a,b!Pk~cosu!,

~7!

Gk~a,b!5 1
2 ~2k11!(

gg8
CgCg8Pi~a!Pj~b!@ f d

kPi 8~a!Pj 8~b!

1 f e
kPi 8~b!Pj 8~a!#.

In this way it is straightforward to add the computation of
G(a,b,u) to any standard calculation based on the HF CI
method. The required quantities are the mixing coefficients
Cg , the Slater coefficientsf d

k , f e
k , and the radial functions

Pi(r ), all of which have already been computed during the
HF CI calculation. In the present work we have done all
calculations using the well-knownMCHF-ASP program pack-
age of Froese Fischer@1#, which provides these required
quantities in the form of convenient data files.

C. Other spatial distribution functions

Having computedG(a,b,u) as described above, we can
gain some understanding of its nature by plotting the condi-
tional probability density

PC~a,rW !5
G~a,r ,u!

r~a!
. ~8!

This is the probability density for finding an electron at po-
sition rW relative to the nucleus, given the condition that an-
other electron is on thez axis, at distancea from the nucleus.
Herer(a) is the single-particle density, and the integrals of
these functions satisfy

E PC~a,rW !d3r5N21, E r~a!d3a5N. ~9!

Often more interesting is the difference between thePC
functions calculated with and without CI, which we desig-
natePCI :

PCI~a,rW !5PC~a,rW !MCHF2PC~a,rW !HF. ~10!

This function displays most directly the spatial correlation
due to the noncentral part of the electron-electron interaction,
the dynamic correlation distinct from that due to antisymme-
trization andLS coupling. Sample plots ofPC andPCI are
given in Fig. 4.

Perhaps the most obvious diagnostic for electron correla-
tion is the distribution in interelectron distancesF(s), known
as the pair-distribution function~PDF!. DefineF(s)ds as the
number of electron pairs with separationuaW 2bW u having a
value betweens and s1ds. Using the coordinates@2#

p5a1b, q5a2b, ands5uaW 2bW u, we have

F~s!5 1
2p2sE

s

`

dpE
2s

1s

dq~p22q2!G2~aW ,bW ! ~11!

5sE
s

`

dpE
2s

1s

dq~p22q2!21G~a,b,u!. ~12!

Now F(s) is normalized to count each pair only once:
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E
0

`

F~s!ds5 1
2N~N21!. ~13!

From this function mean values such as^s& and^1/s& can be
calculated. Again we can subtract HF from CI results to
study dynamic correlation:H(s)5FMCHF(s)2FHF(s) has
been called aCoulomb hole@3# or correlation hole@4# func-
tion by analogy with theFermi holewhich results from sta-
tistical correlation only.

As an alternative toF(s) we can choose to study the
pair-distribution volume densityR(s)5F(s)/4ps2, espe-
cially in the limit s→0. In some cases previous theoretical
work, based on the symmetry of the wave function, has
given interesting predictions about the volume density at a
two-electron coalescence@5,6#. Examples ofF(s), H(s) are
plotted in Fig. 1, examples ofR(s) in Figs. 2 and 3.

III. HELIUM TEST CASE

The 1s2 1S ground state of neutral helium has been thor-
oughly studied using a variety of theoretical techniques, in-
cluding calculations using correlated variables, which do not
rely on the central-field approximation. We will not attempt
to discuss the latest or most precise calculations, or the im-
portance of relativistic corrections. Instead we are simply
interested in testing the present method before applying it to
more complex atoms. To that end we have computed MCHF

FIG. 1. The electron pair-distribution function~PDF! for the
ground state of helium.~a! Solid curve: the correlated-variable re-
sult ~RW! of Roothaan and Weiss@8#, and the MCHF 20-
configuration result, which are indistinguishable in this plot. Broken
curve: the HF single-configuration result.~b! The Coulomb hole,
that is, the PDF with the HF result subtracted; the difference be-
tween the two curves in~a!. Solid curve, MCHF; broken curve,
RW.

FIG. 2. The electron coalescence in the ground state of helium:
the position probability densityR(s) for one electron at a distance
s from the other. HF~triangles!: Single-configuration Hartree-Fock;
RW ~diamonds!: correlated-variables result of Roothaan and Weiss
@8#; circles: MCHF AS2 ~active set n<2, 4 configurations!;
squares: MCHF AS3~active setn<3, 10 configurations!; crosses:
MCHF AS4 ~active setn<4, 20 configurations!.

FIG. 3. Electron coalescence in the 2p3d states of carbon: the
position probability densityR(s) for one electron at a distances
from the other. Note the different behavior of the natural-parity
singlets (1F,1P), the triplets (3F,3D,3P), and the unnatural-parity
singlet 1D. Calculations are single-configuration Hartree-Fock and
only the 2p,3d electrons are included in the coalescence probability
distribution.
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wave functions for the helium ground state using four dif-
ferent approximations, designated HF, AS2, AS3, and
AS4, involving 1, 4, 10, and 20 configurations, respectively.
The designation ASn refers to an ‘‘active set’’ calculation
using all two-electron configurations which can be con-
structed from orbitals with principal quantum numbers 1–
n. The functionsF(s), H(s), and R(s) computed from
these solutions can now be compared with the corresponding
functions resulting from calculations using correlated vari-
ables.

Coulson and Neilson@7# have computed the pair-
distribution and Coulomb hole functions which result
from the pioneering correlated-variables calculation of
Hylleraas@2#. Our results using the AS4 basis are virtually
identical with theirs, as shown in Table I; also shown for
comparison are the single-configuration Hartree-Fock re-
sults.

A more elaborate correlated-variables result, which is
convenient for the present purpose, is that of Roothaan and
Weiss@8#. Their ‘‘correlated open-shell’’ wave function has
20 adjustable parameters, and accounts for 99% of the cor-
relation energy computed in the definitive work of Pekeris
@9#. Figures 1 and 2 compare our MCHF results for the func-
tions F(s), H(s), and R(s) with the corresponding
functions computed from the wave function of Roothaan and
Weiss ~RW!. These comparisons verify that our tensor-
operator method is giving the correct functions. They
also serve to highlight the degree to which a relatively
simple MCHF wave function can approach a fully correlated
result. In particular, Fig. 2 shows the situation with electron
coalescence by plotting the pair separation probability
density R(s). The HF calculation seriously overestimates
R(s) for small s, but MCHF dramatically improves the
agreement with RW by adding only a few configurations.
Note, however, that the RW result satisfies the Kato@6# cusp
conditionR8(0)5R(0), while the MCHF results do not be-
cause of the limitations of the global basis on which they are
constructed.

IV. SAMPLE APPLICATIONS

A. Electron coalescence in the 2p3d states of carbon

It is well known that Fermi-Dirac statistics and spin-orbit
coupling conditions combine to place restrictions on the be-
havior of two-electron wave functions in the vicinity of a

coalescence. Kutzelnigg and Morgan@10# have analyzed
these restrictions for a configuration of typen1l 1n2l 2 , with
l 1 ,l 2.0, and in particular for the configuration 2p3d in neu-
tral carbon @5#. They find there are three classes of
LS-coupled terms, with regard to the behavior of the wave
function as the electron separation approaches zero. For the
natural-parity singlets,R(0) is finite; for the triplets,R(s)
has a quadratic zero ats50; for the unnatural-parity singlets,
a quartic zero.

This behavior can be displayed quantitatively by using
our tensor expansion method to computeR(s) for the carbon
configuration 2p3d. Figure 3 shows the results forR(s) near
s50 produced by doing anLS-dependent HF calculation@1#
for each of the six terms separately, and computing the pair-
distribution function for just the two outer electrons. The
separation of the unnatural-parity1D from the other terms is
clear. Note, however, that if all six~or the four outer! elec-
trons are included in the computation of the PDF, the results
shown in Fig. 3 will be obscured by the larger values of
R(0) associated with the 1s and 2s orbitals ~core correla-
tions!.

B. Core polarization in sodium

In discussing the sodium 3s-3p line strength, Brage,
Froese Fischer, and Jo¨nsson@11# have stressed the distinc-
tion between core-valence~CV! and core-core~CC! correla-
tions, and the importance of including both. Using our
tensor-operator method, we can readily illustrate the differ-
ence in the core polarization associated with these two types
of correlation by plotting the conditional probability distri-
bution Pc(a,rW) for the NaI 3p state. For this purpose it is
sufficient to consider the seven-electron system 2p63p 2P
with an inert four-electron core 1s22s2 1S. For thisN57
system we computePC(a,rW) with one electron fixed near the
maximum in the 3p radial distribution.

We have done four relatively simple MCHF@1# calcula-
tions of this state, which we identify as HF, CV, CC, and
CVC. HF is a single-configuration Hartree-Fock calculation
for 2p63p 2P. CV includes all configurations of type
2p5nln8l 8 2P, with n,n8<4, resulting in 44 CSFs. CC in-
cludes all configurations of type 2p43pnln8l 8 2P, with
n,n8<4, resulting in 260 CSFs. CVC uses all configurations
of both types, and results in 303 CSFs. Then51,2 orbitals
were determined by HF, and then held fixed during the other
calculations. Calculations CV and CC were independent
MCHF calculations, with the seven outer orbitals (n53,4)
being determined self-consistently in each case. Finally, in
calculation CVC no orbitals were varied; instead, a CI cal-
culation was done, with the 1s,2s,2p radial functions having
been determined by HF, the 3s,3p,3d functions by CC, and
the 4s,4p,4d,4f functions by CV. Thus CVC is intended to
show a combination of the core-valence and core-core types
of correlation. The two-electron correlations predicted by
these four calculations are shown in Figs. 4 and 5.

Figure 4~a! shows the result forPC(a,rW) given by the HF
~single-configuration! solution. Here we are assuming one
electron is on thez axis at a55.0 a.u., and plotting the
probability distribution of the remaining six electrons as a

TABLE I. Parameters describing pair-distribution function
F(s) for the helium ground state, computed from HF, MCHF, and
Hylleraas wave functions.

HF MCHF ~AS4! Hylleraas@7#

^s& 1.311 1.420 1.420
^1/s& 1.026 0.946 0.946
s at maxima 1.0 1.10 1.1
F~max! 0.632 0.625 0.625
F(1.0) 0.632 0.617 0.616
F(2.0) 0.274 0.308 0.311
F(3.0) 0.049 0.060 0.058
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function of rW. SincePC(a,rW) is symmetric under rotations
about thez axis, the functions plotted in Fig. 4 have been
multiplied by 2px for normalization per unit area in thexz
plane, withx5r sinu, so that

E
0

`

dxE
2`

`

dz@2pxPC~a,rW !#56. ~14!

The plots ofPC(a,rW) for all four solutions look very similar,
since the configuration mixing for this case is small: the
leading CI coefficient is at least 0.99 in each solution. Nev-
ertheless, interesting and reproducible patterns emerge if we
plot the difference functionsPCI(a,rW), which reflect the cor-
relation due to configuration mixing. These plots are shown
in Fig. 4~b! for calculation CV, Fig. 4~c! for CC, and Fig.
4~d! for CVC.

Calculation CV gives the expected result that the 2p6 core
electron distribution is distorted by the presence of the outer
electron on the1z axis, with the charge density being dis-
placed in the2z direction relative to HF, as shown in Fig.
4~b!. On the other hand, calculation CC, shown in Fig. 4~c!,
does not give a dipole polarization, although it is a bigger
calculation and results in a lower energy. The symmetry of
the CC result is also expected, since the core-core correla-
tions included tend to maintain the physical picture of a
single 3p electron outside a spherical six-electron core.
However, this symmetry is not exact; it is dependent on the

fact that we chose to computePCI(a,rW) with a chosen at a
distance characteristic of the 3p orbital, and well outside the
2p6 core. If the first electron is placed closer to the nucleus,
then the other six are not distributed symmetrically. Calcu-
lation CVC, containing all the configurations of both CV and
CC, gives the pattern of core polarization shown in Fig. 4~d!.

FIG. 4. Core polarization in the 3p state of sodium: the conditional probabilityPC(a,rW) for an electron atrW given an electron on the
1z axis atz55 a.u. Only the seven electrons outside a frozen 1s22s2 core are considered. The quantity plotted on the vertical axis is
2pxPC ; the integral over thexz half plane withx.0 givesN2156. The units for the horizontal axes are a.u., for the vertical axis
a.u.22. The calculations HF, CV, CC, CVC are described in the text; CV contains core-valence correlation only, while CC contain core-core
correlation only.~a! the Hartree-Fock result;~b! the difference CV2HF; ~c! the difference CC2HF; ~d! the difference CVC2HF which
shows the combined effect.

3990 53DAVID G. ELLIS



Clearly this has a strong dipole component, but is quite dif-
ferent in detail from the polarization predicted by core-
valence interactions alone.

Plots such as those in Fig. 4 give a valuable global view
of the correlation functionsPC and PCI ; however, we can
obtain more detailed information by making cuts in various
directions through these distributions. Figure 5 shows plots
of PC(a,rW) andPCI(a,rW) as a function ofz for fixed x50
anda55.0 a.u. In other words, this is the volume density of
core electrons along the line joining the outer electron and
the nucleus; Fig. 5~a! shows the HF result. As with the plots
in Fig. 4 it must be emphasized that we are considering only
seven electrons. If the four electrons in the frozen 1s22s2

core were included, they would produce a sharp peak near

the nucleus instead of the dip in Fig. 5~a!, which is caused by
the zero in the 2p radial function atr50. Again Figs. 5~b!,
5~c!, and 5~d! show the CV, CC, and CVC results, respec-
tively, with the HF result subtracted.

Finally, we consider the core-core correlations further by

using the CC wave function to computePCI(a,rW) for several

values ofa. Figure 6 shows plots of these results withrW on
thez axis, as in Fig. 5. The symmetry of Figs. 4~c! and 5~c!
is now lost as we consider the correlation between electron
pairs closer to the nucleus. In Fig. 6 the position of one
electron is indicated by the dot on the1z axis in each case.
For an exact solution,PC , and therefore alsoPCI , must have
a zero or a cusp at that coalescence point@6#. As in the case

FIG. 5. Core polarization in the 3p state of sodium: with one electron on the1z axis atz55 a.u., the probability density of the other
six electrons along thez axis. ~a! The Hartree-Fock result;~b! the difference CV2HF; ~c! the difference CC2HF; ~d! the difference
CVC2HF.
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of helium ~Fig. 2! we note the necessary absence of such
cusps in the MCHF results.

V. CONCLUSION

The tensor expansion shown in Eq.~7! provides a general
method for computing the two-electron spatial correlation
function G(a,b,u), the probability of finding electrons at
both pointsaW and bW . This method can be applied to the
results of any HF CI calculation which provides a wave func-
tion specified by single-particle radial functions and
configuration-mixing coefficients.

The two-electron correlation function provides fresh in-
sight into the nature of HF CI solutions; it gives an additional
point of comparison between different calculations, which is
especially useful in cases where experimental data are lack-
ing. In the future this method could provide a helpful con-
nection between theoretical descriptions of atomic structure
based on the central-field approximation and those using
other methods, including correlated variables.

Finally we note that this tensor-operator formalism can be

extended in a straightforward way to apply to Dirac wave
functions. A program is now being developed to compare
directly the correlations predicted by MCHF@1# and multi-
configuration Dirac-Fock~MCDF! @12# calculations. Such
comparisons should be helpful in studying the relative effec-
tiveness of these two approaches for various classes of prob-
lems.
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