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1 Review of facts and terminology

1.1 The nature of an atom

As everyone knows, an atom is the smallest unit of a chemical element, and atoms combine
to form molecules and solids. Each element is uniquely specified by its atomic number Z.
However a given element may occur in several different versions, called isotopes; these have
the same Z but different atomic mass number A. A glance at the periodic table shows
that for the naturally occurring elements Z and A vary from hydrogen (Z = 1, A = 1) to
uranium (Z = 92, A = 238). The mass of an atom is given approximately by A, in terms
of the atomic mass unit, or amu: 1 amu = 1.66 × 10−27 kg. The sizes of atoms are
conveniently measured in terms of a unit called the Bohr radius, a0, which has the value
1 a0 = 5.3×10−11 m = 0.053 nm. Although atoms vary greatly in mass and other properties,
their sizes are all comparable, being a few times a0. Since this size is small compared to
the wavelength of light, atoms are not “visible” in the ordinary sense of the word – an
optical microscope cannot form an image of a single atom. This is one of the reasons that
the structure of an atom cannot be understood in the same familiar mechanical-geometrical
terms that we use to describe the structure of a mountain, a tree, a crystal, or even a
molecule. In many ways atomic physics is the prototype for the scientific study of objects
which can be understood only by rather formal abstract ideas.

The classic experiments of Rutherford about 1911 established that the mass of the atom
is concentrated almost entirely in a very small positively charged nucleus, the size of which
is approximately 10−14 m. This nucleus contains Z protons, each having electrical charge
e = 1.60× 10−19 C, and A− Z neutrons. Thus the masses of the nucleons (neutrons and
protons) are approximately 1 amu each, and the neutral atom must contain Z electrons,
each with a charge of −e. The electron mass, m = 9.1 × 10−31 kg, is only about 1/2000 of
the nucleon mass. The study of atomic structure is primarily the study of how the electrons
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are distributed in the space around the nucleus, which can usually be approximated by a
point charge +Ze, fixed at the center of the atom.

Attempts to form a mental image of atomic structure can be misleading if taken too
literally. There are two familiar kinds of pictures: in the first the electrons are particles
moving in “Bohr orbits” forming a miniature “solar system”; in the second the electrons are
“Schrödinger waves” forming diffuse clouds. In fact, these are both over-simplifications, but
nevertheless useful. In his Complementarity Principle, Niels Bohr stressed the fact that we
must accept the idea that an electron is neither a particle nor a wave, but has complementary
properties of both. The crucial point is that particles and waves are mathematical abstrac-
tions, human inventions, useful concepts; the electron, however is a natural physical object.
Given its extremely small size and mass compared to anything in our everyday experience,
we shouldn’t be surprised that it doesn’t always move in trajectories like a baseball or waves
like the surf.

Although a large amount of information has been accumulated about atoms by studying
their chemical behavior and other properties, by far the most important means of studying
atomic structure is by means of optical spectroscopy. In fact the two subjects almost coincide:
the theory of atomic spectroscopy is by and large the same subject as atomic structure theory.

1.2 Energy quantization

The internal energy of an isolated atom can have only a discrete set of values - the “allowed
energy levels”. This fact was a strong motivation for the invention and development of the
quantum theory early in the twentieth century. Today we say that the energy is “quantized”,
and we understand that in terms of the eigenvalues of the hamiltonian operator. For the
purposes of this introduction, however, we will not discuss the theory, only the facts.

In discussing atomic energy levels, we mean only the energy of the electrons due to their
motions within the atom. We do not include the atom’s interaction with other atoms, or
its own motion through space: we assume the atom is at rest and isolated from all other
objects. We also do not include the internal energy of the nucleus. We regard the nucleus
as a very small, very heavy positively charged particle at the center of the atom.

When we speak of the structure of an atom, in practice this usually means not so much
the arrangement of the electrons in space, but rather the set of allowed energy levels. This
set of numbers, often displayed in an “energy level diagram,” is unique to the particular kind
of atom being studied, and in principle gives us most of the information we need about the
atom. Each atom has a lowest energy level, called the “ground state” energy. It also has an
upper limit to its energy levels, called the ionization energy EI . If a ground-state atom is
suddenly given an amount of energy greater than EI it may lose one or more of its electrons
and become “ionized.” In general, the lower energy levels are separated by relatively large
energy differences (lie far apart on the energy level diagram) while the higher energy levels
crowd together more and more closely as the ionization energy is approached. In principle
there are an infinite number of energy levels, all lying below the ionization energy, which is
often called the ionization limit for this reason.
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1.3 Spectroscopy

Our detailed knowledge of atomic energy levels comes almost entirely from optical spec-
troscopy. When an atom is excited into a state with more energy than the ground state, it
will stay in that excited state for only a short time, after which it will make a “quantum
jump” to a lower level. Since energy must always be conserved, the atom must somehow
lose its excess energy during this process. It often does so by emitting light (electromagnetic
radiation). The wavelength of the emitted light is determined by the energy difference of the
initial and final levels. This wavelength can be measured in the laboratory very precisely
with a spectrometer. By recording all the different wavelengths emitted by a hot gas of a
given element, we acquire a list of the energy level differences characteristic of that atom.
From these differences, the energy levels themselves can be deduced, although this is not
necessarily a simple process.

In most cases, the atom emits a single photon, or “quantum” of light when it jumps
from one energy level to another. The wave nature of light and the quantum nature of light
are related by the simple equations

E = hν and c = νλ (1)

where ν is the frequency of the light, λ is its wavelength, and E is the energy of a single
photon. The velocity of light c = 3.0 × 108m/s and Planck’s constant h = 6.63 × 10−34Js
are universal constants.

We label the atom we are discussing by means of two numbers: the atomic number Z,
and the electron number N . We often specify Z indirectly by giving the standard symbol
for the element. For example He means Z = 2 and Fe means Z = 26. The electron number
N is simply the number of electrons in the atom; for a neutral atom of course N = Z. We
are often interested in the spectra of positive ions, for which N < Z. For example, in a
hot gas such as the upper atmosphere of the sun, many atoms are ionized because of the
violent collisions between atoms. The higher the temperature, the higher will be the degree
of ionization of the atoms, i.e. the difference Z − N . We often give N indirectly also, by
giving the spectrum number in roman numerals. Thus C I means the first spectrum of
carbon, namely neutral carbon, so Z = N = 6; but C III means the third spectrum of
carbon, namely twice-ionized carbon, so that Z = 6, N = 4. All the ions of equal N are
said to form an isoelectronic sequence . Sequences are typically named for the neutral
member; for example C III belongs to the Be sequence, and all ions with 4 electrons are
called “beryllium-like”.

1.4 Quantum numbers

In addition to establishing the energies of the atom’s quantum states, it is the job of the
spectroscopist to assign each state a set of quantum numbers. These numbers serve as
identifying labels for the energy levels, and also provide some information about the physical
nature of the states.

For the neutral hydrogen atom, the situation is simple: each quantum state is labeled
by four quantum numbers, namely n, l,ml,ms. If relativistic effects are ignored to begin

3



with, these numbers have direct physical interpretations as follows. The first three are
integers which describe the motion of the electron in space. The principal quantum
number is a positive integer n = 1, 2, 3, · · · which determines the energy of the state and
the semi-major axis of the elliptical Bohr orbit. The energy is En = −EI/n

2 where EI is
the ionization energy of hydrogen, also called the Rydberg energy unit, approximately equal
to 13.6 eV. The orbital quantum number l is a nonnegative integer less than n, namely
l = 0, 1, 2, · · · , n−1. This determines the magnitude of the angular momentum of the
electron’s motion, and the eccentricity of the Bohr orbit. The orbital angular momentum

magnitude is |L⃗| =
√
l(l+1) h̄ where h̄ = h/2π. The magnetic quantum number is

an integer ml in the range −l ≤ ml ≤ +l, which determines the component of the orbital
angular momentum in a particular direction. In a given coordinate system, the z component
of the orbital angular momentum is Lz = ml h̄.

In addition to its orbital motion around the nucleus, the electron has an intrinsic angular

momentum called spin . The magnitude of the spin angular momentum is |S⃗| =
√
s(s+1) h̄,

exactly analogous to the orbital angular momentum, except that the spin quantum number
is not an integer, but rather s = 1/2. In a given coordinate system, the z component of the
spin angular momentum is Sz = ms h̄. Here ms is analogous to ml except that it has only
two possible values: ms = ±1/2. We say that the spin must be either “up” or “down”.

For reasons of convenience in speaking and writing, a historical system of letters in-
stead of l values, known as spectroscopic notation , continues to be used. In this sys-
tem s=0, p=1, d=2, f=3, g=4, h=5, etc. Thus for example a state with n = 3, l = 2 is
called 3d for convenience. This 3d orbital is taken to include states with all possible val-
ues of ml,ms for the given values n = 3, l = 2. The possible hydrogen orbitals are thus
1s, 2s, 2p, 3s, 3p, 3d, 4s, 4p, 4d, 4f, · · ·.

1.5 The Pauli Exclusion Principle

For atoms other than hydrogen we may consider labeling the states by giving the set of
quantum numbers n, l,ml,ms for each electron. In fact, the physical N -electron state may
not be well represented in this way, but it is a reasonable starting point for a labeling system.
The Pauli Principle states that no two electrons can have the same set of these 4 quantum
numbers. Thus there is a maximum number (2(2l+1)) of electrons which can occupy each
orbital. These numbers are familiar from chemistry: s : 2, p : 6, d : 10, · · ·. An electronic
configuration is specified by giving the orbital for each electron, or in other words by
giving the occupation number of each orbital. Thus the ground state of the carbon atom
has the configuration (1s2 2s2 2p2); sometimes filled orbitals (those containing the maximum
allowed number of electrons) are omitted and this is written simply (2p2).

Since the principal quantum numbers determine the energy to a first approximation,
all states with the same n value are said to belong to a given shell , and as we consider
increasing values of N , the shells are filled “from the bottom up”, in order of increasing
energy, and increasing distance from the nucleus. However this approximation soon breaks
down — for example the ground configuration of potassium (Z = 19) is (3s2 3p6 4s) rather
than (3s2 3p6 3d). This effect which causes orbitals of low l to have lower energies is called
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penetration , since electrons in these orbitals can penetrate closer to the nucleus. The shells
can designated by upper case letters; this notation is less common in optical spectroscopy
than in chemistry or X-ray spectroscopy. The letter K denotes the n = 1 shell; L, n = 2; M,
n = 3, etc.

In summary, the atomic shell structure can be represented as follows:

SHELL ORBITALS STATES
K 1s2 2
L 2s2 2p6 8
M 3s2 3p6 3d10 18
N 4s2 4p6 4d10 4f14 32

(2)

and so forth.

1.6 States of complex atoms

For atoms with two or more electrons, there are many possible quantum states, and we need
a systematic way of naming them. The standard spectroscopic notation is based on the
vector model of angular momentum addition. The quantum theory of angular momentum
is a large and very well-developed subject, but many of its results can be summarized as
follows. A good reference to begin the study of the structure of complex atoms is the small
book by Woodgate [1].

An angular momentum vector J is specified by two quantum numbers J,M so that its

magnitude is |J| =
√
J(J+1) h̄ and its z-component is Jz = M h̄. As with the orbital and

magnetic quantum numbers given above for a single electron, for a given J the M quantum
number can have 2J+1 values, namely M = −J,−J+1, · · · , J−1, J . In the vector model
we imagine that the various ways in which the vector J is allowed to point are restricted
so that its z component is always one or the other of these 2J +1 values. The angular
momentum quantum number J may be either an integer or a half-integer, so that the range
−J ≤M ≤ J always involves an integer number of steps: 2J+1 is always an integer.

Now if we add two angular momentum vectors J1 and J2, using the above restrictions on
the z components, we see that there are a total of (2J1+1)(2J2+1) states. We can specify
these states by the values ofM1 andM2. But we can also group the states according to total
angular momentum quantum numbers J and M , using the ordinary vector sum J = J1+ J2,
but with the above conditions on the values of J,M . If we work this out carefully we see
that the possible values of J range from a minimum of Jmin = |J1 − J2| to a maximum of
Jmax = J1 + J2 including all values in integral steps in between. Then for each J we have
the usual values of M . This turns out to give the same number of states:

J1+J2∑
J=|J1−J2|

(2J+1) = (2J1+1)(2J2+1) (3)

It turns out, as we will see later in discussing the quantum theory of atomic structure,
that the most generally useful scheme for labeling atomic states consists of combining all the
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orbital angular momenta of the individual electrons into a total orbital angular momen-
tum L = l1 + l2 + · · ·, and also combining all the spin angular momenta of the individual
electrons into a total spin angular momentum S = s1 + s2 + · · ·. Only after that are
these two added together to get the total angular momentum J = L+ S. This is called
L-S coupling or Russell-Saunders coupling . Since the energy of an isolated atom can-
not depend on the direction of the total angular momentum, the three quantum numbers
L, S, J are sufficient to determine the energy in all but the most complicated configurations,
and are thus a very convenient label for atomic energy levels.

For example, in an excited state of helium, we may have the configuration 1s2p, so that
there are four angular momenta to combine: l1 = 0, l2 = 1, s1 = s2 = 1/2. We know there
will be 12 possible states, since there are three possible values ofml for the p electron, and for
each of these we can have 4 possible combinations of ms1 and ms2, namely up-up, up-down,
down-up, and down-down. We describe these 12 states in L-S coupling as follows: Adding 0
and 1 gives only one possible value of L, namely L = 1. But there are two possible values
of S, since we can have either |s1 − s2| = 0 or s1 + s2 = 1, but nothing in between. Thus
we have states with (L = 1, S = 0) and states with (L = 1, S = 1). Finally we form the J
values. For S = 0 we must have J = L = 1; but for S = 1 we can have J running from
|L − S| to L + S in integer steps, namely J = 0, 1, 2. Putting all this together we see that
we expect 4 energy levels within the 1s2p excited configuration of helium. We label them
{L=1, S=0, J=1}, {L=1, S=1, J=0}, {L=1, S=1, J=1}, and {L=1, S=1, J=2}.

For convenience, so that we do not have to write out all these quantum numbers, we
extend our spectroscopic notation as follows. We use an upper case letter to represent L
according to the previous scheme S, P,D, F, · · ·; then we use the integer 2S+1 as a super-
prefix, and J as a sub-suffix. Without J , using only L, S, this is called a term ; including
J gives a level . Within the level are 2J+1 states , which have the same energy since they
differ only in M , that is only in the direction of J. The energy is often determined mainly
by L, S; the weak dependence on J is called the fine structure . Finally we pronounce the
spin state as “singlet” for 2S+1 = 1, “doublet” for 2S+1 = 2, “triplet” for 2S+1 = 3,
and so forth. If the fine structure is small, this terminology tells us to expect a grouping of
1, 2, 3, · · · closely-spaced energy levels.

So for our helium example we have 2 terms, “singlet P” 1P , and “triplet P” 3P , with the
4 levels 1P1,

3P0,
3P1,

3P2. Finally, note that there really are 12 states in these 4 levels: if
we count the possible values of M = −J, · · · ,+J , we see that 1P1 has 3 states, 3P0 has 1,
3P1 has 3, and 3P2 has 5. (Also see the carbon example below.)

In more complex cases, it is important to make use of the simplicity afforded by a closed
shell . If we have the maximum allowed number of electrons in a shell, they always couple
together to give a system with L = 0 and S = 0. Thus for example, the beryllium (Z = 4)
atom has a set of excited states 1s22s2p 1P , 1s22s2p 3P , which are exactly analogous to the
helium 1s2p states described above.

Finally there is a complication for configurations containing equivalent electrons, that
is two or more electrons in the same orbital (same values of n, l). For example, in the 2p3p
configuration, the terms are 1S, 3S, 1P , 3P , 1D, 3D. These are determined by considering
all possible values of L, S when we add one electron with l1 = 1, s1 = 1/2 to another
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electron with l2 = 1, s2 = 1/2. However for the 2p2 configuration, some of these terms
are forbidden. The reason is that electrons are fermions , that is they satisfy Fermi-Dirac
statistics, which means that any state of 2 or more electrons must be antisymmetric — it
must change sign if we interchange the quantum numbers of any pair of electrons. (This is
really not understandable until you learn about the quantum theory of multi-particle states.)
The Pauli Exclusion Principle is just one consequence of the fact that electrons are fermions.
Another consequence is that certain of the terms that occur for 2p3p do not occur for 2p2.
In fact, the configuration 2p2 has just 3 terms, namely 1S, 3P , and 1D.

In summary, the states of an atom are traditionally named in four steps, which we
illustrate with the ground configuration of carbon.

First we specify the configuration: 1s22s22p2 (15 states)

then the terms: 1S (1 state), 3P (9 states), 1D (5 states)

then the levels and states:
1S0 (1 state): M = 0
3P0 (1 state): M = 0
3P1 (3 states): M = −1, 0,+1
3P2 (5 states): M = −2,−1, 0,+1,+2
1D2 (5 states): M = −2,−1, 0,+1,+2

2 Electron wavefunctions

2.1 Hydrogen: Nonrelativistic

The probability of finding the electron at a particular place within the atom is given by the
square of the wavefunction ψ(r⃗) [2]. That is, the position probability density (probability
per unit volume) for finding the electron at a displacement r⃗ relative to the nucleus is |ψ(r⃗)|2.
If we integrate over some volume V , we get the probability of finding the electron within
that volume:

P (V ) =
∫
V
|ψ(r⃗)|2d3r. (4)

Note this is a three-dimensional integral; if we use rectangular coordinates, d3r = dxdydz; in
spherical polar coordinates, d3r = r2 sin θdrdθdϕ. We often combine the angular parts of this
by writing dΩ = sinθdθdϕ; then the full 3-dimensional volume element is d3r = r2drdΩ.
(Here Ω stands for a solid angle and is measured in steradians, with the total solid angle
surrounding a point being 4π steradians.) Since the probability of finding the electron
somewhere must be 1 (100%), it must be a fact that∫

|ψ(r⃗)|2d3r = 1 (5)

if the integral is taken over all space.

For hydrogen we know the wavefunction quite well. It is simplest to use spherical polar
coordinates, because it turns out that the angular dependence of ψ(r⃗) is determined by
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the electron’s orbital angular momentum, which we know is both conserved and quantized.
Thus the functional form of the electron wavefunction is closely connected to the quantum
numbers used to classify the states and energy levels. For given values of the three quantum
numbers (n,l,m) the wavefunction is written

ψnlm(r⃗) = Rnl(r)Ylm(θ, ϕ). (6)

(Here m stands for the quantum number ml; we are just using m for simplicity.) The
functions Ylm are known as spherical harmonics. They are not specific to the hydrogen
atom, but occur in many problems in mathematics in which spherical coordinates are used.
For the first few values of l,m they are easy to write down:

Y0,0 =

√
1

4π
(7)

Y1,0 =

√
3

4π
cos(θ) (8)

Y1,1 = −
√

3

8π
sin(θ)eiϕ (9)

Y1,−1 =

√
3

8π
sin(θ)e−iϕ (10)

Of course eiϕ = cosϕ+ i sinϕ and i =
√
−1. The spherical harmonics are so well known

that we normally do not write them out in formulas like these, but simply use Ylm(θ, ϕ) in
our equations just as we use any familiar function such as sin θ for example. One simple
feature of the Ylm is their normalization:∫

|Ylm(θ, ϕ)|2dΩ =
∫ 2π

0
dϕ
∫ π

0
dθ sin θ|Ylm(θ, ϕ)|2 = 1. (11)

The functions Rnl(r) are called the radial wavefunctions for hydrogen, and are also
well known. In complex atoms, we often assume that each electron has a wavefunction of
form ψnlm(r⃗), with the same spherical harmonics Ylm, but then the radial functions must
be found in some approximate way, and will not be as simple as for hydrogen. Also we
often define a different radial function Pnl(r) by writing Pnl(r) = rRnl(r). Then the full
wavefunction is

ψnlm(r⃗) =
1

r
Pnl(r)Ylm(θ, ϕ). (12)

One advantage of Pnl(r) is that its normalization is simple. If we combine the two normalizing
equations from above, we get∫

|ψ|2d3r =
∫ ∞

0
r2Rnl(r)

2dr =
∫ ∞

0
Pnl(r)

2dr = 1. (13)

Thus Pnl(r)
2 has the meaning of probability per unit length: in other words Pnl(r)

2dr is the
probability for the electron to be at a distance between r and r + dr from the nucleus.
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For the first few states of hydrogen, we have the following radial functions, sometimes
called orbitals. In these equations we are using the atomic unit of length a0, the first Bohr
radius. So r is measured in units of a0 and R in units of a0

−3/2 so that R2 is probability
density per unit volume.

1s : R10(r) = 2e−r (14)

2s : R20(r) =
1√
2
(1− r/2)e−r/2 (15)

2p : R21(r) =
1

2
√
6
re−r/2 (16)

3s : R30(r) =
2

3
√
3
(1− 2r/3 + 2r2/27)e−r/3 (17)

3p : R31(r) =
8

27
√
6
(r − r2/6)e−r/3 (18)

3d : R32(r) =
4

81
√
30
r2e−r/3 (19)

Some things to notice about these functions: (1) The factor e−r/n determines the orbital’s
size, which increases with the principal quantum number n, since the wavefunction goes to
zero quickly for r >> na0. (2) For small r, the functions behave like rl. (3) The number
of nodes (zeros) is n−l−1. (4) For a given n, the functions with maximum l (1s,2p,3d,...)
have no nodes, and correspond to the circular orbits in the Kepler theory; as l decreases, the
Kepler ellipses become more eccentric (elongated).

2.2 Electron spin

Besides the wavefunction ψ(r⃗) of equation (6) which describes the electron’s motion in space,
we must have a quantum description of its spin. The wavefunction now has two components,
one for a “spin up”, the other for a “spin down” electron. A good first approximation is
to factor this wavefunction into the product ψ(r⃗) χ where χ is a two-component vector
called a Pauli spinor . A spin state with ms = +1/2 is represented by the spinor χ+, while
ms = −1/2 is represented by χ−, with

χ+ =

(
1
0

)
χ− =

(
0
1

)
(20)

These are eigenfunctions of the spin operators S2,Sz, in the standard representation using
Pauli spin matrices:

S⃗ =
h̄

2
σ⃗ (21)

where

σx =

(
0 1
1 0

)
σy =

(
0 −i
i 0

)
σz =

(
1 0
0 −1

)
(22)
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For example an electron in the hydrogen 2p orbital might be described by the wavefunc-
tion

ψ(n, l,ml,ms; r⃗) = R2p(r)Y11(θ, ϕ)χ− , (23)

indicating it has ml = +1, ms = −1/2. Note this means that the z component of its total
angular momentum would be mj = +1/2. Also note that we soon get in the habit of saying
that the angular momentum is m when it is really mh̄!

While we usually discuss hydrogen states which are eigenstates of Sz, that is not necessary.
Suppose an electron is known to be in the state

χ = αχ+ + β χ− =

(
α
β

)
(24)

Now the probability of finding this electron with spin up is |α|2 and the expectation (mean)

value of Sz =
h̄
2

(
1 0
0 −1

)
is found by ordinary matrix multiplication:

⟨σz⟩ = ⟨ χ | σz | χ ⟩ = (α∗β∗)

(
1 0
0 −1

)(
α
β

)
= (α∗β∗)

(
α
−β

)
= |α|2 − |β|2 (25)

2.3 Hydrogen: Relativistic

A proper description of spin requires use of the Dirac relativistic wave equation [3]. In
the full Dirac theory, the electron wavefunction (Dirac spinor) has four components. We
need four functions of r⃗, rather than just one (as in the spinless theory) or two (as in the
Pauli theory), to describe the electron. This theory includes antiparticles as well as spin.
Crudely speaking the four functions describe the distribution in space of the four possible
kinds of particles: spin-up electrons, spin-down electrons, spin-up positrons, and spin-down
positrons. An approximation due to Pauli, often used in atomic physics, reduces the number
of components to two and gets rid of the positrons.

So for a proper description of the hydrogen atom, we need a Dirac spinor wavefunction for
each state, instead of the nonrelativistic wavefunctions given above. In practice this means
two radial functions P and Q instead of the single R (or P ) we used in the nonrelativistic
theory. It also means two different spherical harmonics instead of just one. The reason for
this important effect is that the orbital and spin angular momenta are mixed up together
instead of being specified separately. So we must use the quantum numbers n, l, j,m instead
of n, l,ml,ms. This means that different values of l,ml are involved in a single state; for
example 2p(j=1/2, m=1/2) is constructed as a combination of 2p(ml = 0,ms = +1/2),
2p(ml = 1,ms = −1/2), and 2s(ml = 0,ms = +1/2). So we find we need two radial
functions P (r), Q(r), and three angular functions Y11(θ, ϕ), Y10(θ, ϕ), and Y00(θ, ϕ) to take
the place of the nonrelativistic wavefunction P (r)Ylm(θ, ϕ).

Consider the energy level Enlj. (Actually for hydrogen the energy depends only on n, j,
not on l, but for more complex atoms that’s not true.) There are (2j + 1) states with the
same energy Enlj, since the z component of the angular momentum, mh̄, can have (2j + 1)
values, given by m = −j,−j + 1, ...j − 1, j. It is easy to understand physically that the
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energy is the same for all values of m because the energy cannot depend on the direction of
the angular momentum. We can use the Dirac notation |n, l, j,m >, if we want to speak
of the quantum state rather than the energy Enlj or the wavefunction ψnljm(r⃗).

Now to finally write the wavefunctions for the state |n, l, j,m >. The relations which
are analogous to equation (6) above are

ψ(+)
nljm(r⃗) =

1

r
Pnlj(r)C+(ljm)Yl,m−1/2(θ, ϕ) +

i

r
Qnlj(r)C+(l

′jm)Yl′,m−1/2(θ, ϕ) (26)

and

ψ(−)
nljm(r⃗) =

1

r
Pnlj(r)C−(ljm)Yl,m+1/2(θ, ϕ) +

i

r
Qnlj(r)C−(l

′jm)Yl′,m+1/2(θ, ϕ). (27)

Here l′ = l ± 1 is the other value of l which can combine with the spin to form the given
j. For j = l + 1/2, l′ = l + 1; for j = l − 1/2, l′ = l − 1. The quantities C±(ljm) are
simple numerical “vector coupling coefficients” coming from the quantum version of the
vector addition l⃗ + s⃗ = j⃗. For example

ψ(+)
np 3

2
3
2
=

1

r
Pnp 3

2
(r)Y11 −

√
1

5

i

r
Qnp 3

2
(r)Y21. (28)

The (±) superscript on the wavefunction refers to the electron spin. The physical meaning

of the wavefunction ψnljm
(±)(r⃗) is as follows:

∣∣∣ψnljm
(+)(r⃗)

∣∣∣2 is the probability density of

finding a spin-up electron at r⃗.
∣∣∣ψnljm

(−)(r⃗)
∣∣∣2 is the probability density of finding a spin-

down electron at r⃗. This is what we mean when we say that ψnljm
(±)(r⃗) is the probability

amplitude for finding an electron at a certain place with a certain spin.

3 Angular momentum operators and eigenstates.

The hamiltonian H of an isolated atom is isotropic (invariant under the rotation group R3)
and therefore commutes with the angular momentum operator.[4] The operators for the
total angular momentum components Ji (i = x, y, z), are the generators of R3, and have the
corresponding commutation relations with each other (using h̄ = 1):

[Ji,H] = 0, [J1, J2] = iJ3 etc,
[
Ji, J

2
]
= 0. (29)

This means that we can use energy eigenstates which are also eigenstates of J2 and Jz.

H | E, J,M ⟩ = E | E, J,M ⟩
J2 | E, J,M ⟩ = J(J + 1) | E, J,M ⟩ (30)

Jz | E, J,M ⟩ = M | E, J,M ⟩

It is often useful to use spherical components Jm (with m = −1, 0,+1), rather than the
cartesian components Ji. These are defined by

J±1 = ∓
√
1/2 (Jx ± iJy) , J0 = Jz. (31)
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It is also convenient to form linear combinations called shift operators:

J± = Jx ± iJy. (32)

In terms of these operators, the commutation relations can be written in the form

[Jz, Jm] = mJm, [J±, Jm] = C±(1,m)Jm±1. (33)

Also the action of the shift operators on the eigenstates can be written in the same form:

Jz | E, J,M ⟩ =M | E, J,M ⟩ , J± | E, J,M ⟩ = C±(J,M) | E, J,M ± 1 ⟩ . (34)

In both these equations the constant is given by

C±(J,M) =
√
J(J + 1)−M(M ± 1). (35)

3.1 Spin-orbit coupling.

The atomic states can be specified further by using the total orbital and total spin angular
momentum operators, the sum of which is the total angular momentum operator:

Ji = Li + Si. (36)

Of course L and S are themselves the vector sums of the orbital and spin angular momenta
of all the electrons in the atom. We say that the individual l’s are coupled to form L, the
individual spins are coupled to form S; then L and S are coupled to form J.

Note that the commutation relations among the components of L, and separately among
the components of S, are the same as those among the components of J (equation 29). How-
ever all commutators between a component of L and a component of S will be zero, because
they act on completely different variables — one on the electrons’ position coordinates, one
on their spin coordinates. Therefore we can form state vectors which are simultaneous eigen-
states of L2, Lz, S

2, and Sz, which we denote by | L,ML, S,MS ⟩. However this is not an
eigenstate of J2 and Jz. Such eigenstates are linear combinations:

| L, S, J,M ⟩ =
∑

ML,MS

⟨ L,ML, S,MS | L, S, J,M ⟩ | L,ML, S,MS ⟩ . (37)

The vector-coupling (Clebsch-Gordan) coefficient is proportional to a three-j symbol:

⟨ L,ML, S,MS | L, S, J,M ⟩ = (−1)L−S+M
√
2J + 1

(
L S J
ML MS −MJ

)
. (38)

Note that L and S do not represent conserved quantities (“good quantum numbers”)
because they do not commute with H. Thus | L, S, J,M ⟩ is not an energy eigenstate. Nev-
ertheless we can use the set of all such states { | L, S, J,M ⟩ } as a convenient orthonormal
basis and write the energy eigenstates as linear combinations of them.
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Moreover L and S are approximately conserved, and often this approximation is very
good. The atomic hamiltonian can be written

H = H0 +Hes +Hso +Hrc. (39)

Here H0 contains the electrons’ kinetic energy and the electron-nucleus attraction terms; Hes

is the sum of the electron-electron electrostatic repulsions; Hso is the spin-orbit interaction;
Hrc represents relativistic corrections. For light atoms, which are not too highly ionized,
we find that H0 +Hes ≫ Hso ≫ Hrc. Since H0 and Hes are spin-independent, they clearly
commute with S. But by rotational invariance they also commute with J, and since L = J−S,
they must also commute with L. So we see that | L, S, J,M ⟩ can be an energy eigenstate
in the “nonrelativistic approximation” H → H0 + Hes. (In other words, the electrostatic
interaction is diagonal in L and S.)

3.2 Tensor operators.

A set of 2k+1 operators T k
q (q = −k, · · · , k), is said to form a tensor operator of rank

k if its commutation relations with the angular momentum operators are exactly analogous
to equation (34), namely[

Jz, T
k
q

]
= q T k

q,
[
J±, T

k
q

]
= C±(k, q)T

k
q±1. (40)

Note that this means that the set of three angular momentum operators Jq forms a tensor
operator of rank one.

Now the matrix elements of tensor operators between angular momentum eigenstates can
be partially evaluated via these equations.[5] The result is the celebrated Wigner-Eckart
theorem: ⟨

J,M |T k
q|J ′,M ′

⟩
= (−1)J−M

(
J k J ′

−M q M ′

)⟨
J ||T k||J ′

⟩
. (41)

The second factor on the right-hand side is called a three-j symbol; these are well-tabulated
functions with well-known sum rules and other identities. The last factor is called the
reduced matrix element ; it contains all the dependence on the details of the states and
the operators, for example integrals over radial wavefunctions.

The main point is that the dependence of the matrix element on M,M ′, q is completely
determined by the fact that the operator is a tensor and the states are angular-momentum
eigenstates.

4 Wavefunctions for coupled states

4.1 Two electrons

We have seen that it is convenient to describe 2-electron states using LS coupling. For
example we saw that there are 12 states in the 1s2p configuration of helium, which are
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grouped into 4 energy levels designated 3P0,
3P1,

3P2,
1P1. In general, each electron has

2(2l+1) possible states, so the configuration n1l1n2l2 has 4(2l1+1)(2l2+1) states. The energy
levels are formed by using all integer values of L between |l1−l2| and l1+l2 with S = 1 and
S = 0 for each L, and finally all integer values of J between |L−S| and L+S. For example
for the 2p3d configuration we have 1P1,

1D2,
1F3,

3P0,1,2,
3D1,2,3,

3F2,3,4.

In the independent-particle model we write approximate wavefunctions for these
states by combining hydrogen-like single-particle wavefunctions with each other according
to the rules of angular momentum algebra discussed above. The general form is the same as
that of equation (37):

Ψ((n1l1, n2l2)L,ML, S,MS) =
∑

m1m2µ1µ2

⟨ l1m1, l2m2 | L,ML ⟩ ⟨ s1µ1, s2µ2 | S,MS ⟩ψ1(r⃗1)ψ2(r⃗2)

(42)
Here for simplicity we have used m instead of ml for the z-component of orbital angular
momentum, and µ instead of ms for the z-component of spin angular momentum. And of
course ψ(r⃗) is short for

ψ(r⃗) = ψnlm(r⃗)χµ (43)

But to get an eigenstate of J we need to take a linear combination of these states, introducing
one more summation:

Ψ((n1l1, n2l2)L, S, J,M) =
∑

MLMS

⟨ L,ML, S,MS | J,M ⟩ Ψ((n1l1, n2l2)L,ML, S,MS) (44)

For example, consider the simple configuration 1s2p. There are 1P1,
3P0,

3P1,
3P2 energy

levels. The corresponding coupled quantum states can be constructed from the equations
above, giving:

Ψ(1s2p 1P1,M = +1) = ψ(+)
1,1(r⃗1, r⃗2)χ0,0(1, 2)

Ψ(1s2p 3P2,M = +2) = ψ(−)
1,1(r⃗1, r⃗2)χ1,1(1, 2) (45)

Ψ(1s2p 3P1,M = +1) =
√

1/2 ψ(−)
1,1(r⃗1, r⃗2)χ1,0(1, 2) −

√
1/2 ψ(−)

1,0(r⃗1, r⃗2)χ1,1(1, 2)

where χS,MS
(1, 2) is the total spin eigenstate, coupling the two spins to give either the triplet

(S = 1) or singlet (S = 0) spin state:

χ0,0(1, 2) =
√

1/2 χ+(1)χ−(2)−
√

1/2 χ−(1)χ+(2)

χ1,1(1, 2) = χ+(1)χ+(2) (46)

χ1,0(1, 2) =
√

1/2 χ+(1)χ−(2) +
√

1/2 χ−(1)χ+(2)

and ψ(±)
L,ML

(r⃗1, r⃗2) is the total space wave function, coupling the two orbital angular mo-
menta to give eigenstates of L,ML, with the symmetric or antisymmetric combination chosen
to make the total wavefunction (state vector) antisymmetric under interchange of electron
labels as required by Fermi-Dirac statistics:

ψ(+)
1,1(r⃗1, r⃗2) =

√
1/2ψ1s(r⃗1)ψ2p1(r⃗2) +

√
1/2ψ2p1(r⃗1)ψ1s(r⃗2)

ψ(−)
1,1(r⃗1, r⃗2) =

√
1/2ψ1s(r⃗1)ψ2p1(r⃗2) −

√
1/2ψ2p1(r⃗1)ψ1s(r⃗2) (47)

ψ(−)
1,0(r⃗1, r⃗2) =

√
1/2ψ1s(r⃗1)ψ2p0(r⃗2) −

√
1/2ψ2p0(r⃗1)ψ1s(r⃗2)
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The 3P2 states with smaller values of M can be constructed by applying the lowering
operator (Eq. 34) J− = L−+S− to the 3P2,M = 2 state. In the same way the 3P1,M = 0,−1
states can be constructed from the 3P1,M = 1 state. Finally the 3P0 state is constructed by
defining it to be orthogonal to 3P1,M = 0 and 3P2,M = 0.

Exercise 1 Derive equations (45)–(47) from equations (42)–(44) using explicit values of the
required vector-coupling coefficients, for example from [2] or [4].

Exercise 2 Derive the needed vector coupling coefficients, using the lowering-operator method
(equation 34) above (or see for example reference [2]).

5 The Coulomb interaction

The most important two-body operator in the hamiltonian for an atom with N electrons is
the electrostatic (Coulomb) interaction energy

Hes =
N∑
a<b

e2

4πϵ0rab
(SI units)

=
N∑
a<b

1/rab (atomic units) (48)

where a, b are electron labels, so the sum runs over all pairs of electrons, with 1 ≤ a < b ≤ N ,
and of course rab = |r⃗a − r⃗b|.

We have already seen that this operator commutes with L,S, J, Jz so that it is diagonal
in all these quantum numbers. However, it does not separate into a product of one-electron
operators: it involves electron correlation in an essential way. In calculating the matrix
elements of the operator Hes, the usual method is to expand it in a sum of terms, each
of which is a product of operators on the individual electrons. From the point of view of
rotational symmetry, this corresponds to an expansion of a scalar two-body operator in terms
of tensor one-body operators [4, 5]. From a more elementary point of view, this is just an
expansion in Legendre polynomials, followed by use of the addition theorem of the spherical
harmonics.

1

rab
=

∞∑
k=0

r<
k

r>k+1
Pk(cos θab)

=
∑
k,q

4π

2l+1

r<
k

r>k+1
Y ∗
k,q(θa, ϕa)Yk,q(θb, ϕb) (49)

Here of course r< stands for the smaller of ra, rb, and r> for the larger.

So now we have written the Coulomb energy in terms of one-electron coordinates so we
can more easily work out integrals involving this operator. This approach leads to the direct
and exchange Slater integrals Fk and Gk [5].
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6 Electric dipole radiation.

The electromagnetic radiation emitted by any finite-sized source in which there are charged
particles moving nonrelativistically, can be calculated in the electric dipole (E1) approxima-
tion. This nonrelativistic condition is equivalent to the usual criterion that the size of the
source must be small compared to the wavelength of the emitted radiation. For “optical”
(including infrared, ultraviolet) radiation emitted by atoms this is clearly a good approxi-
mation.

The correct relation between emission probability and dipole matrix element can be
written down by starting from the classical expression for the emitted power in terms of the
source’s time-dependent electric dipole moment. In the classical expression for emission at a
certain frequency, there occurs the Fourier amplitude of the time-dependent dipole moment
at that frequency. To obtain the quantum result, simply replace that Fourier amplitude by
the matrix element of the dipole moment operator between the desired initial and final states
(the “transition moment”). For the rate of emission of radiation polarized in the z direction,
the result is

A(i→ f) =
4k3

3h̄
|< i|Dz|f >|2. (50)

Here D⃗ is the electric dipole moment of the atom, i.e. the sum of the dipole moment vectors
of all the electrons. Note that since the physical quantity is a vector, the dipole
operator is a tensor operator of rank one. Note that k = ω/c = 2π/λ.

The simplest way to derive this result is to consider an atom in the lower level, subjected
to an electric field in the z direction, oscillating in resonance with the transition frequency.
Then standard Schrödinger time-dependent perturbation theory, with the electric-dipole
interaction E⃗ • D⃗ as perturbation, will give the absorption probability per unit time. Then
the Einstein analysis which relates stimulated and spontaneous emission to absorption, gives
the above result.

For the rate of emission without regard to polarization, we simply sum over the compo-
nents of D⃗:

A(J,M → J ′,M ′) =
4k3

3h̄

+1∑
q=−1

∣∣∣< J,M |D1
q|J ′,M ′ >

∣∣∣2. (51)

Since, in the absence of applied fields, the states of different M all have the same energy,
we usually want to sum over M ′ and average over M . (Actually the latter operation is
not needed, since the result of the former is independent of M .) This gives the transition
probability (Einstein A value) for a particular spectrum line:

A(J → J ′) =
4k3

3h̄

∑
M ′,q

∣∣∣< J,M |D1
q|J ′,M ′ >

∣∣∣2 ,
=

4k3

3h̄

S(J, J ′)

2J + 1
. (52)

16



Here we have defined the line strength S as follows:

S(J, J ′) =
∑

M,M ′,q

∣∣∣< J,M |D1
q|J ′,M ′ >

∣∣∣2 ,
=

∣∣∣< J ||D1||J ′ >
∣∣∣2 . (53)

The last equation can be derived easily using the Wigner-Eckart theorem and the sum rule
for the three-j symbols.

Note that if, in the initial state, allM values are equally populated, then the total photon
emission rate (“strength”) in the line J → J ′ is proportional to (2J + 1)A(J → J ′) and so
is simply proportional to the line strength S hence the name.

6.1 Dipole transitions in spin-orbit coupling.

Suppose we have a tensor operator T k
q which we know is spin-independent — that is, it does

not act on the spin coordinates of the electrons, and so commutes with S. We can combine
the above equations, do some “Racah algebra”, and prove the following important theorem:

⟨ L, S, J ||T k|| L′, S ′, J ′ ⟩ = δS′S(−1)L+S+J
′+1
√
(2J+1)(2J ′+1)

{
J ′ 1 J
L S L′

}
⟨ L ||T k|| L′ ⟩

(54)
The six-j symbol, like the three-j, is a standard tabulated quantity. The significance of this
result is that it gives explicitly the dependence of the original matrix element on S, S ′, J, J ′.
The essential quantity is the final reduced matrix element, which is independent of these
four quantum numbers.

Now the electric dipole operator is clearly an example of a spin-independent tensor op-
erator. Thus we can apply (54) to its matrix elements between states given in spin-orbit
coupling. In particular, combining (54) and (53) gives the desired result for the transition
probability in spin-orbit coupling:

A(L, S, J → L′, S ′, J ′) =
4k3

3h̄

| ⟨ L, S, J ||D1|| L′, S ′, J ′ ⟩|2

(2J+1)

= δSS′
4k3

3h̄
(2J ′+1)

{
J ′ 1 J
L S L′

}2 ∣∣∣ ⟨ L ||D1|| L′ ⟩
∣∣∣2 . (55)

The reduced matrix element ⟨ L ||D1|| L′ ⟩ contains all the dynamics of the transition, i.e.
the dependence on the radial wavefunctions. Here | L ⟩ is shorthand for all the quantities
required to specify the state except for the quantum numbers S, J , which appear only in the
six-j symbol.

17



6.2 Calculating dipole transitions

If we have theoretical wavefunctions for the initial and final states, we can now compute a
theoretical transition probability. From equation (55) we see that the key quantity is the

reduced matrix element ⟨ L ||D1|| L′ ⟩. Recall that D⃗ is the electric dipole operator: for an
atom or ion with N electrons

D⃗ = −e
N∑
i=1

r⃗i (56)

In general the reduced matrix element is computed in terms of integrals over the radial
wavefunctions of the initial and final states, of the form

R(nl, n′l′) =
∫ ∞

0
Pnl(r) r Pn′l′ dr (57)

General formulas connecting the reduced matrix element to such radial integrals may be
found for example in sections 14.7 – 14.11 of Cowan’s book. [5]

For a hydrogen-like (one-electron) atom or ion, the connection is simple, namely:

⟨ nl ||D1|| n′l′ ⟩ = δl′,l±1 (−1)l
′+l>

√
l> R(nl, n′l′) (58)

Here l> is the larger of the two orbital quantum numbers l, l′. Note the selection rule that
l must increase or decrease by 1; the follows from angular momentum conservation and the
requirement that the parity must change, since the dipole operator has odd parity.
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