
- 1. A battery is used to charge a series combination of two identical capacitors. If the potential difference across the battery terminals is V and total charge Q flows through the battery during the charging process then the charge on the positive plate of each capacitor and the potential difference across each capacitor are:
 - A) Q/2 and V/2, respectively
 - B) Q and V, respectively
 - C) Q/2 and V, respectively
 - D) Q and V/2, respectively
 - E) Q and 2V, respectively
- 2. A 2-**m** and a 1-**m** capacitor are connected in parallel and a potential difference is applied across the combination. The 2-**m** capacitor has:
 - A) twice the charge of the 1-mF capacitor
 - B) half the charge of the 1-*m* capacitor
 - C) twice the potential difference of the 1-mF capacitor
 - D) half the potential difference of the 1-mF capacitor
 - E) none of the above
- 3. Two identical capacitors, each with capacitance C, are connected in parallel and the combination is connected in series to a third identical capacitor. The equivalent capacitance of this arrangement is:
 - A) 2*C*/3
 - B) *C*
 - C) 3*C*/2
 - D) 2*C*
 - E) 3*C*
- 4. Capacitor C_1 is connected alone to a battery and charged until the magnitude of the charge on each plate is q_0 . Then it is removed from the battery and connected to two other capacitors C_2 and C_3 as shown. The final charges on the capacitors are related by:

- A) $q_0 = q_1 + q_2 + q_3$
- B) $q_1 + q_2 + q_3 = 0$
- C) $q_0 = q_1, q_2 + q_3 = 0$
- D) $q_0 = q_1 + q_2, q_2 = q_3$

- E) $q_0 = q_2 + q_3, q_1 = 0$
- 5. A parallel-plate capacitor has a plate area of 0.2 m^2 and a plate separation of 0.1 mm. If the charge on each plate has a magnitude of 4×10^{-6} C the electric field between the plates is approximately:
 - A) 0
 - B) $4 \times 10^2 \, \text{V/m}$
 - C) 1×10^{6} V/m
 - D) $2 \times 10^6 \, \text{V/m}$
 - E) $4 \times 10^{12} \text{ V/m}$

Answer Key:

- 1. D
- 2. A
- 3. A
- 4. D
- 5. D