1. A total charge of $6.3 \times 10^{-8} \mathrm{C}$ is distributed uniformly throughout a $2.7-\mathrm{cm}$ radius sphere. The volume charge density is:
A) $3.7 \times 10^{-7} \mathrm{C} / \mathrm{m}^{3}$
B) $6.9 \times 10^{-6} \mathrm{C} / \mathrm{m}^{3}$
C) $6.9 \times 10^{-6} \mathrm{C} / \mathrm{m}^{2}$
D) $2.5 \times 10^{-4} \mathrm{C} / \mathrm{m}^{3}$
E) $7.6 \times 10^{-4} \mathrm{C} / \mathrm{m}^{3}$
2. Consider Gauss's law: $\oint \vec{E} \cdot d \vec{A}=q / \varepsilon_{0}$. Which of the following is true?
A) \vec{E} must be the electric field due to the enclosed charge
B) If $q=0$ then $\vec{E}=0$ everywhere on the Gaussian surface
C) If the charge inside consists of $+q,+q$ and $-2 q$, then the integral is zero
D) On the surface \vec{E} is everywhere parallel to $d \vec{A}$
E) If a charge is placed outside the surface, then it cannot affect \vec{E} on the surface
3. A $5.0-\mu \mathrm{C}$ point charge is placed at the center of a cube. The electric flux in $\mathrm{N} \cdot \mathrm{m}^{2} / \mathrm{C}$ through one side of the cube is:
A) 0
B) 7.1×10^{4}
C) 9.4×10^{4}
D) 1.4×10^{5}
E) 5.6×10^{5}
4. A conducting sphere of radius 0.01 m has a charge of $1.0 \times 10^{-9} \mathrm{C}$ deposited on it. The magnitude of the electric field in N/C just outside the surface of the sphere is:
A) zero
B) 450
C) 900
D) 4500
E) 90,000
5. Charge Q is distributed uniformly throughout an insulating sphere of radius R. The magnitude of the electric field at a point $R / 2$ from the center is:
A) $Q / 4 \pi \varepsilon_{0} R^{2}$
B) $Q / \pi \varepsilon_{0} R^{2}$
C) $3 Q / 4 \pi \varepsilon_{0} R^{2}$
D) $Q / 8 \pi \varepsilon_{0} R^{2}$
E) none of these
6. The flux of the electric field $(24 \mathrm{~N} / \mathrm{C}) \vec{i}+(30 \mathrm{~N} / \mathrm{C}) \vec{j}+(16 \mathrm{~N} / \mathrm{C}) \vec{k}$ through a $2.0 \mathrm{~m}^{2}$ portion of the $y z$ plane is:
A) $32 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
B) $34 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
C) $42 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
D) $48 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
E) $60 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$

Answer Key :

1. E
2. C
3. C
4. E
5. D
6. D
