- 1. A small object has charge Q. Charge q is removed from it and placed on a second small object. The two objects are placed 1 m apart. For the force that each object exerts on the other to be a maximum. q should be:
 - A) 2Q
 - B) *Q*
 - C) Q/2
 - D) Q/4
 - E) 0
- 2. Two small charged objects repel each other with a force F when separated by a distance d. If the charge on each object is reduced to one-fourth of its original value and the distance between them is reduced to d/2 the force becomes:
 - A) F/16
 - B) F/8
 - C) F/4
 - D) F/2
 - E) *F*
- 3. Charges q_1 and q_2 are on the x axis, with q_1 at x = a and q_2 at x = 2a. For the net force on a another charge at the origin to be zero q_1 and q_2 must be related by q_2 =:
 - A) $2q_1$
 - B) $4q_1$
 - C) $-2q_1$
 - D) $-4q_1$
 - E) $-q_1/4$
- 4. A 2- μ C charge is placed at the origin, an identical charge is placed 2 m from the origin on the x axis, and a third identical charge is placed 2 m from the origin on the y axis. The magnitude of the force on the charge at the origin is:
 - A) $9.0 \times 10^{-3} \text{ N}$
 - B) $6.4 \times 10^{-3} \text{ N}$
 - C) $1.3 \times 10^{-2} \text{ N}$
 - D) $1.8 \times 10^{-2} \text{ N}$
 - E) $3.6 \times 10^{-2} \text{ N}$

Answer Key:

- 1. C 2. C 3. D 4. C