1. A portion of a circuit is shown, with the values of the currents given for some branches. What is the direction and value of the current i ?

A) $\downarrow, 6 \mathrm{~A}$
B) $\uparrow, 6 \mathrm{~A}$
C) $\downarrow, 4 \mathrm{~A}$
D) $\uparrow, 4 \mathrm{~A}$
E) $\downarrow, 2 \mathrm{~A}$
2. A total resistance of 3.0Ω is to be produced by combining an unknown resistor R with a 12Ω resistor. What is the value of R and how is it to be connected to the 12Ω resistor?
A) 4.0Ω, parallel
B) 4.0Ω, series
C) 2.4Ω, parallel
D) 2.4Ω, series
E) 9.0Ω, series
3. Nine identical wires, each of diameter d and length L, are connected in parallel. The combination has the same resistance as a single similar wire of length L but whose diameter is:
A) $3 d$
B) $9 d$
C) $d / 3$
D) $d / 9$
E) $d / 81$
4. The equivalent resistance between points 1 and 2 of the circuit shown is:

A) 4Ω
B) 4.5Ω
C) 6Ω
D) 3Ω
E) 2.5Ω
5. The current in the $5.0-\Omega$ resistor in the circuit shown is:

A) 0.42 A
B) 0.67 A
C) 1.5 A
D) 2.4 A
E) 3.0 A
6. A $2-\Omega$ resistor and a $4-\Omega$ resistor are connected in parallel to a $6-V$ battery. The rate of thermal energy dissipated by the $2-\Omega$ resistor is:
A) 8 W
B) 6 W
C) 9 W
D) 18 W
E) none of these

Answer Key --

1. A
2. A
3. A
4. E
5. C
6. D
